

PRACTICAL ISSUES IN BIOGAS PRODUCTION

What are the factors of success in Germany?

Group of Companies

New Company

- Project development and operation of renewable energy plants
- The business areas are:
 - photovoltaic
 - biogas
 - wind energy

- Consultancy for quality-, energy- and riskmanagement in the sectors renewable energies and agriculture
- An important consulting emphasis is put on operational management of biogas plants

- Accredited environmental audit organisation
- Certification of energy and enviromental management systems in the sectors renewable energies and agriculture
- Funding of national and international renewable energy and agricultural projects (environmental fund)
- Know-how transfer between different countries
- Project conception

- All these companies are founded and managed by Dr. Andreas Möller
- He studied agricultural sciences in Kassel and graduated in 2008 from Justus-Liebig-University in Gießen
- In his dissertation he developed a quality standard for biomethan plants to improve their processes, functional safety, efficency and profitability

Diversity of Biogas Production

Size/Output/Capacity

Wiard Smidt (Lower Saxony)	Capacity: Fermenter: Substrate p.a.:	75 kW _{el} 1.100 m ³ / 2.200 m ³ (secondary) ca. 6.000 m ³ manure, 50 t food remains, 900 t cattle dung	
Schwälmer Biogas (Hesse)	Capacity: Fermenter: Substrate p.a.:	400 + 220 kW _{el} ; 350 m³⁄h 22.750 m³ (7 tanks) ca. 61.000 t biomasse	
BioEnergiepark "Klarsee" (Mecklenburg-Western Pomerania)	Capacity: Fermenter: Substrate p.a.:	40 x 500 kW _{el} 40 x 2.300 m ³ 360.000 t biomasse	
BioEnergiepark "Güstrow" (Mecklenburg-Western Pomerania)	Capacity: Fermenter: Substrate p.a.:	5.000 m³/h 38 tanks 420.000 t biomasse	

Diversity of Biogas Production

Size/Output/Capacity

Wiard Smidt (Lower Saxony)

BioEnergiepark "Klarsee" (Mecklenburg-Western Pomerania) BioEnergiepark "Güstrow" (Mecklenburg-Western Pomerania)

Dry matter content

Further criteria

Wet fermentation

Dry fermentation

Type of feed

- Discontinious
- Quasi-continious
- Continious

Number of process phases

- Single-phase
- Two-phase

Process temperature

- Psychrophilic
- Mesophilic
- Thermophilic

Economic Aspects	Technical Aspects			N	Management Aspects					
Development of the number of biogas plants in Germany Source: FNR nach Fachverband Biogas e.V. (2014) und DBFZ (2015)	10000 8000 6000 4000 2000 0	3891	4984	2010	2011	2012	2013	2014	8005	8075
Number of new biogas plants per year during the period 2008-2016 Source: own calculation based on FNR	1500 - 1000 - 500 - 0 -	180 2008	1093 2009	921 2010	1270	340 2012	335 2013	94 2014	61 2015*	70 2016*
Revisions of the renewable energy law		•••		2009)	20)12		2014	

Economic Aspects	Technical	Aspects	Management Aspects			
Type of compensation		EEG 2009	EEG 2012	EEG 2014		
Basic tariff (ct/kWh)		7,8 - 11,7	6,0 - 14,3	5,9 - 13,7		
NawaRo bonus (ct/kWh)		4,0 -7,0	4,0 - 6,0			
Manure bonus (ct/kWh)		1,0 - 4,0	6,0 - 8,0			
Landscape maintenance bonus (ct/kWh)		2,0				
CHP bonus (ct/kWh)		2,0 - 3,0				
Technology bonus / gas treatment bonus (ct/kWh)		1,0 - 2,0	1,0 - 3,0			
Biowaste fermentation (ct/kWh)			14,0 - 16,0	13,4 - 15,3		
Small manure plants (up to 75 kW _{el})			25,0	23,7		

The EEG feed-in-tariff for electricity out of biogas is very complex, this table just gives an overview of the development

Factors of Success in Biogas Production

Economic Aspects

Technical Aspects

Management Aspects

Biomethan

- Biogas can be upgraded to natural gas quality and can be fed in the network
- The natural gas network is Germany's biggest energy storage
- Biomethan can be converted decentral into electricity or used on the heat and fuel market

Electricity

- Biogas production is in contrast to wind or solar energy regardless the weather conditions
- Electricity from biogas is base-load capable and controllable
- Participation at the balancing energy market is possible, e.g. in cooperation with others to form virtual power plants

Heat

- Heat can be used wherever it is needed
 - Local or long distance heating system
 - Sattelite CHP
- Heat can be converted into cold (absorption chiller)

Factors of Success in Biogas Production

Economic Aspects

Technical Aspects

Management Aspects

- Satellite-CHP in combination with an
- absorption chiller

- **REWE** Logistic center needs
 - cold for its cooling system and heat for heating the offices

Biogas plant

Factors of Success in Biogas Production							
Economic	Aspects	Technical Aspects	Management Aspects				
Input		In contrast to wind or solar energy the input is not free available, biomass is with costs					
Process	In contrast to wind or solar energy there is not just a technical process, but a biological process which needs a regular monitoring and an active management						
Output	In contrast to wind or solar energy there is not just an output in form of energy but also output in form of digestate						
			,				

٦Г

* varies depending on dry matter content and composition

Biogas yields (in Nm³/t FM)

Economic Aspects

Technical Aspects

Management Aspects

PROCESS - process management

- The profitability of a biogas plant is based on the avalaibility and the utilisation of the overall process
- Errors and disruptions have to be identified and fixed very fast
- Process monitoring and management is an interaction between human resources and automatization

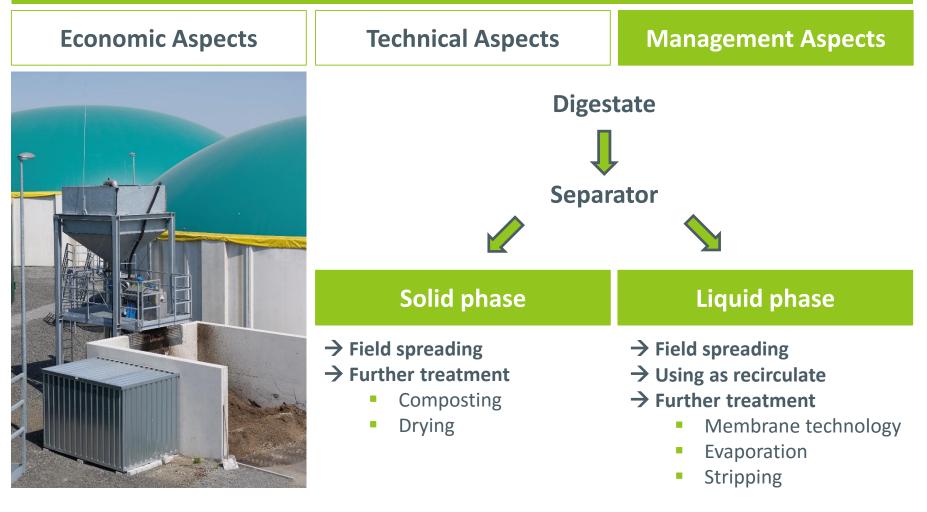
Important parameters for monitoring the biological process

Biogas production rate Gas composition Temperature Input volume and fill level

Substrate characterisation pH value Concentration of organic acids Trace elements Foaming Nitrogen, ammonium, ammonia Floating sludge layers

Economic Aspects

Technical Aspects


Management Aspects

OUTPUT – Digestate management

Digestate has a high level of nutrients and is used as fertiliser in agriculture. In comparison to classic farm manure, digestate has the following advantages:

- reduced odour emissions through degradation of volatile organic compounds
- extensive degradation of short-chain organic acids and consequent minimisation of the risk of leaf burn
- improved rheological (flow) properties and consequent reduction of leaf fouling on fodder plants and simpler homogenisation
- improved short-term nitrogen efficiency through increased concentration of rapid-action nitrogen
- killing-off or inactivation of weed seeds and germs (human pathogens, zoopathogens and phytopathogens)

Conclusion

What are the factors of success in biogas production in Germany?

Remuneration system which incentivises and provides certainty for investors

Various ways of utilisation (biomethan, electricity, heat) Active management of raw material, process and digestate

→ Those factors have to be considered in the steps of project development

CONTACT PERSON

Isatu Hirche

hirche@audit-gmbh.de
+49 (0) 6696 - 912 939 30
+49 (0) 172 - 88 68 378

THANKS FOR YOUR ATTENTION!