Recent developments in paradise: fast waveform sampling readout electronics for finely pixelated photosensors in Hawaii

Isar Mostafanezhad - Nalu Scientific **Gary Varner – University of Hawaii**

Belle II detector – TOP & Scint readout

CsI(TI) EM calorimeter: waveform sampling electronics, pure Csl for end-caps

4 layers DS Si Vertex Detector \rightarrow 2 layers PXD (DEPFET) 4 layers DSSD

Central Drift Chamber: smaller cell size, long lever arm

DIRC2019 – Hawaii wfs - Varner

7.4 m

Time-o Chere Time-o (barre prox. 1 (forwa

RPC m & K₁ counter: scintillator + Si-PM for end-caps

	5.0	m
of-Prop of-Prop I), focusir	Tit, Aerogel Counter → Dagation coun	ter CH
iiu)	2	

Looking back on >10 year development

• ASIC costing well understood, very competitive!

NIM A591 (2008) 534-345.

iTOP Readout "boardstack" (1 of 4 per TOP Module)

GCT Camera (CTA) – another TARGET application

Timing example (only 1 GSPS)

TARGETX timing measurement

Entries (per 25ps bin)

6

Readout: Precision Timing Electronics

- Consider the IRSX ASIC
 - Designed by IDLAB, UH
- Operated at 2.7GSa/s in TOP
 - ~600MHz analog bandwidth
 - 32k analog buffer cells (~10us)
 - 12 bit digitisation w/o deadtime
- Power budget ~600mW/ch
 - ASIC: ~125mW/ch
 - Preamp: ~150mW/ch
 - FPGAs: ~300mW/ch

Messages going forward

- Performance OK, but reducing power important
- Ideally integrate any needed amplification
- ASIC development important, but firmware and support have been the most critical issues
- Very inefficient to have control from external FPGA
- Integrated needed DACs, triggering, pedestal correction and feature extraction will be key to reducing overall system costs and pushing higher integration density

Challenges and Opportunities

Challenges

- Need to read out several photosensors (MaPMTs, MCP-PMTs, and SiPMs) with similar sensor and pixel size (16x16 array of 3 mm pixels)
 - DIRC also requires good timing (<100 ps)
- Goal is to have common front end electronics with good timing that can be used with many sensors and detectors
- Even finer pixel pitches being considered

Opportunities

- Smaller technology nodes offer
 - Higher gain-bandwidth amplifiers, reduced capacitance
 - Integration of significant amounts of digital memory and processing capabilities
- High-speed serial I/O, for compact control/data collection
- Collaboration between Univ. Of Hawaii and Nalu Scientific
 - Able to supply these ASICs commercially
 - Engineering support for designs

Photograph of the first generation of 256anode 2" PMT readout for use with mRICH prototype in the Fermilab beam test facility.

MA PMT Readout eRD-14

Photograph of the 64 channel SiREAD based (2x SiREAD rev.1) readout card as a building block for the 256 MA-PMT readout.

Benefits of Higher Integration - SoC

Analog memory:

- Sampling always on (1-10 Gsa/s), but at low power
- Digitize only Region of Interest (ROI)
- Long analog buffer -> suitable for large experiments

Digital processing:

- Per channel cost reduction by a factor of 4
- Relax thermal design by 40% reduction in power dissipation
- Trigger time-stamping at the front-end
- Eliminating the need for costly high-end FPGAs
- User friendly: substantially reducing the FPGA firmware development labor
- Reduced complexity and design and cabling effort/cost for the front-end boards

Analog/Mixed signal design

Digital/Synthesized logic

System-on-Chip (SoC)

Nalu Scientific SBIR Project: ASoC

Compact, high performance waveform digitizer

Fabricated

Parameter	Spec (measured)			
Sample rate	2.4-3.2GSa/s			
Number of Channels	4			
Sampling Depth	16kSa/channel			
Signal Range	0-2.5V			
Resolution	12 bits*			
Supply Voltage	2.5V			
RMS noise	~1 mV			
Digital Clock frequency	25MHz			
Timing resolution	<25ps**			
Power	140mW/channel			
Analog Bandwidth	950MHz			

Key Contribution:

- High performance digitizer: 3+ GSa/s
- Highly integrated
- Commercially available
- 5mm x 5mm die size

All chips, are designed with commercial grade tools and licenses and can be sold once commercialized.

Nalu Scientific- ASIC developments

ADC

SBIR Data Rights.

Live demo at IEEE NSS-MIC 2018

12

SiREAD Performance

Micrograph of the fabricated prototype SiREAD (**top left**). Prototype SiREAD on the evaluation PCB (**top middle**). Superimposed dark count waveforms recorded from a SiPM using the SiREAD operating at 1 Gsa/s (**right**). High channel count evaluation PCB for SiREAD with 32 dedicated MMCX connectors (**bottom left)**.

AARDVARC V2 under test

- Test board V2 designed, fabricated and assembled
- Lower cost FPGA dev card identified and made available
- Test firmware V2 developed
- New software and GUI designed and implemented

AARDVARC Parameter	Specification (measured)			
Process node	130 nm			
Channels	4			
Sampling Rate	10-14.5GSa/s*			
Storage Samples/ch	32768			
Analog BW	>1GHz**			
Dynamic Range	1.0 V**			
Time accuracy	<5 ps***			
Readout	Parallel/Fast Serial			
ADC bits	12			
Power/ch	80 mW*			

AARDVARC Test card

SBIR Data Rights.

Results to be presented at IEEE NSS- MIC in Manchester

Nalu Scientific Data Acquisition Systems

Xilinx A7 FPGA dev

Current SoC-ASIC Projects

Project	Sampling Frequency (GHz)	lnput BW (GHz)	Buffer Length (Samples)	Number of Channels	Timing Resolution (ps)	Available Date
ASoC	3-5	0.8	32k	8	35	Rev 2 avail
SiREAD	1-3	0.6	4k	64	80-120	Rev 1 avail
AARDVARC	6-10	2.5	32k	4-8	4-8	Rev 2 avail
AODS	1-2	1	8k	1-4	100-200	Nov 2019

- **ASoC**: Analog to digital converter System-on-Chip
- **SiREAD**: SiPM specialized readout chip with bias and control
- **AARDVARC**: Variable rate readout chip for fast timing and low deadtime
- **AODS:** Low density digitizer with High Dynamic Range (HDR) option

Development Complementarity, going forward

- Exploring higher channel density ASICs for applications such as 64x64 anode readout at Univ. of Hawaii
- Once have a viable concept demonstrator, clear path to commercialization via Nalu Scientific
- UH provides comprehensive bench, environmental and picosecond laser/photosensor testing
- Nalu provides commercial grade ASICs with professional engineering and support
- Expect to continue to push boundaries of throughput, timing, channel density and ease-of-use

16