

# The Namibian Energy Mix and Its Implications for Air Quality and Climate Variability

Nnenesi Kgabi Department of Civil and Environmental Engineering

SEPA-DESERTEC International Conference 2015 Giessen, Germany





#### **Contents/Outline**

- 1. Background & Significance
- 2. The Namibian Situation
- 3. Global Warming Effects
- 4. Air Quality Effects
- 5. Case for Renewable Energies
- 6. Concluding Remarks



#### **1. BACKGROUND & SIGNIFICANCE**



# **IDENTIFY OF SCIENCE AND TECHNOLOGY GHGs & Pollutant Emissions**

- Greenhouse gas (GHG) and air pollutant emissions share the same sources—transport, industry, commercial and residential areas
- All these sources depend on production, distribution and utilization of energy
- Direct GHGs: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF6)
- Indirect GHGs: non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), nitrogen oxide (NOx), and sulphur dioxide (SO2) (IPCC, 2006)



#### Link to Electrical Energy Demand & Production

- The world emits approximately 27 gigatonnes of CO2e from multiple sources
- Electrical production emitting 10 gigatonnes, or approximately 37% of global emissions
- Electricity demand is expected to increase by 43% over the next 20 years (IAEA, 2009)
- Implication Need for construction of new power generating facilities
- Opportunity To construct new facilities in a way to limit
  GHG emissions (World Nuclear Association, 2011)



#### Significance

- Stakeholders and/or beneficiaries: policy makers, regulators, environmental forums, and urban and rural communities of the developing world
- Basis for accurate energy fuel mix and climate change monitoring, reporting and planning for addressing a global problem at local level



#### 2. THE NAMIBIAN SITUATION



#### **Population Growth**

| YEAR | URBAN   | RURAL   | NAMIBIA |
|------|---------|---------|---------|
| 2015 | 1068625 | 1212091 | 2280716 |
| 2020 | 1295820 | 1208678 | 2504498 |
| 2025 | 1531917 | 1201421 | 2733338 |
| 2030 | 1770807 | 1189735 | 2960542 |
| 2035 | 2011793 | 1173212 | 3185005 |
| 2040 | 2256123 | 1145764 | 3401887 |

- Namibia Population Projections, 2011 2041
- Data Source: Namibia Statistics Agency (2014)



### **Electrical Energy Demand**



(von Oertzen, 2012)

**DAMIBIA UNIVERSITY** OF SCIENCE AND TECHNOLOGY

# **Electrical Energy - Demand Urban Areas**

|              | Urban  | Annual | Average | % HH using | % HH using |
|--------------|--------|--------|---------|------------|------------|
| Arandis      | 5170   | 2.6    | 4.2     | 95.7       | 96.1       |
| Aranos       | 3683   |        | 4.2     | 25.7       | 38.7       |
| Eenhana      | 5528   | 6.8    | 3.7     | 41.3       | 56         |
| Gobabis      | 19101  | 3.2    | 3.9     | 33.9       | 48.5       |
| Grootfontein | 10415  | -3.1   | 3.8     | 44.7       | 94.8       |
| HelaoNafidi  | 19375  |        | 3.8     | 36.6       | 47.3       |
| Henties Bay  | 4720   | 3.6    | 3.1     | 59.2       | 71.6       |
| Karasburg    | 4401   | 0.8    | 4.4     | 41.7       | 70.5       |
| Karibib      | 5132   | 3.2    | 3.7     | 55.9       | 60.5       |
| KatimaMulilo | 28362  | 2.5    | 4.2     | 41.5       | 76.2       |
| Keetmanshoop | 19447  | 2.1    | 4.2     | 58         | 86.6       |
| Khorixas     | 6796   | 1.4    | 4.1     | 42.2       | 78.7       |
| Luderitz     | 12537  | -0.6   | 3       | 46.9       | 78.1       |
| Maltahohe    | 2379   |        | 4.3     | 45.1       | 56.7       |
| Mariental    | 12478  | 2.4    | 4.4     | 65.4       | 87         |
| Nkurenkuru   | 618    |        | 4.7     | 75.6       | 89.4       |
| Okahandja    | 22639  | 4.8    | 4.4     | 62         | 73.1       |
| Okahao       | 1833   |        | 2.9     | 66.1       | 77.3       |
| Okakarara    | 3927   | 1.8    | 3.7     | 39.7       | 48.2       |
| Omaruru      | 6300   | 2.8    | 3.6     | 38.3       | 53.3       |
| Omuthiya     | 3794   |        | 4.2     | 20.4       | 24.3       |
|              |        |        |         |            |            |
| NAMIBIA      | 895691 | 3.9    | 3.8     | 59.7       | 71.1       |

Data Source: National Statistics Agency (2011)



#### **Electrical Energy Production & Consumption**



(von Oertzen, 2012) <u>NB</u>: Need for clear quantifiable electrical energy production mix # Van Eck, ZESA, ESKOM - Coal # Paratus, Anixas - Diesel Oil # Ruacana, EDM, ZESCO - Hydro # STEM - Not Specified



#### **Electrical Energy Production & Consumption**

| Year | Production | Export | Import | Supply | Gap   | Consumption |
|------|------------|--------|--------|--------|-------|-------------|
|      |            |        |        |        |       |             |
| 2000 | 1,407      | 108    | 785    | 2,084  | -89   | 1,318       |
| 2001 | 1,211      | 69     | 1,066  | 2,208  | 871   | 2,082       |
| 2002 | 1,429      | 54     | 942    | 2,317  | 44    | 1,473       |
| 2003 | 1,421      | 53     | 1,045  | 2,413  | 772   | 2,193       |
| 2004 | 1,380      | 23     | 1,519  | 2,876  | 1,392 | 2,772       |
| 2005 | 1,662      | 31     | 1,695  | 3,326  | 1,283 | 2,945       |
| 2006 | 1,612      | 36     | 1,867  | 3,443  | 1,551 | 3,136       |
| 2007 | 1,590      | 40     | 1,931  | 3,480  | 1,629 | 3,219       |
| 2008 | 1,595      | 47     | 2,126  | 3,673  | 1,797 | 3,392       |
| 2009 | 1,520      | 144    | 2,202  | 3,578  | 1,770 | 3,290       |
| 2010 | 1,347      | 294    | 2,462  | 3,515  | 2,007 | 3,354       |

NB: Unit - GWh

Data Source: Manuel (2013)



#### **Electrical Energy Consumption**



Adapted from von Oertzen (2012)



#### **Electrical Energy Fuel Mix**





### **Renewable Energy Supply**

| Period | Total<br>Renewables | Hydro<br>Power | Wood<br>Charcoal | Solar<br>CSP+ PV | Wind<br>Power |
|--------|---------------------|----------------|------------------|------------------|---------------|
| 2000   | 7,155               | 5,026          | 2,129            |                  |               |
| 2001   | 6,489               | 4,360          | 2,129            |                  |               |
| 2002   | 7,204               | 5,123          | 2,081            |                  |               |
| 2003   | 7,266               | 5,108          | 2,157            |                  |               |
| 2004   | 7,952               | 4,921          | 3,031            |                  |               |
| 2005   | 8,984               | 5,962          | 3,022            |                  |               |
| 2006   | 8,520               | 5,443          | 3,077            | 0.2              |               |
| 2007   | 8,943               | 5,551          | 3,392            | 0.4              |               |
| 2008   | 9,302               | 5,023          | 4,278            | 0.7              |               |
| 2009   | 9,352               | 5,072          | 4,278            | 0.9              | 0.6           |
| 2010   | 8,952               | 4,489          | 4,461            | 1.4              | 0.6           |
| 2011   | 9,260               | 5,058          | 4,200            | 1.4              | 0.6           |

- Total Renewable Energy Supplied from 2000 to 2011 (MWh)
- Data Source: Electricity Control Board of Namibia (2014)



#### 3. GLOBAL WARMING EFFECTS



# GHGs from Electrical Energy Consumption

NAMIBIA UNIVERSITY



Conversion factor = 0.99 kgCO2e/kWh; Source:ESKOM

# GHGs from Electrical Energy Consumption Consideration of Actual Electrical Fuel Mix



Coal = 888; Hydroelectric = 6; <u>NB</u>: Unspecified source was assumed to be coal

#### 

- Need to delineate:
- Direct and Indirect Emissions (Scope 1 & 2)
- Contribution of Renewables
- Specific Emissions (e.g. CO2, NH4, N20, SF6)



# **GHG Emissions - Domestic Energy**



Household/Domestic fuel mix for the three towns (Kgabi et al, 2013)

| Town     | Location<br>(Latitude;<br>Longitude) | Populatio<br>n | Number of<br>Households | Main Economic Activities                                                                                                             |
|----------|--------------------------------------|----------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Karibib  | 21°56' 16.97"S;<br>15°51' 16.47"E    | 13300          | 3700                    | No major enterprises or industries.<br>Only Aragonite marble quarries and<br>the Navachab Gold Mine. Economic<br>status: Low income. |
| Lüderitz | 26°38' 45.00"S;<br>15°9' 14.00"E     | 13700          | 4400                    | Tourism, hospitality, fishing<br>industries, mining and a port/harbor.<br>Economic status: Mainly Medium -<br>low income.            |
| Ondangwa | 17°54' 47.01"S;<br>15°58' 40.12"E    | 36800          | 7500                    | No major enterprises or industries.<br>Only local and regional businesses.<br>Economic status: Mainly Medium -<br>low income.        |



# **GHG Emissions - Domestic Energy**

The energy used by residents in each of the three towns:

- KARIBIB Electricity (66.89%), Wood and coal (17.93%), Gas (13.8%), Paraffin (1.38%)
- LÜDERITZ Electricity (76%), Gas (19%), Wood and coal (4%), Paraffin (1%)
- ONDANGWA Electricity (70.59%), Gas (14.71%), Wood and Coal (10.29%), Paraffin (4.41%) (Kgabi et al, 2013)



# **GHG Emissions - Domestic Energy**

|          |      | Consumption<br>(kg/day) | Emission<br>Factor<br>(CO2e/kg) | Emissions<br>(tons<br>CO2e/day) | Emissions (tons<br>CO2e/year) |
|----------|------|-------------------------|---------------------------------|---------------------------------|-------------------------------|
| Karibib  | Coal | 244                     | 2.8814                          | 0.703                           | 256.6                         |
| Lüderitz |      | 290                     |                                 | 0.836                           | 305.1                         |
| Ondangwa |      | 495                     |                                 | 1.426                           | 520.5                         |
|          |      |                         |                                 |                                 |                               |
| Karibib  | Wood | 244                     | 1.9060                          | 0.465                           | 169.7                         |
| Lüderitz |      | 290                     |                                 | 0.552                           | 201.5                         |
| Ondangwa |      | 495                     |                                 | 0.943                           | 344.2                         |
|          |      |                         |                                 |                                 |                               |
| Karibib  | LPG  | 166.5 kg (329.7 L)      | 1.4917                          | 0.492                           | 179.6                         |
| Lüderitz |      | 198 kg (392 L)          | CO2e/L                          | 0.585                           | 213.5                         |
| Ondangwa |      | 337.5 kg (668 L)        |                                 | 0.996                           | 363.5                         |
|          |      |                         |                                 |                                 |                               |

GHG emissions from energy consumption by households

Kgabi et al (2013)



|          | Consumption<br>(kWh/year) | Emission<br>Factor | Emissions<br>(tons<br>CO2e/<br>year) |
|----------|---------------------------|--------------------|--------------------------------------|
| Karibib  | 11380164                  | κWh                | 11266                                |
| Lüderitz | 13533168                  | kgA                | 13398                                |
| Ondangwa | 23067900                  | 0.99               | 22837                                |

GHG emissions from electricity consumption by households

Kgabi et al (2013)



#### 4. AIR QUALITY EFFECTS



# **Global Warming & Air Pollutants**

- Trace gases and aerosols impact climate through their effect on the radiative balance of the earth
- Trace gases such as greenhouse gases absorb and emit infrared radiation which raises the temperature of the earth's surface causing the enhanced greenhouse effect
- Aerosol particles have a direct effect by scattering and absorbing solar radiation and an indirect effect by acting as cloud condensation nuclei
- Atmospheric aerosol particles range from dust and smoke to mists, smog and haze (IPCC, 2001)



### Coal Combustion During Electricity Production



Emission of GHGs during fuel combustion affects air quality Combustion of 1 kg of coal results in emission of 19 g SO2, 1.5 g NOx, 5 g VOCs, 4.1 g PM10, 14.7 g TSP, 187.4 g CO and 0.0134 g benzene (Friedl, et al 2014)

231.71g = 23.17% Pollutants



### Fuel Oil Combustion During Electricity Generation

- 1 kg of petroleum products emits
  0.01 g SO2, 1.4 g NOx, 0.5 g
  VOCs, 0.07 g PM10, 0.07 g TSP,
  and 13.6 g CO into the
  atmosphere (Friedl et al, 2014)
- 15.65g = 1.56% Pollutants



Kgabi et al (2014)

<u>NB</u>: The need for quantification of each fuel type used in the electricity production



Preliminary Average Wind Speed : January, 14h00 Spot Readings at 2m agl in m/s

Municipality

Main\_Road

ANUARY 14h00 Wind [m/s] 14-15 13-14

MINISTRY OF

REPUBLIC OF NAMEIA

**INES & ENERGY** 

Town

Village

12-13

11-12 10-11 9-10 8.9 7-8 6-7

5.6 4-5 3.4 2-3

1-2



Africa and Middle East



Scale

1:10 000 000



### **Renewable Energy – GHG Emissions**

| Technology    | Low       | High | Mean |  |  |  |
|---------------|-----------|------|------|--|--|--|
|               | Tonnes CO |      |      |  |  |  |
| Lignite       | 790       | 1372 | 1054 |  |  |  |
| Coal          | 756       | 1310 | 888  |  |  |  |
| Oil           | 547       | 935  | 733  |  |  |  |
| Natural Gas   | 362       | 891  | 499  |  |  |  |
| Solar PV      | 13        | 731  | 85   |  |  |  |
| Biomass       | 10        | 101  | 45   |  |  |  |
| Nuclear       | 2         | 130  | 29   |  |  |  |
| Hydroelectric | 2         | 237  | 26   |  |  |  |
| Wind          | 6         | 124  | 26   |  |  |  |

(Data Source: IAEA, 2009)



# Wind Energy

- Namibia is one of the countries with long coastlines measuring 1,572 km
- Wind resources along the Namibian coast are considerable
- The wind energy potential in the area south of Lüderitz is outstanding
- A typical 50 MW wind farm positioned on the southern coast would yield some 0.12 TWh every year (von Oertzen, 2009)



# Solar Energy

- Namibia's annual solar radiation average exceeds 6 kWh per square meter per day
- Presently, solar energy for power generation remains mostly untapped - except for the photovoltaic electricity and water pumping installations throughout the country
- Under prevailing conditions, a generation output of some
  0.08 TWh per annum per 50 MW of installed capacity is
  possible (von Oertzen, 2009)



# Solar Energy

- Hazardous emissions connected to PV technology are primarily related to energy consumption in the manufacturing process
- Direct process emissions are almost zero
- Risks from the use of cadmium telluride in modules appear to be quite low, provided that the material is kept wellencapsulated
- PV systems have life-cycle greenhouse gas emissions in the range of 25-35 g/kWh



# Solar Energy Systems

- PV energy systems have a very good potential as a lowcarbon energy supply technology
- Important considerations to make when discussing the environmental impacts of PV technology (Alsema, 2006):
- ✓ Energy Pay-Back Time
- ✓ Greenhouse gas (GHG) mitigation
- ✓ Toxic emissions
- ✓ Resource supply
- ✓ Health & Safety risks



#### 6. CONCLUDING REMARKS



### Summary

- Increase in energy consumption and production yields increase in GHGs and other major pollutants
- The choice of fuel mix determines the success of GHG emissions reduction
- There is no single fuel which is not associated with GHG or other environmental implications (Kgabi et al 2014)
- Current Energy Mix: Coal  $\rightarrow$  Hydro-electric  $\rightarrow$  Fuel Oil



## Summary

- Sustainable energy choices are about deliberately deciding for long-term benefits, for local sustainable value creation, and against import dependencies and non-sustainable resource use
- A balanced view of the actual benefits and costs of our energy supply choices
- Future Energy Mix: Renewable energy technologies should play an important role in Namibia's future electricity supply mix.



### **Proposed Fuel Mix**

Future Energy/power projects (as per National Development Plan (NDP4)

- Baynes Hydro Power 660 MW
- Kudu Gas to Power 800 MW
- Concentrated Solar Power (CSP) 50 MW
- Wind Power 44 MW (Independent Power Producer (IPP) project)
- Solar PV 20 MW (IPP)
- Solar PV 30MW (through tender) (Isaacks, 2013)



13 Storch Street Private Bag 13388 Windhoek NAMIBIA T: +264 61 207 2548 F: +264 61 207 9548 E: fe@nust.na W: www.nust.na

# If we knew what it was we were doing, it would not be called research, would it?





German Theoretical-Physicist (1879-1955)

QuoteHD.com