
MP-30 C:

Praktikum
Programmierbare Elektronik

Versuchsanleitung

Wintersemester 2013/14

Justus-Liebig-Universität Gießen

Written by Thomas Geßler

Thomas.Gessler@exp2.physik.uni-giessen.de

Last change: April 15, 2014

This document was typeset using LATEX and the memoir class. The text is set in

Libertine and Biolinum. The source code is set in Bera Mono.

Thomas.Gessler@exp2.physik.uni-giessen.de

Contents

Contents iii

Nomenclature vi

Introduction vii
Scope of this Course . vii

Digital Electronics . vii

Programmable Logic . ix

Hardware Description Languages . xii

Lab Reports . xv

1 FPGA Components and VHDL Basics 1
1.1 Learning Goals . 1

1.2 Basics — Digital Electronics . 1

1.3 Basics — VHDL . 3

1.4 Lab Instructions . 8

2 Conditional Assignments 11
2.1 Learning Goals . 11

2.2 Basics — Digital Electronics . 11

2.3 Basics — VHDL . 13

2.4 Lab Instructions . 15

3 Sequential Programming 19
3.1 Learning Goals . 19

3.2 Basics — Digital Electronics . 19

3.3 Basics — VHDL . 21

3.4 Lab Instructions . 26

4 Driving a Seven-Segment Display 29
4.1 Learning Goals . 29

4.2 Basics — Digital Electronics . 29

4.3 Basics — VHDL . 30

4.4 Lab Instructions . 32

iii

iv CONTENTS

5 Finite-State Machines 35
5.1 Learning Goals . 35

5.2 Basics — Digital Electronics . 35

5.3 Basics — VHDL . 35

5.4 Lab Instructions . 38

6 Pulse-Width Modulation 41
6.1 Learning Goals . 41

6.2 Basics — Digital Electronics . 41

6.3 Basics — VHDL . 42

6.4 Lab Instructions . 45

7 UART 49
7.1 Learning Goals . 49

7.2 Basics — Digital Electronics . 49

7.3 Lab Instructions . 51

8 Memory 55
8.1 Learning Goals . 55

8.2 Basics — VHDL . 55

8.3 Lab Instructions . 57

9 Driving a VGA Monitor 61
9.1 Learning Goals . 61

9.2 Basics — Digital Electronics . 61

9.3 Basics — VHDL . 62

9.4 Lab Instructions . 62

A Tutorial: Design Work�ow with Xilinx Tools 65
A.1 Design Implementation with PlanAhead 65

A.2 Bitstream Download with iMPACT 67

A.3 Simulation with ISim . 68

B Seven-Segment Characters 71

Bibliography 73

Nomenclature

BGA Ball grid array

CLB Con�gurable logic block

DCM Digital clock manager

DDR Double data rate

FG320 320-ball �ne-pitch BGA

FIFO First in, �rst out

FPGA Field-programmable gate array

FSM Finite-state machine

GND Ground

HDL Hardware description language

IBUF Input bu�er

IC Integrated circuit

IOB Input/output block

I/O Input/output

JTAG Joint Test Action Group

LIFO Last in, �rst out

LSB Least signi�cant bit

LUT Look-up table

Mux Multiplexer

OBUF Output bu�er

PWM pulse-width modulation

RAM Random-access memory

v

vi CONTENTS

RTL Register-transfer level

RX Receive

TTL Transistor-transistor logic

TX Transmit

UART Universal asynchronous receiver/transmitter

UCF User Constraints File

UUT Unit under test

Vcc Collector supply voltage (IC power-supply pin)

VGA Video Graphics Array

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

Introduction

Scope of this Course

This course is an introduction to programmable logic, in particular FPGAs, and the

hardware description language VHDL. There are no hard prerequisites for this course.

You should have a basic understanding of digital signal processing: For example, you

should know how to get the binary representation of an unsigned integer number.

Apart from that, the required basics will be covered by the introductory lecture and

the Basics section of each lab.

The following sections will give you a quick overview of the course’s main subjects.

If the section on digital electronics is completely new to you, you might want to read

up on this topic before beginning with the labs.

Digital Electronics

Digital signals

Digital electronics is, simply speaking, concerned with information in the form of

discrete signals. Usually, there are exactly two states that a digital signal can be in: 0

or 1. These logic levels can be labeled in many di�erent ways, some of which are:

1 True T High H On Yes Vcc · · ·

0 False F Low L O� No GND · · ·

The analog level of a signal in an electronic circuit must be in a certain range in order

to be a valid digital signal. The exact mapping depends on the technology or logic
family used: The TTL family, for example, de�nes voltages between 0 V and 0.8 V as

a logic 0, while voltages between 2 V and 5 V correspond to a logic 1. Voltages outside

of these ranges are invalid as digital signals.

Logic functions and truth tables

The information carried by a single logic signal is referred to as a bit. Logic functions

are functions that map one or more input bits to one output bit. The exact mapping

of input bits to output bit can be written down in a truth table. An example for a

function with three input bits is shown in �gure 1a. Since each of the three bits can

vii

viii INTRODUCTION

I2 0 0 0 0 1 1 1 1

I1 0 0 1 1 0 0 1 1

I0 0 1 0 1 0 1 0 1

O 0 1 0 1 1 1 0 1

(a) Truth table

I2

I1

I0

O

(I2 ∧ ¬I1)
∨I0

(b) Black-box diagram

I1

O

I2

I0

(c) Circuit diagram

Figure 1: Representations of a logic function O (I2, I1, I0)

be in two possible states, there are 2
3 = 8 entries in the truth table. The function is

de�ned by the output it produces for each possible input, i.e. by the “O-row” of its

truth table. Since there are 2
8 = 256 possible O-rows, there are 256 di�erent logic

functions with three input bits.

For any logic function with n input bits it is possible to create an electronic circuit

with n input signals and one output signal that implements the function.
1

Such

circuits are often represented with black-box diagrams like the one in �gure 1b: The

inputs, outputs, and description of the circuit are shown, but its actual implementa-

tion is hidden. We will use such diagrams for structural programming in hardware

description languages.

Boolean algebra

The branch of mathematics that deals with logic functions is called Boolean algebra.

The three basic operations in this theory are:

1. The conjunction AND of two signals, denoted as ∧:

X 0 0 1 1

Y 0 1 0 1

X ∧ Y 0 0 0 1
X ∧ Y

X

Y

The result is 1 only if both X and Y are 1. Otherwise it is 0.

2. The disjunction OR of two signals, denoted as ∨:

X 0 0 1 1

Y 0 1 0 1

X ∨ Y 0 1 1 1
X ∨ Y

X

Y

1
Of course, any real circuit has a �nite rise time: The output signal is delayed with respect to changes

of the input signals, and when it changes, it passes through a continuous voltage range that includes

invalid logic states. For now, we consider idealized circuits.

PROGRAMMABLE LOGIC ix

The result is 1 if at least one of X or Y is 1. Otherwise it is 0.

3. The negation NOT of a signal, denoted as ¬:

X 0 1

¬X 1 0
¬XX

The result is the inverse of X .

Any logic function can be built from these operations—in fact, NOT and one of AND

or OR are already su�cient. The example function given in �gure 1 can be written as

O = (I2 ∧ ¬I1) ∨ I0. A possible graphical representation is show in �gure 1c.

Another important operation is the exclusive disjunction XOR of two signals,

denoted as ⊕:

X 0 0 1 1

Y 0 1 0 1

X ⊕ Y 0 1 1 0
X ⊕ Y

X

Y

The result is 1 if exactly one of X or Y is 1. Otherwise it is 0. The operation is

associative, so we can write: (X ⊕Y) ⊕ Z = X ⊕ (Y ⊕ Z) =: X ⊕Y ⊕ Z . When applied

to any number of inputs, it yields 1 if the number of 1s in the inputs is odd, and 0 if

it is even (as can be seen for two inputs in the truth table). This is useful for many

electronic circuits, for example parity generators and adders.

Programmable Logic

Hardware used in this course

The term programmable logic can refer to a range of di�erent devices. In this course,

we are only concerned with �eld-programmable gate arrays (FPGAs). For the labs we

will use the Digilent Nexys2 FPGA board. Its reference manual [2] gives a complete

description of the board. The FPGA used on the Nexys2 is a Xilinx Spartan-3E

XC3S500E. Details about the FPGA can be found in its data sheet [3]. The structure

and functionality of FPGAs will be explained using the Spartan-3E as example. Most

concepts are, however, equally true or similar for other FPGA families.

The concept of FPGA programming

There is a fundamental di�erence between writing a computer program for a processor

in a programming language like C, and programming an FPGA with the help of a

hardware description language:

A program written in C is passed through a compiler, which (simply speaking)

turns it into a set of instructions for a processor. The processor is an integrated circuit

made up of several dedicated hardware blocks (arithmetic logic unit, cache, etc.) with

distinct functions. The instructions in the compiled machine code tell the processor

which operation to perform next: Get data from a memory address, add a certain

number to it, use the result as the address from where to read the next instruction, . . .

An FPGA, on the other hand, cannot perform any functions before it is pro-

grammed. It consists of many generic hardware elements that can be connected to

each other arbitrarily. In this way, a multitude of di�erent circuits can be realized

x INTRODUCTION

with the same hardware. Which elements are used, and how they are connected, is

de�ned using a hardware description language. It is, for example, possible to use

FPGA components to build a processor (which, in turn, can run software written in

C). The available resources are the limiting factor in what is realizable with an FPGA.

Structure of an FPGA

FPGAs are integrated circuits: At their core is a small die (chip) of a semiconductor,

usually silicon. The silicon is grown into large monocrystalline cylinders, which are

then sawed into thin wafers. Electronic structures are produced on these wafers by

doping (formation of transistors), metal deposition (formation of interconnect wires),

and other techniques. Many separate dies can be produced on the same wafer. After

the wafer has been processed and tested, it is diced (sawed, or scored and broken)

into the individual dies.

Figure 2 shows a schematic overview of the Spartan3E-500 silicon chip. It consists

of a regular arrangement of di�erent fundamental device elements. The majority of

the chip’s area is taken by con�gurable logic blocks (CLBs): There are 46 rows and 34

columns of CLBs, with some of the area used up by other elements. The total number

of CLBs is 1164.

The CLBs are the heart of the FPGA’s programmability. Each CLB contains four

slices. Each slice contains:

• two 4-input look-up tables, for implementation of arbitrary four-input logic

functions,

• two D �ip-�ops, for storage of single bits, and

• additional logic, for larger logic functions and other purposes.

A wide variety of circuits can be realized using only CLBs. The usage of look-up

tables and �ip-�ops will be explained in the �rst labs of this course.

Addressable memory and multipliers can be built from CLBs, but this is not very

e�cient, since such circuits are often needed and need many resources. Therefore they

are included as dedicated circuits in many FPGAs. The Spartan3E-500 has 360 kbit

of so-called block RAM and 20 dedicated multipliers. It also features 4 digital clock

managers (DCMs) that serve many purposes related to clock signals (for example,

double the frequency of a 50 MHz clock, or shift its phase by 180°).

IOBs and packaging

Signals inside the FPGA are connected to the outside through input/output blocks
(IOBs). The IOBs convert between the voltage used inside the FPGA and a range of

available logic families for external signals connected to the FPGA. They also provide

additional functions, like inversion or delay of input signals, or storage of I/O signals

in �ip-�ops.

The Spartan3E-500 has its IOBs arranged along all four edges of the silicon die.

They can be seen as small, empty rectangles in �gure 2. For each IOB there is a metal

pad at the die edge, to which a wire can be connected. However, the FPGA die is

usually not delivered as a “naked” silicon chip, but encased in an integrated circuit

package that can be soldered on a printed circuit board.

Figure 3a shows the packaged Spartan-3E on the Nexys2 board. The package is

an FG320 ball grid array (BGA) package: The die is encapsulated in a plastic case, and

PROGRAMMABLE LOGIC xi

DCM

Block RAM

Multiplier

IOBs

CLB

Slice

L
U

T
L

U
T

F
D

F
D

.
.
.

Slice

L
U

T
L

U
T

F
D

F
D

.
.
.

Slice

L
U

T
L

U
T

F
D

F
D

.
.
.

Slice

L
U

T
L

U
T

F
D

F
D

.
.
.

DCM

Block RAM

Multiplier

IOBs

CLB

Slice

L
U

T
L

U
T

F
D

F
D

.
.
.

Slice

L
U

T
L

U
T

F
D

F
D

.
.
.

Slice

L
U

T
L

U
T

F
D

F
D

.
.
.

Slice

L
U

T
L

U
T

F
D

F
D

.
.
.

Figure 2: Components of the Spartan3E-500 integrated circuit die. The detailed

view of one CLB shows four slices with look-up tables (LUT) and D �ip-�ops (FD);

additional slice logic was omitted from this picture.

xii INTRODUCTION

(a) FPGA on the Digilent Nexys2 board. The

marking in the upper left-hand corner indi-

cates the �rst pad (A1).

A1A18

V18

(b) Package bottom with 320 solder balls.

The rows are labeled A through V, the

columns are labeled 1 through 18.

Figure 3: Spartan3E-500 FPGA in an FG320 package

the IOB pads are connected, through wires inside the case, to a grid of solder balls on

the package bottom (see �gure 3b). There are 18 × 18 solder balls with a 2 × 2 gap in

the center, adding up to 320 connections from FPGA to board. The solder pads are

labeled A1 through V18, according to their position in the grid, and this nomenclature

will be used during FPGA programming when referring to a certain I/O pin. Some

of the pads used for special purposes, like voltage supplies or con�guration signals.

With the FG320 package, 232 of the IOBs from �gure 2 are connected to a pad and

can be used.

Hardware Description Languages

VHDL Basics

Hardware description languages make it possible to capture the behavior of an

electronic circuit in the form of source code. They are also an important tool for

FPGA programming. The two most important languages in this �eld are Verilog and

VHDL (VHSIC Hardware Description Language; VHSIC stands for Very High Speed
Integrated Circuit). In this course you will learn the basics of VHDL.

The example in listing 1 shows a VHDL �le that describes a very simple electronic

circuit: an AND gate. Some central VHDL keywords will be explained on this example:

• The library and use keywords are used to import functionality from external

libraries, similar to the #include statement in C. These two lines will be at the

top of every VHDL �le written during this course. They de�ne the std_logic

data type, the basic data type for 1-bit electronic signals.

• The entity block (which has the arbitrary name and_gate) contains a port list.

It gives a “black box” description of the hardware: The names and directions of

all input and output ports are listed (the AND gate has the inputs A and B and

the output C), but no information is given about what the circuit actually does.

HARDWARE DESCRIPTION LANGUAGES xiii

Listing 1: VHDL model for an AND gate

library ieee;

use ieee.std_logic_1164.all;

entity and_gate is

port(

A : in std_logic;

B : in std_logic;

C : out std_logic

);

end entity and_gate;

architecture behavioral of and_gate is

begin

C <= (A and B) after 7 ns;

end architecture behavioral;

• The architecture block (which has the arbitrary name behavioral and be-

longs to the entity and_gate) determines the inner workings of the black box:

It de�nes how the inputs and outputs are related to each other. We make a

very simple statement here: Assign to the output C the result of the operation

A and B with a delay of 7 ns.

This is a possible description for a real logic gate. It even takes switching delays into

account: When one of the inputs changes, the output does not change to a new value

immediately, but after a delay (induced by e�ects such as wire propagation times

and transistor gate capacitances). A more thorough modeling of a real circuit might

include di�erent delay times for a rising and a falling output, or a short period after

an input changes, during which the output is invalid (because it passes through an

invalid analog band).

Synthesis for FPGAs

A VHDL model like the above can be used to simulate existing hardware with computer

programs. The simulator uses a �xed pattern for the model’s inputs (de�ned in a

so-called test bench) and calculates the output values for each point in time. The result

is a waveform like the one shown in �gure 4a: The values for A and B at each time

are speci�ed by the test bench; the simulator determines the value of C using the

VHDL model.

When working with FPGAs, however, we don’t want to characterize an existing

circuit. Our goal is to describe the behavior of a circuit with VHDL and make the

FPGA behave in the described way. This requires a process called synthesis. FPGA

vendors usually supply synthesis software for their products. The synthesis program

uses HDL �les like the above example and tries to create an equivalent circuit out of

components available in the selected FPGA. This circuit is called netlist. The netlist

for an AND gate, synthesized form the example VHDL code for the Spartan-3E with

the Xilinx synthesis software, is shown in �gure 4b.

xiv INTRODUCTION

ns

0 5 10 15 20 25 30 35 40 45 50

A

B

C

(a) Simulation output waveform. The delay of 7 ns is simulated, which is why the

output is unde�ned during the �rst 7 ns.

I0

I1

O

C1

LUT2

A_IBUF

IBUF

OI

A

B_IBUF

IBUF

OI

B

C_OBUF

OBUF

OI

C

(b) Synthesis output netlist. The delay speci�cation is ignored, and the and

operation is synthesized as a 2-input look-up table.

Figure 4: Software outputs for the AND gate VHDL model

The netlist contains four FPGA components: An IOB for each input and output—

they are con�gured, according to their speci�c function, as input bu�ers (IBUF)

and output bu�ers (OBUF)—and one 2-input look-up table (labeled LUT2) that is

con�gured to behave like an AND gate.
2

Other programs use the netlist and additional information (such as I/O pin place-

ment and timing relationships between external signals) and perform several processes

that can be collectively referred to as implementation: Each component in the netlist

is assigned an exact position in the FPGA. The con�guration for the components is

determined, and connections between them are established by con�guring the FPGA’s

routing resources.

The result of the implementation processes is a programming �le that can be

loaded into the FPGA with special hardware (for example, a USB download cable from

the FPGA vendor). In Xilinx terms this programming �le is called bitstream. After the

FPGA is loaded with the bitstream it should behave like the circuit described in the

VHDL �le.

Synthesizable HDL code

VHDL is a powerful language that can describe a wide variety of hardware. However,

only a very speci�c subset of possible circuits can be realized with FPGA components.

Synthesis tools can therefore not interpret all possible VHDL statements, but only a

small part, referred to as “synthesizable VHDL”.

The example given above contains a keyword that is not synthesizable: The

expression after 7 ns includes a delay speci�cation: The output changes exactly

2
A 2-input look-up table can emulate any logic function with two inputs. Note that the Spartan-3E

actually has 4-input look-up tables as its basic components, but any two-input logic function can be written

as a four-input function with two of its inputs ignored.

LAB REPORTS xv

7 ns after one of the inputs changes. A VHDL simulation program will happily simulate

this behavior (see �gure 4a), but a synthesis program will run into problems: FPGAs

do not usually have components that can delay a signal by an arbitrary amount of

time. The FPGA circuit will have a certain delay, because of routing and component

switching times, but the synthesis tool cannot guarantee a certain value for it.

Synthesis tools will ignore timing speci�cations like this one and interpret the

assignment (C <= A and B) without them. Note that there are VHDL statements that

are valid in simulations but will crash synthesis tools: A <= not A after 10 ns;

produces an oscillating signal in a simulation, but a synthesis tool will abort when it

encounters this line.

Lab Reports

A report is required for each �nished lab. Begin with a short summary of everything

you did and what the results were.

Describe, in reasonable detail, what you did in each part of the lab, what problems

occurred, etc. Reasonable means: Don’t write about basics or theory. It should be

possible (without the lab instructions), for someone with the same equipment and

preparation, to recreate your steps from your report. Include drawings and answers

to any questions asked in the lab instructions. Where it makes sense, include screen

shots, log outputs, and so on.

Append all VHDL and UCF �les you created for the lab. The code has to be

well-documented: Write comments with a short description for each entity, generic,

port, signal, variable, process, function, etc.

Draw block diagrams for VHDL entities, showing all inputs and outputs. You can

draw them as black-boxes, or include internal connections if it helps to understand

the design better (for example, if mainly concurrent statements and instantiation of

submodules are used). You don’t have to draw �owcharts for processes and other

sequential blocks, but you should comment or describe them su�ciently.

Lab1

FPGA Components and

VHDL Basics

1.1 Learning Goals

• Digital electronics:

◦ Look-up table

◦ Full adder

◦ Parity

• VHDL:

◦ Basic concurrent assignments

◦ Instantiation and inference

◦ Structural and behavioral architecture

◦ Location constraints

◦ Signals

1.2 Basics — Digital Electronics

Look-up table

The Spartan3E-500 provides two 4-input look-up tables (LUTs) in each of its 4656 slices.

Each LUT is a versatile logic gate that can be used to implement any logic function

I3

I2

I1

I0

O

(a) Black-box diagram

I3

I2

I1

I0

O

(b) Idealized timing behavior for a LUT, con�gured to

implement the function O = I3 ⊕ I2 ⊕ I1 ⊕ I0

Figure 1.1: A 4-input look-up table

1

2 LAB 1. FPGA COMPONENTS AND VHDL BASICS

Cout Cin

A B

S

1-bit

Full

Adder

(a) Black-box diagram

A 0 0 0 0 1 1 1 1

B 0 0 1 1 0 0 1 1

Cin 0 1 0 1 0 1 0 1

Cout 0 0 0 1 0 1 1 1
S 0 1 1 0 1 0 0 1

(b) Truth table

Figure 1.2: A 1-bit full adder

with up to four inputs. LUTs are therefore sometimes called function generators.
Figure 1.1a shows a black-box diagram for a LUT with four inputs. The timing

diagram in �gure 1.1b shows the response of a LUT (con�gured with an example

function) whose inputs go through all possible states.

To con�gure a LUT, the 16 bits for each possible input state (i.e., the O-row of

the truth table) must be supplied. Fortunately, we do not have to determine this

con�guration ourselves; during FPGA programming, we usually infer LUTs: We

specify the logic equation we want to implement in VHDL, and the synthesis and

implementation tools determine how many LUT we need and how they are placed

and con�gured.

Full adder

The addition of two binary numbers can be understood in terms of long addition,

which works identically for decimal and binary numbers. Take the following example,

which presents the same operation in decimal and binary radix:

28

+ 1

1

4

= 42

11100

+
1

0

1

1

1

110

= 101010

To add the two binary numbers, we �rst add the rightmost (lowest) digits: 0 + 0 = 0.

For the next digit, 0 + 1 = 1. The result for the third digit is 1 + 1 = 10, so 0 goes into

the result and 1 is carried to the next digit (exactly like in the decimal example, where

the 1 from 8+ 4 = 12 is carried). For the fourth digit then, we have to take the carried

bit into account, and get 1 + 1 + 1 = 11. A 1 is written down, and a 1 is carried. The

�nal operation is 1 + 0 + 1 = 10. The carried 1 makes the resulting binary number

longer by one bit than the two input numbers.

In digital electronics, binary addition of two numbers can be subdivided into

identical circuits for each bit or digit, based on this principle. Each circuit (see

�gure 1.2a) takes as input the same digit from the two input numbers (A and B) and

the carry bit from the previous digit (Cin). It has two outputs:

• The sum for the digit S . This is 1 if exactly one or all three of the inputs are 1.

In other words, it is 1 if the number of 1s on the inputs is odd. This condition

can be expressed with the XOR operation: S = A ⊕ B ⊕ Cin.

1.3. BASICS — VHDL 3

Cout Cin

A B

S

Bit

2

Cout Cin

A B

S

Bit

1

Cout Cin

A B

S

Bit

0

A2 B2

S2

A1 B1

S1

A0 B0

S0

0

S3

Figure 1.3: A 3-bit ripple-carry adder

• The carry bit for the next digit Cout. This in 1 if at least two of the inputs are 1:

Cout = (A ∧ B) ∨ (A ∧Cin) ∨ (B ∧Cin).

This corresponds to the truth table shown in �gure 1.2. Such a circuit is called a full
adder (as opposed to a half adder, which has no carry input). For the addition of

two n-bit numbers, we can build a ripple-carry adder by combining n full adders and

connecting the Cout from one digit to the Cin of the next (see �gure 1.3). The result

can be interpreted as an (n + 1)-bit number whose highest bit is Cout from the last

full adder in the carry chain.

Parity bits

A simple method to test the integrity of a signal with multiple bits—i.e., to check

whether one of the bits has unexpectedly changed its value—is to add an additional

parity bit. There are two types of parity bits:

1. An even parity bit is 1, if the number of signal bits with the value 1 is odd;

otherwise, the parity bit is 0. The name “even parity” implies that the number

of bits with the value 1 of the signal bit plus the even parity bit is even.

Example: The even parity bit for the byte 00101010 is 1, because there are three

bits (an odd number) with the value 1 in the byte.

2. Accordingly, odd parity bit is 1, if the number of signal bits with the value 1 is

even; otherwise, the odd parity bit is 0.

Example: The odd parity bit for the byte 00101010 is 0, because there are three

bits (an odd number) with the value 1 in the byte.

If a multi-bit signal is transmitted from a sender to a receiver, and the sender adds a

parity bit to the data, then the receiver can check whether the parity is still correct

when the data arrives.

1.3 Basics — VHDL

Concurrent assignment and logic operators

The VHDL model in listing 1.1 describes a 2-input XOR gate (similar to the model of

the AND gate from the introduction). It uses the operator <= to make a concurrent
assignment. Concurrent assignments can appear in an architecture block between

4 LAB 1. FPGA COMPONENTS AND VHDL BASICS

Listing 1.1: An 2-input XOR gate

library ieee;

use ieee.std_logic_1164.all;

entity xor_2 is

port (

I : in std_logic_vector(1 downto 0);

O : out std_logic

);

end entity xor_2;

architecture behavioral of xor_2 is

begin

O <= I(0) xor I(1);

end architecture behavioral;

the begin and end keywords. They can assign a value to an output port. This value

can be a constant, as in X <= '1';, or the result of a logical operation on one or more

inputs, as in Y <= A and B;. Possible operations include not, and, or, xor, nand, nor,

and xnor.

There is an important di�erence between concurrent assignments in VHDL and

assignments in imperative programming languages like C: Assignments made with

<= are not commands that are processed in order, like the statements in a C program.

They are independent, parallel assignments, that have no particular order. During

synthesis, they are translated into hard-wired connections and combinatorial logic.

A concurrent assignment to a port creates a driver for that port: a circuit that

determines the logic level on this port at all times. For each port only one driver is

allowed (just like you should not apply di�erent voltage sources to the same wire).

That is why the following assignment is forbidden:

X <= '1';

X <= A xor B; -- forbidden, since it creates a second driver

In an imperative language, the two lines would be interpreted in order: X is assigned

the value '1', and then X is assigned the result of the operation A xor B, making

the �rst assignment obsolete. In VHDL, these statements produce an error during

synthesis, since they are contradictory:

ERROR:Xst:528 - Multi-source in Unit <example_1> on signal <X>;

this signal is connected to multiple drivers.

Constants, vectors, and concatenation

Values in single quotes, like '0' or '1', are 1-bit constants. Similarly, double quotes

denote multi-bit constants: The number 42, written as an 8-bit binary constant in

VHDL, would be "00101010". The same constant can be written, more concisely, in

hexadecimal notation with a preceding x: x"2A".

1.3. BASICS — VHDL 5

The type std_logic_vector can be used to declare input and output ports as

multi-bit values. std_logic_vector is an array of std_logic. Its range is declared

with the keyword downto1
, as in:

X : out std_logic_vector(7 downto 0);

This declares an 8-bit output port, whose leftmost bit has the index 7, and whose

rightmost bit has the index 0. Assigning a constant value to this port with the statement

X <= "11110000"; would set the bits with indices 0 to 3 to '0' and the bits with

indices 4 to 7 to '1';

Single elements of an array can be accessed with parentheses. The above assign-

ment is equivalent to:

X(7) <= '1';

X(6) <= '1';

...

X(0) <= '0';

Several 1-bit and multi-bit values can be concatenated with the & character. Another

equivalent notation for our 8-bit assignment would be: X <= "111"& '1' & '0' &

"00"& '0';.

Instantiation and the port map

In listing 1.1 we described a 2-input XOR gate. Next we want to create a 4-input XOR

gate, in other words: a circuit that implements the equation O = (I0 ⊕ I1) ⊕ (I2 ⊕ I3).
In VHDL, it would be easy to describe this with a single line

2
:

O <= (I(0) xor I(1)) xor (I(2) xor I(3));

This is a possible behavioral description of a 4-input XOR gate. Now let us take a

di�erent approach and make a structural model of the same circuit.

In a structural description we use modules we already have as building blocks:

To build a 4-input XOR gate, we can use three 2-input XOR gates: One combining

I0 and I1, one combining I2 and I3, and one combining the results of the other two.

(Of course, any other combination would produce the same result.) This concept is

illustrated in �gure 1.4.

In VHDL this can be realized by instantiation of a previously de�ned entity. In

the case of our 4-input XOR gate, we would keep the �le containing the de�nition of

the entity xor_2 in our design project. Next we create a new VHDL �le for the model

of the 4-input gate. This �le will become the top �le for our project. The top �le of an

FPGA design project contains the entity whose input and output ports correspond to

physical inputs and outputs (i.e., IOBs) of the FPGA. All other VHDL �les can be used

as building blocks in a structural design.

Listing 1.2 shows what a structural model for a 4-input XOR gate might look like.

The important part are the three blocks containing the port map keyword: Each of

them instantiates
3

one copy of the entity xor_2, which is de�ned in another �le.

1
The range can also be declared with to, but we will not use this form during this course.

2
We could have omitted the parentheses in both the equation and the VHDL assignment, since the

XOR operation is associative.

3
We use a method called direct instantiation. There is another possibility which requires the explicit

declaration of a component, but we will not use it during this course.

6 LAB 1. FPGA COMPONENTS AND VHDL BASICS

Listing 1.2: A 4-input XOR gate with, built out of three 2-input XOR gates

library ieee;

use ieee.std_logic_1164.all;

entity xor_4 is

port(

I : in std_logic_vector(3 downto 0);

O : out std_logic

);

end entity xor_4;

architecture structural of xor_4 is

signal wire_0_xor_1, wire_2_xor_3 : std_logic;

begin

xor_2_a : entity xor_2

port map (

I(0) => I(0),

I(1) => I(1),

O => wire_0_xor_1

);

xor_2_b : entity xor_2

port map (

I(0) => I(2),

I(1) => I(3),

O => wire_2_xor_3

);

xor_2_c : entity xor_2

port map (

I(0) => wire_0_xor_1,

I(1) => wire_2_xor_3,

O => O

);

end architecture structural;

1.3. BASICS — VHDL 7

xor_2
I1

I0

O

(a) A single XOR gate

with two inputs

I1

I0

Oxor_2_a

I1

I0

Oxor_2_b

I1

I0

Oxor_2_c

wire_0_xor_1

wire_2_xor_3

xor_4

I3

I2

I1

I0

O

(b) A XOR gate with four inputs, built using three 2-input XOR

gates as black boxes

Figure 1.4: Structural description of a 4-input XOR gate

Each instance of xor_2 we declare must be given a unique name, preceding the

colon. The entries in the port map determine how the input and output ports of

the instance are connected to the ports of our top module (or to constant values or

signals, see below). The port of the instantiated entity is always on the left side of

the => operator; whatever connects to this port is on the right side of the operator.

For example, the line I(0)=> I(2) in the port map of instance xor_2_b connects the

input I(2) of our 4-input XOR gate to the input I(0) of the instance xor_2_b.

All input ports of an instantiated entity must be connected to something
4
, but

connections to constant values like I(0)=> '0' are also valid. Unused output ports

can be omitted from the port map, or explicitly declared as unconnected with O =>

open.

Signals

We use signals to establish the internal connections between the instantiated XOR

gates. In the example, these signals are named wire_0_xor_1 and wire_2_xor_3

(compare �gure 1.4b).

For now, you can think of signals as wires. Signals must be declared before they

can be used. Signal declaration must be made in the architecture block before the

begin keyword. Like ports, signals have a type (for example, std_logic), but unlike

ports, they do not have a direction.

Location constraints

The implementation software determines where exactly in the FPGA each component

(LUT, IOB, etc.) is placed. Depending on the software settings, the placement is done

under certain criteria, for example, to use as little of the FPGA area as possible, or

to minimize the distance between the output of one component and the input of the

next. The user can in�uence this process by setting so-called constraints. Constraints

are usually declared in a separate �le, the User Constraints File (UCF).

For now, we are concerned only with location constraints. We can set a location

constraint for each input and output port of our top entity. The constraint �xes the

placement of the according IOB, so that it connects to an FPGA pad of our choice.

(The pad name according to the grid position is used, for example J14; see �gure 3b.)

4
Unless they have been declared with a default value.

8 LAB 1. FPGA COMPONENTS AND VHDL BASICS

This is useful, because we want to use the buttons, switches, LEDs, etc. on the Nexys2

as our inputs and outputs, and each of them is connected to a certain FPGA pad. A

label is printed next to each component on the Nexys2, telling us which pad it is

connected to. The pad J14, for example, belongs to the rightmost LED.

Each constraint in the UCF �le is a single line of the following form:

NET "I" LOC=G18; # Use the rightmost switch as input I

NET "LED<0>" LOC=J14; # Use the rightmost LED as output LED(0)

For multi-bit ports, angle brackets must be used instead of parentheses.

1.4 Lab Instructions

Please remember to keep the created VHDL and UCF �les after each exercise, since

you must include them in your lab report. If an exercise builds upon a previous one,

copy-and-paste the reused code into a new �le.

Exercise 1: Basic work�ow

1. Follow the instructions in the software tutorial (appendix A) to create a new

project with PlanAhead and add a VHDL and a UCF �le.

2. Create a VHDL entity with the following ports:

• an 8-bit input vector SW; and

• an 8-bit output vector LED.

3. Write an architecture block that makes a direct connection from the input

vector to the output vector (i.e., the switches will control the LEDs).

4. Add location constraints that connect the switches on the Nexys2 to SW and

the LEDs to LED.

5. Synthesize and implement the design. Generate a bitstream and test it on the

FPGA.

Exercise 2: Simple logic function

1. Create a VHDL entity with the following ports:

• an 4-bit input vector I; and

• an 1-bit output port O.

Remember to make this the top entity, and deactivate any existing UCF �les!

Do not write a new UCF �le yet.

2. Write an architecture block that implements a 4-input logic function of your

choice, using I as inputs and O as output.

3. Synthesize the design and inspect the netlist. How was the function realized?

Save the netlist schematic.

4. Implement the design and inspect the device view. How was the placement

optimized? Make screenshots.

1.4. LAB INSTRUCTIONS 9

5. Create a UCF �le and assign I to four switches and O to an LED. Rerun the

implementation. How did the placement change? Make screenshots.

6. Test the design on the FPGA.

Exercise 3: Parity generator

1. Create a VHDL entity with the following ports:

• an 8-bit input vector I;

• an 1-bit output port P_EVEN; and

• an 1-bit output port P_ODD.

2. Write an architecture block that calculates the even parity bit (P_EVEN) and odd

parity bit (P_ODD) for the input I.

3. Synthesize the design and document the netlist. Which FPGA components

were used?

4. Create a UCF �le and assign I to the eight switches and P_EVEN and P_ODD to

an LED each. Generate the bitstream and test the design on the FPGA.

Exercise 4: Full adder

1. Create a VHDL entity with inputs and outputs according to �gure 1.2.

2. Write the architecture for a full adder. Synthesize it and document the netlist.

3. Write a UCF �le, implement the design, and test it on the FPGA.

Exercise 5: Ripple-carry adder

1. Create a VHDL entity with the following ports:

• a 4-bit input vector A;

• a 4-bit input vector B; and

• a 5-bit output vector S.

2. Write a structural architecture for a 4-bit ripple-carry adder by instantiating

full adders. Use A and B as inputs and S as the sum. (Use the carry output from

the last adder as the highest bit for S.)

3. Synthesize the design and document the netlist. Which FPGA components

were used?

4. Write a UCF �le, implement the design, and test it on the FPGA.

10 LAB 1. FPGA COMPONENTS AND VHDL BASICS

Exercise 6 (∗): Inferring an adder from VHDL

VHDL has data types that allow simple arithmetic operations. They require the

numeric_std package to be used:

use ieee.numeric_std.all;

With this package, an adder for two n-bit numbers A and B with the n + 1-bit sum S

can be described with a single line:

S <= std_logic_vector(unsigned('0' & A) + unsigned('0' & B));

1. Create an adder with the same inputs and outputs as in the last exercise, using

the above line.

2. Compare the netlist to the one from your structural architecture. Are there any

di�erences?

Lab2

Conditional Assignments

2.1 Learning Goals

• Digital electronics:

◦ Multiplexer

◦ Encoder

◦ Seven-segment digit

• VHDL:

◦ Conditional assignment

◦ Selected assignment

2.2 Basics — Digital Electronics

Multiplexer

A 2
n
-to-1 multiplexer (or mux for short) is a circuit with a 2

n
-bit data input and a

1-bit output. An additional n-bit select input (SEL) is used to select the output bit

out of the di�erent data input bits: If SEL has the value 0, then the output takes the

value of bit number 0 of the data input, and so on. This is illustrated in �gure 2.1 for

a 2-to-1 mux.

SEL

I1

I0

O

(a) Typical mux

representation

SEL 0 0 0 0 1 1 1 1

I1 0 0 1 1 0 0 1 1

I0 0 1 0 1 0 1 0 1

O 0 1 0 1 0 0 1 1

(b) Truth table

Figure 2.1: A 2-to-1 multiplexer

11

12 LAB 2. CONDITIONAL ASSIGNMENTS

I

O

VALID

4

2

(a) Black-box diagram.

The small numbers indi-

cate the signal width.

I3 I2 I1 I0 O1 O0 VALID

0 0 0 1 0 0 1
0 0 1 0 0 1 1
0 1 0 0 1 0 1
1 0 0 0 1 1 1

others X X 0

(b) Truth table. The “don’t care” value X can

be set to 0 or 1 arbitrarily.

Figure 2.2: A 4-to-2 encoder

CA

CB

CC
CD

CE

CF
CG

DP

(a)One digit with cathode sig-

nal names

CA → C(0)

CB → C(1)

CC → C(2)

CD → C(3)

CE → C(4)

CF → C(5)

CG → C(6)

DP → C(7)

A0 → A(0)

A1 → A(1)

A2 → A(2)

A3 → A(3)

(b) Suggested naming scheme for the signals

Figure 2.3: Seven-segment display on the Nexys2

Encoder

A multi-bit signal is called one-hot if it is guaranteed that exactly one of its bits has

the value 1 at all times: "00000100" is a valid one-hot signal, "00101010" is not.

A 2
n

-to-n encoder is a circuit with a 2
n

-bit input and an n-bit output. The input is

a one-hot signal. The circuit returns the binary representation of the position of the

active bit: In the case of "00000100", bit number two (counted from the right, and

stating from 0) is active, so the 8-to-3 encoder would return "010".

If the input vector cannot be guaranteed to be one-hot, the encoder can have an

additional 1-bit output that returns 1 if the input is a valid one-hot signal, and 0 if it

is not. See �gure 2.2 for an example of an 8-to-3 encoder.

Seven-segment digit

The Nexys2 has a seven-segment display with four digits. Each digit consists of eight

LEDs (see �gure 2.3a): The usual seven elements in a �gure-eight pattern, and an

additional decimal point.

The 32 LEDs of the seven-segment display are connected to the FPGA with twelve

wires. The wires going to the cathodes of the LEDs are called CA through CG. CA is

connected to the cathode of the top LED of all digits, and so on. The wires going to

the anodes of the LEDs are called A0 through A3. A0 is connected to the anodes of

all LEDs of the rightmost digit, and so on. The signals use inverted logic, so in order

2.3. BASICS — VHDL 13

Listing 2.1: VHDL model for a 4-to-1 multiplexer

library ieee;

use ieee.std_logic_1164.all;

entity mux is

port(

I : in std_logic_vector(3 downto 0);

SEL : in std_logic_vector(1 downto 0);

O : out std_logic

);

end mux;

architecture behavioral of mux is

begin

with SEL select O <=

I(0) when "00",

I(1) when "01",

I(2) when "10",

I(3) when "11",

'0' when others;

end behavioral;

to light up only the center LED of the second digit, CG and A1 must be driven to 0,

all other signals to 1.

This implies that it is not possible to drive the di�erent digits with di�erent

patterns at the same time. If the cathode wires are set to a �xed value and the anodes

of two digits are active, then the same pattern will appear on both digits. In order to

display, say, a decimal number with four digits, the individual digits must be driven

alternatingly. The switching must be done so fast that it becomes indiscernible to the

eye.

In this lab, only a single digit will be used. A driver for the whole display will be

programmed later during this course. In order to make the signals easier to handle in

VHDL, it is suggested to combine the cathode and anode signals into two vectors, as

shown in �gure 2.3b. For a suggestion on how to represent numbers and characters,

refer to appendix B.

2.3 Basics — VHDL

Selected assignment

Complicated combinatorial circuits, like multiplexers and encoders, are often di�cult

to write in terms of basic logic functions. For a multiplexer, it is much more intuitive

to express the output bit using a conditional expression: Based on the value of SEL,

assign to the output one of several input bits. In VHDL such an expression is possible

with selected assignments.
This is illustrated in listing 2.1, where a 4-to-1 multiplexer is described. Following

the with keyword, an input port or signal (in this case SEL) is checked for di�erent

14 LAB 2. CONDITIONAL ASSIGNMENTS

Listing 2.2: VHDL model for a 8-to-3 encoder

library ieee;

use ieee.std_logic_1164.all;

entity encoder is

port (

I : in std_logic_vector(7 downto 0);

O : out std_logic_vector(2 downto 0);

VALID : out std_logic

);

end encoder;

architecture behavioral of encoder is

begin

O <= "000" when I = "00000001" else

"001" when I = "00000010" else

"010" when I = "00000100" else

"011" when I = "00001000" else

"100" when I = "00010000" else

"101" when I = "00100000" else

"110" when I = "01000000" else

"111" when I = "10000000" else

"000";

with I select VALID <=

'1' when "00000001" | "00000010" | "00000100" | "00001000"

| "00010000" | "00100000" | "01000000" | "10000000",

'0' when others;

end behavioral;

values. Based on the value of the selecting signal, an assignment is made to an output

port or signal that follows the select keyword (in this case O). After the <= operator

follows the list that states which value is assigned to O for each value of SEL, using

the when keyword.

A �nal when others clause covers all values of the selecting signal not explicitly

mentioned before. It is mandatory that either all possible values of the selecting signal

are covered or a when others option is used. For synthesis, you should always use

when others after the explicit assignments
1
.

Conditional assignment

Selected assignments are mostly useful for describing multiplexer-like circuits: cases

where an output depends directly on the value of one input. More complicated

conditions can be modeled with conditional assignments.

1
The reason is that signals and ports with the type std_logic can have other values than '0' and

'1'. These are mostly used for simulations.

2.4. LAB INSTRUCTIONS 15

In listing 2.2 a conditional assignment is used to describe the output of a 8-to-3

encoder. (The VALID bit is modeled with an additional selected assignment, showing

how several cases can be combined with the | operator.) A conditional assignment

begins with a simple concurrent assignment with the <= operator, followed by the when

keyword and a condition. The assignment is only made if the condition is evaluated

as true. If the condition is followed by the else keyword, another assignment can

follow, which may depend on another condition, and so on.

After a list of assignments with di�erent condition, a �nal else with an uncondi-

tional assignment should follow. This “default case” is used if all previous conditions

were evaluated as false, much like the when others clause in selected assignments.

Omitting the default case may lead to unexpected synthesis results
2
.

Note that conditions can be more complex than the ones in the example. They

can depend on multiple inputs and contain logic equations: The assignment

C <= '1' when A = '1' and B = '1' else '0';

creates an AND gate (which, of course, could be described much shorter).

2.4 Lab Instructions

Exercise 1: Seven-segment digit: individual segments

1. Create an entity with the following ports:

• an 8-bit input vector SW;

• an 8-bit output vector C; and

• a 4-bit output vector A.

2. Create constraints that assign SW to the switches and C and A to the cathode

and anode wires, respectively, of the seven-segment display.

3. Connect C to SW directly and assign a �xed value to A, so that only the rightmost

digit is driven.

4. Generate a bitstream and test the design on the FPGA.

Exercise 2: Seven-segment digit: hexadecimal number

1. Create an entity with the following ports:

• an 4-bit input vector I; and

• an 8-bit output vector C.

2. Write an architecture, so that C returns the seven-segment cathode signals for

the hexadecimal representation (0 – F) of the 4-bit number I.

3. To test the new entity, copy the VHDL �le from the previous exercise and reuse

the constraints. Remove the direct connection from SW to C. Instantiate the new

entity and connect its input to the lower four bits of SW and its output to C.

4. Generate a bitstream and test the design on the FPGA.

2
If there is a case that is not covered by any previous condition, the assigned-to signal implicitly keeps

its value. This can lead to the synthesis of a latch—the level-sensitive counterpart to a �ip-�op—which is

usually unintended.

16 LAB 2. CONDITIONAL ASSIGNMENTS

Exercise 3: Seven-segment digit: ASCII character

1. Create an entity with the following ports:

• an 8-bit input vector I; and

• an 8-bit output vector C.

2. Repeat the remaining steps from the previous exercise, except that the output

C of the new entity should now represent the ASCII character with the 8-bit

value I. In the top entity, connect all eight bits of SW to I.

Exercise 4: Priority Encoder

A priority encoder works similar the simple encoder introduced in the Basics section

of this lab, with one exception: There is only one invalid input: all bits are 0. For all

other inputs, the binary representation of the position of the most signi�cant (i.e.,

leftmost) bit with the value 1 is returned. For example, an 8-to-3 priority encoder

with the input "01010000" would return "110", since the highest active bit has the

index 6.

1. Create an entity with the following ports:

• an 8-bit input vector I;

• a 3-bit output vector O; and

• a 1-bit output VALID.

2. Create a priority encoder.

3. Test the priority encoder on the FPGA by connecting I to the switches and O

and VALID to four LEDs.

Exercise 5: Seven-segment digit: mode selection

1. Create an entity with the following ports:

• an 8-bit input vector SW;

• an 8-bit output vector C;

• a 4-bit output vector A;

• a 1-bit output LED; and

• a 4-bit input vector BTN.

2. Create location constraints for the old ports as before, and assign BTN to the

four push buttons on the Nexys2.

3. Instantiate your hex-display module, ASCII display module and priority encoder.

Use the right two push buttons as “mode inputs”. Implement the following

modes:

"00" The segments of one of the seven-segment digits can be controlled with

the switches directly.

2.4. LAB INSTRUCTIONS 17

"01" The binary number selected with the switches is displayed on one of

the seven-segment digits in hexadecimal representation. If the number is

greater than 15, a dash is displayed instead, and an error LED lights up.

"10" The ASCII character with the code selected with the switches is displayed

on one of the seven-segment digits.

"11" The number of the highest active switch is displayed on one of the seven-

segment digits in hexadecimal representation. (The switches are num-

bered 0 – 7, from right to left.) If all switches are o�, a dash is displayed

instead, and an error LED lights up.

The left two push buttons, interpreted as a two-bit binary number, select which

of the four seven-segment digits is used: The righmost digit is number 0, the

leftmost one number 3.

4. Generate a bitstream and test the design on the FPGA.

Lab3

Sequential Programming

3.1 Learning Goals

• Digital electronics:

◦ D �ip-�op

◦ Synchronous logic

• VHDL:

◦ Clocked processes

◦ The if statement

◦ Generics

◦ Numeric data types

3.2 Basics — Digital Electronics

D �ip-�op

For each LUT in the slices of the Spartan-3E there is one D �ip-�op. Flip-�ops can be

used as storage elements that can hold 1 bit of information. Unlike logic gates and

D

CE

Q

R

S

(a) Black-box dia-

gram, with an angle

symbol for the clock

(CLK) input

CLK

D

CE

R

S

Q

(b) Idealized timing behavior for a D �ip-�op with example

inputs. For easier readability, CLK was chosen as periodic, and

rising edges of CLK are marked with vertical lines.

Figure 3.1: A D �ip-�op

19

20 LAB 3. SEQUENTIAL PROGRAMMING

LUTs (so-called combinatorial circuits), the output of a �ip-�op does not only depend

on its current inputs, but also on an internal state that has two allowed values: 0 and

1. This internal state corresponds to the stored bit.

There are several types of �ip-�ops that di�er mainly in the mechanism for the

update of the stored value. The Spartan-3E contains D �ip-�ops with some additional

optional inputs. There are two inputs and one output that are de�ning for a D �ip-�op:

• The output Q always has the value of the currently stored bit.

• The input D is the data input: The stored bit will change to the value of D, but

only under a condition:

• The input CLK (commonly marked with an angle symbol like in �gure 3.1a) is

the clock input. The value of D is captured only on a rising edge of this input; in

other words, when CLK changes from a 0 to a 1, the stored bit will change to

the value of D at that time.

There are three more optional inputs:

• The input CE is the clock-enable input: CE must be 1 during a rising edge of

CLK in order for D to be captured. If CE is 0, the previous value is kept. If it is

unused, CE must be �xed to 1.

• The R input performs a synchronous reset: When R is 1 during a rising edge of

CLK, the stored bit changes to 0, no matter what the current value of D or CE

is. If it is unused, R must be �xed to 0.

• The S input performs a synchronous set: When S is 1 during a rising edge of

CLK, the stored bit changes to 1, no matter what the current value of D or CE

is. R has a higher priority than S: If both are 1 during a clock edge, the stored

bit is reset to 0. If it is unused, S must be �xed to 0.

Please look at the timing diagram in �gure 3.1b and try to understand how the value

of Q changes, at each rising clock edge, depending on these inputs.

Synchronous logic

Complex circuits like microprocessors can be thought of, on the so-called register-
transfer level (RTL), as networks built out of registers and combinatorial logic. Regis-

ters, in this context, are storage elements for one or more bits that are controlled by a

clock signal. They can be built out of one or more �ip-�ops. Combinatorial logic in

FPGAs can be realized with LUTs.

The larger a circuit is, the more complicated it becomes to synchronize the data

�ow through the circuit. Take, for example, a data word consisting of 64 bits arriving

at the input of a microprocessor. In order to store all bits in a register, all of the 64

�ip-�ops the register consists of should (ideally) store their respective bit at exactly

the same time. If one of the �ip-�ops switches a bit too late, the word may have

changed to a new value in the meantime, and now the �ip-�ops in the same register

contain bits from di�erent words! The same may happen between internal registers

of a circuit: The output of one register passes through a block of combinatorial logic

and to the input of another register. The combinatorial path for di�erent bits can take

di�erent amounts of time. Still we must guarantee that the second register does not

capture its input until all bits have settled to a new valid value.

3.3. BASICS — VHDL 21

B_IBUF

IBUF

OI
q1_and00001

LUT2

OI0

I1

CE2_IBUF

IBUF

OI

B

CE2

Q2

FDRSE

Q

C

CE

D

R

S

Q2_OBUF

OBUF

OI

CLK_BUFGP

BUFGP

I OCLK

Q2

q1

FDE

Q

C

CE

D

q0

FD

Q
C

D

CE1

A_IBUF

IBUF

OI CE1_IBUF

IBUF

OIA

R2_IBUF

IBUF

OI
R2

S2_IBUF

IBUF

OI
S2

Figure 3.2: Netlist synthesized from the model in listing 3.1

A clock signal is used to perform this synchronization. It is distributed to all

�ip-�ops in a synchronous circuit and optimized to keep the skew (i.e., the di�erence

between arrival times at the di�erent �ip-�ops) as small as possible. Clocks are

usually periodic signals with a duty cycle of 50 %: They oscillate between equally

long intervals of 0 and 1 (see, for example, the clock signal in �gure 3.1b). Registers

typically capture data at the rising clock edge (the transition from 0 to 1)
1
.

The higher the oscillation frequency of the clock driving a circuit is, the faster the

circuit operates (since data is transferred from one register to the next more frequently),

but the shorter also the clock period is. Every circuit has a minimum clock period

(or maximum frequency) that is dictated mostly by the longest combinatorial path

between two registers: The output of the �rst register changes after one clock edge,

and must pass through the subsequent logic and arrive at the input of the second

register before the next clock edge occurs, one period later. If the clock runs too fast,

invalid data is captured by the second register, and the circuit fails to operate.

3.3 Basics — VHDL

Clocked processes

The VHDL language elements introduced so far are only useful to describe combina-

torial logic and infer (mainly) LUTs. To describe synchronous circuits we must be able

to model edge-sensitive hardware elements. The VHDL model shown in listing 3.1

describes three D �ip-�ops. Figure 3.2 shows the netlist synthesized from this code.

A process in VHDL is a code block that, like the concurrent assignments introduced

previously, can appear between the begin and end keywords of an architecture block.

It begins with the process keyword, followed by a list of signal or port names in

parentheses. This sensitivity list tells the synthesis and simulation tools on which

signals the process triggers: The code in the process body is evaluated whenever one

of the signals in the sensitivity list changes its value.

For now, we only want to use processes that infer synchronous logic. Synchronous

circuit elements only change their output at a rising clock edge; therefore the sensi-

tivity list of such processes should only contain the clock signal.

1
Some circuits operate at the falling clock edge. Double data rate (DDR) circuits, in particular, capture

data at both edges.

22 LAB 3. SEQUENTIAL PROGRAMMING

Listing 3.1: VHDL model of three �ip-�ops with di�erent inputs

library ieee;

use ieee.std_logic_1164.all;

entity flip_flops is

port(

CLK : in std_logic;

A : in std_logic;

B : in std_logic;

CE1 : in std_logic;

CE2 : in std_logic;

R2 : in std_logic;

S2 : in std_logic;

Q2 : out std_logic

);

end entity flip_flops;

architecture behavioral of flip_flops is

signal q0, q1 : std_logic;

begin

process(CLK)

begin

if rising_edge(CLK) then

q0 <= A;

if CE1 = '1' then

q1 <= q0 and B;

end if;

-- Implicit: else q1 <= q1

if R2 = '1' then

Q2 <= '0';

elsif S2 = '1' then

Q2 <= '1';

elsif CE = '1' then

Q2 <= q1;

end if;

-- Implicit: else Q2 <= Q2

end if;

end process;

end architecture behavioral;

3.3. BASICS — VHDL 23

The process as a whole counts as a concurrent statement in an architecture block.

The process body, in contrast, contains a list of sequential statements. These statements

are processed in order, just like the statements in an imperative programming language.

The two lines

X <= '1'; -- ignored, since the next line overrides the assignment

X <= A xor B;

are forbidden in an architecture block, where they count as contradictory concurrent

statements. Inside of a process body, however, they count as sequential statements,

so the second assignment overrides the �rst one.

The if statement

The if statement can be used to introduce a condition for the execution of a block

of sequential statements. It is only available inside of sequential blocks, like process

bodies.

Processes that describe synchronous logic always have the following form:

process(CLK)

begin

if rising_edge(CLK) then

...

end if;

end process;

The condition if rising_edge(CLK)then is necessary, in addition to the CLK in the

sensitivity list, to tell the synthesis and simulation tools that the following block of

statements describes edge-sensitive logic
2
.

The �rst line inside of this edge-sensitive block in the example is the assignment

q0 <= A; of the input port A to the signal q0. This line infers a simple �ip-�op: On

every rising clock edge, q0 takes the value of A, so q0 describes the output of a �ip-�op

whose clock input is connected to CLK and whose data input is connected to A.

The assignment for the second inferred �ip-�op is linked to an additional condition:

The assignment appears inside of a second if block, which is only executed if CE1 is

1 (at the time of the rising clock edge). This condition corresponds to a clock-enable

input, so a �ip-�op with a CE input (an FDE) is inferred.

In addition, the value assigned to this �ip-�op is not a simple input, but the

result of a logic equation: q1 <= q0 and B;. One of the inputs of this equation is the

signal q0, to which an input was assigned earlier in the same process. This has two

noteworthy consequences that you can con�rm by looking at the inferred netlist in

�gure 3.2:

1. If the value assigned to a signal in a clocked process contains a logic equation,

a �ip-�op and the combinatorial logic (LUTs) connected to the data input of

the �ip-�op are inferred; and

2. Signals do not work like variables: Although the assignment q0 <= A; was

made in the process before q0 is used in q1 <= q0 and B;, the second assign-

2
Another common form that is often found instead of if rising_edge(CLK) is if CLK'event and

CLK = '1'.

24 LAB 3. SEQUENTIAL PROGRAMMING

ment does not use the “new” value of q0: The value going into the input of the

inferred LUT is not A, but the output of the �ip-�op inferred for q0.

Signals used on the right side of an assignment inside of a process (or in an if

condition, etc.) always represent the value they had before the execution of the

process.

The third inferred �ip-�op has additional conditions: Depending on the state

of three inputs, it is set to 0, set to 1, or set to the output of the second �ip-�op.

This corresponds directly to the behavior of a reset, set, and clock-enable input, so

a �ip-�op with all available inputs (FDRSE) in inferred. Note that the order of the

di�erent if conditions is important: The input R2 is checked �rst; only if it is 0, S2 is

checked, and so on. Therefore the reset input has a higher priority than the set input,

which, in turn, has a higher priority than the clock-enable input.

The if conditions in the example have no explicit else case. If, for example, CE1 is

0 at the rising clock edge, the process does not contain any assignment to q1. In such

a case, it is implicitly assumed that q1 keeps its previous value, just like a �ip-�op

with inactive clock-enable input should.

Generics

The VHDL model in listing 3.2 infers a counter with variable width: The output COUNT

is a vector whose width is de�ned by a generic with the name WIDTH.

Generics, like ports, are de�ned in a special block at the de�nition of an entity.

They de�ne options for an entity, which can be selected individually for each instance.

During instantiation, the value for an entity’s generics can be de�ned with a generic

map:

counter_1: entity counter

generic map (

WIDTH => 16

)

port map (

CLK => CLK,

INC => INC,

COUNT => COUNT,

OVERFLOW => OVERFLOW

);

The value given in the generic map is constant for this particular instance of the

entity, but can be di�erent for other instances. If a default value is supplied (like the

4 in the example), the generic map can be omitted. The default value is also used if

the entity is used as the design’s top module, instead of being instantiated.

Numeric vector data types

By using the package

use ieee.numeric_std.all;

you can create signals with the type unsigned. Like a std_logic_vector, unsigned

is an array type and must be given a range using downto.

3.3. BASICS — VHDL 25

Listing 3.2: VHDL model for a counter with variable width

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity counter is

generic (

WIDTH : integer := 4

);

port (

CLK : in std_logic;

INC : in std_logic;

COUNT : out std_logic_vector(WIDTH-1 downto 0);

OVERFLOW : out std_logic

);

end entity counter;

architecture behavioral of counter is

signal count_i : unsigned(WIDTH-1 downto 0);

begin

process(CLK)

begin

if rising_edge(CLK) then

OVERFLOW <= '0';

if INC = '1' then

count_i <= count_i + 1;

if count_i = (2**WIDTH)-1 then

OVERFLOW <= '1';

end if;

end if;

end if;

end process;

COUNT <= std_logic_vector(count_i);

end architecture behavioral;

26 LAB 3. SEQUENTIAL PROGRAMMING

For signals and ports that are declared as unsigned, arithmetic operations are

de�ned. This is used in the example to infer a synchronous counter: In a clocked

process, the value of the signal count_i of type unsigned in increased by 1 if the

enable input INC is active.

Counters inferred this way �ow over implicitly: If 1 is added to a 4-bit counter of

type unsigned that is already at its maximum value "1111" (15), the counter �ows

over, and the next value is "0000" (0). The counter in the example includes an

additional mechanism to detect such an over�ow: The output port OVERFLOW is set to

0 at the beginning of the process (i.e., after every clock edge), but this assignment is

overridden if the counter is increased while it is already at its maximum value. This

condition is tested by comparing the count to the integer value (2**WIDTH)-1, where

** is the exponentiation operator. If that is the case, OVERFLOW is set to 1, and will

keep this value until the next clock edge, at which point it is reset back to 0.

For input and output ports, only the types std_logic and std_logic_vector

should ever be used. In order to forward a signal of type unsigned to an output port,

a type cast must be used like in the example.

Sometimes the width of the counter is initially unknown, but the maximum

number that the counter should be able to hold is given, for example, by the generic

MAX. In such a case, you can calculate the width dlog
2
(MAX)e by including

use ieee.math_real.all;

and declaring a constant in the architecture header
3
:

constant WIDTH : integer := integer(ceil(log2(real(MAX))));

In order to set the counter to a �xed integer value (for example, to reset it to

0 explicitly), a conversion function from integer to unsigned must be used. This

requires the width of the unsigned vector as a second argument:

count <= to_unsigned(0, WIDTH);

3.4 Lab Instructions

Exercise 1: Timer

1. Create a VHDL entity with the following ports:

• a 1-bit input CLK; and

• a 1-bit output T.

Give the entity two generics:

• an integer FREQ_IN; and

• an integer FREQ_OUT.

2. Write a timer module that uses the clock input CLK with the frequency FREQ_IN

to produce an output T. T oscillates with the frequency FREQ_OUT, but stays

3
This construct uses the ceil and log2 functions de�ned for the data type real, which is why some

type casts are necessary.

3.4. LAB INSTRUCTIONS 27

high for only one period of the input clock. Both frequencies are speci�ed in

Hertz.

Example: The input clock runs at 1 MHz, so its period is 1 µs. FREQ_OUT is

speci�ed to be 1 kHz; the according period would be 1 ms. In that case, T should

go to 1 once per millisecond, go back to 0 after 1 µs, and stay 0 for the remaining

999 µs before going high again.

3. Create a VHDL entity that will be used to test your timer module. Give it the

following ports:

• a 1-bit input CLK; and

• a 1-bit output LED.

4. In the new module, instantiate your timer and connect CLK of the top module to

CLK of the timer. Set FREQ_IN to 50 MHz (the frequency of the crystal oscillator

on the Nexys2) and FREQ_OUT to 2 Hz.

5. Create a clocked process with a signal that is assigned its own inverse at the

rising edge of CLK if the timer output T is 1. (In other words: Infer a toggling

�ip-�op that uses T as its clock-enable input.)

6. Connect LED to the toggling signal.

7. Create a UCF �le that assigns LED to an LED and CLK to the crystal oscillator

on the Nexys2.

8. Create a bitstream and test the design on the FPGA.

Exercise 2: Instantiating a netlist �le

For this exercise you will get the two �les display.ngc and display_wrapper.vhd

from the teaching assistant. The NGC �le contains an already synthesized netlist. It

converts a 14-bit binary number into the signals necessary to display it on a seven-

segment display as a 4-digit decimal number.

1. Create an entity with the following ports:

• a 1-bit input CLK;

• an 8-bit input vector SW;

• an 8-bit output vector C; and

• a 4-bit output vector A.

2. Add display.ngc and display_wrapper.vhd to your project as sources.

3. Instantiate the entity in display_wrapper.vhd and connect its ports to the

ports of your entity in the following way:

CLK → CLK

BINARY(13 downto 8) → "000000"

BINARY(7 downto 0) → SW

SEG → C(6 downto 0)

DP → C(7)

AN → A

28 LAB 3. SEQUENTIAL PROGRAMMING

4. Create constraints that assign CLK to the 50 MHz oscillator, SW to the switches,

and C and A to the seven-segment display’s cathode and anode wires, according

to �gure 2.3b.

5. Create a bitstream and test the design on the FPGA.

Exercise 3: Time counter

1. Copy the VHDL �le from the previous exercise and rename the entity. Make this

you new top entity. Remove the input SW from the entity and the constraints.

2. Create a 14-bit counter with an enable signal and display its current count

on the seven-segment display. Instantiate your timer and use it to make the

counter run at 100 Hz.

3. Create a bitstream and test the design on the FPGA.

Exercise 4: Debouncing

1. Copy the VHDL �le from the previous exercise and rename the entity. Make

this you new top entity. Remove the timer. Add a 1-bit input SW and assign it to

one of the push buttons.

2. Create a new entity and instantiate it in your top entity. Give it the following

ports and connections:

• a 1-bit input CLK (connect this to CLK);

• a 1-bit input I (connect this to SW); and

• a 1-bit output EDGE (connect this to a signal and use it as the enable input

for the counter).

3. Write the architecture for the new submodule. It acts as an edge detector for

the input I (i.e., the push button): If I was 0 in the previous clock cycle and is 1

now (this corresponds to the button being pushed down), EDGE goes to 1 for

one clock cycle. Otherwise, EDGE is 0.

Now, in theory, each time the push button is pressed, EDGE should go to 1 for

one clock cycle, which would increase the counter by 1.

4. Create a bitstream and test the design on the FPGA. Press the button 20 times.

How many counts are displayed?

5. Mechanical buttons have a tendency to bounce: When pressed or released,

they oscillate between the on and o� states for up to a few milliseconds. When

sampled with 50 MHz, this results in the detection of multiple rising edges.

Think of a way to reduce the e�ects of the bouncing, and change your module

accordingly. Test your design by pressing the button 50 times. Exactly 50 counts

should be displayed.

Lab4

Driving a Seven-Segment Display

4.1 Learning Goals

• Digital electronics:

◦ Binary-coded decimal

◦ Double dabble algorithm

• VHDL:

◦ Combinatorial processes

◦ Variables

◦ For loops

4.2 Basics — Digital Electronics

Binary-coded decimal

A single decimal digit (0 – 9) can be represented with a 4-bit binary number. For a

decimal number with more than one digit, the binary-coded decimal (BCD) represen-

tation of the number can be obtained by concatenating the 4-bit representations of

all digits. This is not the same as the decimal number’s binary representation. See

table 4.1 for some examples.

Double dabble

In order to display a number on a seven-segment display in decimal form, it must

be converted from binary to BCD �rst, so that each digit can be displayed on one

Decimal Binary BCD

42 10 1010 0100 0010

100 110 0100 0001 0000 0000

1234 100 1101 0010 0001 0010 0011 0100

Table 4.1: Examples for the BCD representation of decimal numbers

29

30 LAB 4. DRIVING A SEVEN-SEGMENT DISPLAY

BCD Binary Step Operation

0000 0000 10 1010 1 Initialize

0000 0001 01 0100 2[1]b Shift left

0000 0010 10 1000 2[2]b Shift left

0000 0101 01 0000 2[3]b Shift left

0000 1000 01 0000 2[4]a Right BCD digit + 3

0001 0000 10 0000 2[4]b Shift left

0010 0001 00 0000 2[5]b Shift left

0100 0010 00 0000 2[6]b Shift left

Table 4.2: Double dabble conversion of the number 42. The number has two digits

(m = 2), and its binary representation has 6 bits (n = 6). The vector has 4 × 2 + 6 = 14

bits. Empty operations were omitted.

cell of the display. One possible way of doing this conversion is the “double dabble”

algorithm.

The double dabble algorithm converts an n-bit binary number into a BCD number

withm digits (i.e., 4m bits). It consists of the following steps:

1. Create a vector with 4m + n bits. Initialize the n bits on the right with the

number you want to convert and the 4m bits on the left with zeros.

2. Perform the following steps n times:

a) For each of them BCD digits on the left of the vector, check if is is greater

than 4. If it is, increment it by 3.

b) Shift the content of the entire vector 1 bit to the left.

After the algorithm �nishes, the 4m bits on the left will hold the BCD digits of the

converted number. Table 4.2 shows an example of this algorithm in action.

4.3 Basics — VHDL

Combinatorial processes

In lab 3 you learned about processes, and how they can be used to model synchronous

circuits. This was achieved by using the clock signal in the sensitivity list and testing

for rising_edge(CLK). Processes can, however, also be used to infer combinatorial

logic. In that case, the check for the rising edge is omitted, and all inputs to the

process—this includes all ports and signals that are on the right side of assignments

and that are tested in if conditions—must appear in the sensitivity list.

Many applications that are complicated to model with logic equations and condi-

tional assignments can be realized with combinatorial processes easily. Listing 4.1

shows an example for this: a circuit that counts the number of bits with the value 1

in an 8-bit vector.

For loops

For loops perform a block of sequential statements for a �xed number of iterations. A

loop variable (bit in the example) is implicitly de�ned. Note that, when used in a

4.3. BASICS — VHDL 31

Listing 4.1: VHDL model for a circuit counting the active bits in an 8-bit vector

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity count_ones is

port (

I : in std_logic_vector(7 downto 0);

ONES : out std_logic_vector(3 downto 0)

);

end entity count_ones;

architecture behavioral of count_ones is

begin

process (I) is

variable one_cnt : unsigned(3 downto 0);

begin

one_cnt := "0000";

for nbit in 7 downto 0 loop

if I(nbit) = '1' then

one_cnt := one_cnt + 1;

end if;

end loop;

ONES <= std_logic_vector(one_cnt);

end process;

end architecture behavioral;

combinatorial process, even for loops are synthesized into combinatorial logic. The

netlist generated by the example code is the same that would be obtained with 8

single assignments for each bit.

Variables

Signals that are used as inputs in a process always return the value that they had

before the execution of the process, even if their value was changed inside of the

process before it is referred to. Variables, in contrast, show the opposite behavior.

Variables are declared locally in a process, before the begin keyword. They are

assigned to with the := operator. A variable that is referred to after being assigned

a value will return the new value. Take, for example, the variable v declared as

unsigned(2 downto 0). After the statements

v := "000";

v := v + 1;

v := v + 1;

v will have the value "010" (2). This even works between iterations of a for loop. In

the example this is used by looping over the bits of the input vector and, if a bit has

the value 1, incrementing the variable one_cnt.

32 LAB 4. DRIVING A SEVEN-SEGMENT DISPLAY

Since variables are only available in the process inside of which they were declared,

their value must be passed to a signal or output port if it is to be used outside of the

process. Variables retain their value between di�erent executions of the same process.

4.4 Lab Instructions

Exercise 1: Two-byte hex display

1. Create an entity with the following ports:

• a 1-bit input CLK;

• an 8-bit input vector SW;

• an 8-bit output vector C; and

• a 4-bit output vector A.

2. Create constraints that assign these ports to the oscillator, switches, and seven-

segment cathode and anode signals, respectively, of the Nexys2.

3. Instantiate your 4-bit hex-display module from lab 2 four times. (Each one

will format the hex digit for one cell of the seven-segment display.) For two of

the modules, connect the inputs I to four of the switches each. For the other

two modules, connect I to constant values of your choice. The outputs of the

modules will be connected in the next step.

4. Create a new entity and instantiate it in your top entity. Give it the following

ports and connections:

• a 1-bit input CLK (connect this to CLK);

• an 8-bit input vector C0 (connect this to the output C of the �rst hex-display

module);

• three more 8-bit input vectors C1, C2, and C3 (connect these accordingly);

• an 8-bit output vector C (connect this to C of the top module); and

• a 4-bit output vector A (connect this to A of the top module).

5. Write the architecture for the new submodule. It acts as a timing multiplexer. It

uses the clock to cycle through di�erent values for A, so that at each time only

one seven-segment cell is active ("1110", "1101", . . .). At the same time, the

cathode input (C0–C3) belonging to the currently activated digit is forwarded

to C.

6. Create a bitstream and test the design on the FPGA. What do you notice?

7. Use your timer (or another method) to reduce the cycling frequency until you

get a stable display. Which frequency gives a good result?

Exercise 2: Decimal display for a 14-bit number

1. Copy the top entity from the previous exercise and rename it. Remove the

assignments of the switches and constant values to the inputs of the hex-display

modules.

4.4. LAB INSTRUCTIONS 33

2. Create a new entity and instantiate it in your top entity. Give it the following

ports and connections:

• a 14-bit input vector BIN (connect the lower 8 bits to SW and the remaining

bits to zeros);

• a 16-bit output vector BCD (connect the four 4-bit slices of this to the inputs

of the hex-display modules); and

• a 1-bit output VALID (leave this unconnected for now).

3. Write the architecture for the new submodule. It acts as a binary-to-BCD

converter.

A 4-digit decimal number can have up to 14 bits. Its BCD representation has 16

bits. Create a combinatorial process that converts BIN to BCD using the double

dabble algorithm (or come up with a method of your own). The output VALID

is 0 if the input number is greater than 9999 (in which case four decimal digits

cannot give a correct representation). Otherwise it is 1.

4. Create a bitstream and test the design on the FPGA.

5. Add an “error message”: If the converter output is invalid, display a message of

your choice instead of the output from the timing multiplexer.

Exercise 3: Four-byte ASCII display

1. Similar to the �rst exercise, instantiate your 8-bit ASCII-display module from

lab 2 four times. Connect the outputs to the timing multiplexer and the inputs

to switches or constant values.

2. Create a bitstream and test the design on the FPGA.

Exercise 4 (∗): Multi-purpose display

1. Create a multi-purpose seven-segment driver that can be instantiated in later

projects. Give it the following ports:

• a 1-bit input CLK;

• a 32-bit input vector I;

• a 2-bit input vector MODE;

• an 8-bit output vector C; and

• a 4-bit output vector A.

2. Depending on the MODE input, the module does the following:

"00" The 32 bits of I are interpreted as four 8-bit seven-segment cathode

signals, and directly passed to the timing multiplexer.

"01" The lowest 16 bits of I are displayed as four 4-bit hex digits.

"10" The lowest 14 bits of I are displayed as four decimal digits, including an

error message when the number is greater than 9999.

"11" The 32 bits of I are displayed as four 8-bit ASCII characters.

Lab5

Finite-State Machines

5.1 Learning Goals

• Digital electronics:

◦ Finite-state machines

• VHDL:

◦ Enumerated types

◦ The case statement

◦ Numeric data types

◦ One-process state machine model

5.2 Basics — Digital Electronics

Finite-state machines

A �nite-state machine (FSM) is characterized by a set of states, inputs, and outputs.

The FSM starts out in one of the possible states. The next state is determined based

on the current state and the inputs.

Models of FSMs are the subject of theoretical computer science. They can be

realized, for example, as computer programs or sequential logic. If implemented as

a synchronous electronic circuit, the transition from one state to the next usually

happens at every clock edge.

The way the outputs are determined depends on the FSM type. The FSM you will

program in this lab can be most closely described as a Mealy machine. The outputs of

a Mealy machine depend on its current state and the inputs.

5.3 Basics — VHDL

Enumerated types

The VHDL model in listing 5.1 describes a simple FSM. It goes through three states,

depending on the input from two buttons and a time counter, and lights one of three

LEDs in each state.

35

36 LAB 5. FINITE-STATE MACHINES

Listing 5.1: VHDL model of an FSM

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

port(

CLK : in std_logic;

RESET : in std_logic;

BTN : in std_logic_vector(1 downto 0);

LED : out std_logic_vector(2 downto 0)

);

end entity fsm;

architecture behavioral of fsm is

type state_type is (s1, s2, s3);

signal state : state_type := s1;

signal count : integer range 0 to 50e6-1 := 0;

begin

process (CLK) is

begin

if rising_edge(CLK) then

if RESET = '1' then

LED <= "000";

count <= 0;

state <= s1;

else

case state is

when s1 =>

LED <= "001";

if BTN(0) = '1' then

state <= s2;

end if;

when s2 =>

LED <= "010";

count <= count + 1;

if count = 50e6-1 then

count <= 0;

state <= s3;

end if;

when s3 =>

LED <= "100";

if BTN(1) = '1' then

state <= s1;

end if;

end case;

end if;

end if;

end process;

end architecture behavioral;

5.3. BASICS — VHDL 37

The type keyword can be used to de�ne custom types for signals and variables.

For keeping track of the current state of a state machine, enumerated types are useful.

A variable of an enumerated type can only take values from a de�ned set. In the

example, the possible states are s1, s2, and s3. During synthesis, this will be translated

into a state register with a certain number of bits, depending on the encoding. For an

FSM with n states, the commonly used one-hot encoding creates an n-bit register for

which only the bit belonging to the current state is 1.

The case statement

With the case statement, a signal in a process can be checked for di�erent possible

values. Depending on the actual value of a signal, one of several di�erent blocks

of statements is executed. In a case statement, all possible values of a signal must

be accounted for (similar to the selected concurrent assignments). If there are any

omitted possibilities, a �nal when others case must be present.

In an FSM, the case statement can be used to check which is the current state.

Based on the state, the output and the next state are set. The example shown in

listing 5.1 uses a single process to model the FSM. Other methods, using two or more

processes, exist. They separate, for example, the output function from the next-state

function, and combinatorial from registered assignments. Which method is used

largely depends on preference and the application at hand.

The FSM in the example has three possible states:

• Initially, and after a reset, it goes into state s1, and the �rst LED is lit up. If

the �rst button is pressed in this state, the FSM changes to state s2 in the next

clock cycle. Otherwise it stays in state s1.

• In state s2, the second LED is lit up. For each clock cycle the FSM remains

in this state, the counter (initially 0) is incremented by 1, until it reaches 50

million. Then the FSM changes to state s3. For a 50 MHz clock, this means that

the machine stays in s2 for exactly one second.

• In state s3, the third LED is lit up. The FSM remains in this state s3 until the

second button is pressed. Then it goes back to state s1.

Note that there is no explicit assignment to state and counter for every case: In the

states s1 and s3 the counter is not assigned a value, and in all states, state is only

assigned under a condition: if a button is pushed, or the counter has a certain value.

In such a case, the signals implicitly keep their current value: The FSM remains in

the current state, and the counter stays at its current count.

Numeric data types

You have encountered numeric data types before: Values of the type integer appear

in the range declaration of vectors, and you used them in generics and in comparisons

with unsigned vectors, as in if count_i > 9999 then.

The example in listing 5.1 shows a way to use a signal of type integer, declared

with a �xed range, to infer a counter. In that case, the synthesis tool automatically

determines the required signal width. For integer signals, assigning a �xed value—for

example, to reset a counter to 0—is easier than for unsigned signals, since a type cast

is not necessary. On the other hand, unsigned signals allow a more direct control

over how the counter is synthesized.

38 LAB 5. FINITE-STATE MACHINES

Passing an integer signal to an output port of type std_logic_vector is a bit

complicated, since this requires several type casts:

use ieee.numeric_std.all;

...

O : out std_logic_vector(7 downto 0);

...

signal count : integer range 0 to 255;

...

O <= std_logic_vector(to_unsigned(count, 8));

5.4 Lab Instructions

Exercise 1: Three-stage code lock

Create a �nite-state machine for a code lock. Implement the following features step by

step, and test the design on the FPGA in between. You will need your multi-purpose

display. If you do not have a working implementation, you will get a netlist from the

teaching assistant.

• Three 8-bit numbers must be entered to open the lock. An initial value is set

for the code.

• Numbers are entered by selecting them with the switches and then pressing

one of the buttons (ENTER). Use a debouncer, or you will advance several states

per button push!

• The FSM starts in a state where the �rst number can be entered. The number

currently selected by the switches is displayed on the seven-segment display,

and the �rst LED is lit up. After pressing ENTER, the second number can be

selected and the second LED is lit up, etc. The entered numbers are stored but

not checked before the third number has been entered.

• At any time before the third number has been entered, a second button (ABORT)

returns the user to the input for the �rst number.

• If, after the third number has been entered, the input code is wrong, an error

message is displayed for a �xed time. This message contains the number of

wrong inputs so far. Afterwards, the lock returns to the input for the �rst

number.

• After the third wrong input, the lock goes into a permanent lock-down state.

This state is indicated by a message on the display.

• After a correct input, the error count is reset, and the lock opens. This state is

also indicated by an according message.

• From the open state, the lock can be closed by pressing ABORT. This causes a

message to be displayed for a �xed time, before returning to the input for the

�rst number.

• A third button (RESET) returns the lock to its initial state from any other state.

(This should normally, of course, not be accessible by the user.)

5.4. LAB INSTRUCTIONS 39

(∗) Another option from the open state is to press a fourth button (REPROGRAM).

This lets the user enter a new code. This works similar to the previous code

input: The display shows the selected number, an LED shows the current

position, and ENTER advances to the next position. An additional LED shows

that the reprogramming mode is active. After the new code has been input, an

a�rmative message is shown for a �xed time; then the lock returns to the open

state. ABORT also returns to the open state.

Lab6

Pulse-Width Modulation

6.1 Learning Goals

• Digital electronics:

◦ Pulse-width modulation

• VHDL:

◦ Simulation test bench

◦ The after statement

◦ The wait for statement

6.2 Basics — Digital Electronics

Pulse-width modulation

Signals in a digital circuit can usually take only one of two de�ned values: 1 or 0. If

the output of such a circuit is connected to, for instance, the anode of an LED, then

current will either �ow through the LED or not, and the LED will either light up or

not
1
.

Direct control over the LED’s brightness level is possible by varying the anode

voltage between di�erent analog values. This can be achieved with a digital-to-

analog converter; however, in many cases, the e�ect of di�erent analog levels can be

mimicked by varying the average voltage supplied to a load. This makes it possible to

change, for example, the brightness of an LED or the loudness of a buzzer.

A simple form of pulse-width modulation (PWM) can be used to control the average

output voltage of a digital signal. In this technique, a periodic signal (similar to a clock

signal) is produced, and its duty cycle—i.e., the fraction of time, during one period, in

which the signal is 1—is varied. Figure 6.1 shows an example of PWM signals with

di�erent duty cycles.

1
Provided its cathode is connected, through an appropriate resistor, to the voltage level corresponding

to a logic 0.

41

42 LAB 6. PULSE-WIDTH MODULATION

ns

0 25 50 75 100 125 150 175 200 225 250 275 300

0 %

10 %

33 %

50 %

80 %

100 %

Figure 6.1: PWM signal with period 100 ns and varying duty cycles

ns

0 200 400 600 800 1000 1200 1400 1600 1800

CLK

A(2)

A(1)

A(0)

AND_REG

OR_REG

XOR_REG

Figure 6.2: Simulated waveform for the example test bench

6.3 Basics — VHDL

Simulation test bench

The functionality of an FPGA design can be veri�ed with a simulation of the HDL

source code. A special computer program—the simulator—determines how the design

behaves and which outputs it produces for prede�ned inputs. A simulation of a VHDL

entity requires a test bench that speci�es the stimulus (i.e., the way the inputs of the

entity change over time) for the simulation.

The VHDL entity whose behavior is simulated is called the unit under test (UUT).

The test bench is itself a VHDL entity and usually does not have any ports or generics.

The UUT is instantiated inside of the test bench. In the test bench architecture,

signals are declared for all ports of the UUT and connected accordingly in the port

map. The signals assigned to the UUT’s input ports can then be set to any desired

values. Since the test bench is only used during simulation and never synthesized,

non-synthesizable VHDL code may be used.

Listing 6.1 shows a VHDL entity that will be used as an example UUT. At each

clock cycle, it outputs the results of the AND, OR, and XOR operations for three inputs.

The example test bench in listing 6.2 instantiates this entity and creates a stimulus

that goes through di�erent input values. The example shows several techniques—all

using non-synthesizable VHDL—for creating the stimulus for the inputs. The new

keywords used will be explained below. Note that for a simulation, the VHDL library

of the instantiated module must be supplied. This is work, unless explicitly changed

to something else.

6.3. BASICS — VHDL 43

Listing 6.1: Example UUT

library ieee;

use ieee.std_logic_1164.all;

entity example_uut is

port(

A : in std_logic_vector(2 downto 0);

CLK : in std_logic;

AND_REG : out std_logic;

OR_REG : out std_logic;

XOR_REG : out std_logic

);

end entity example_uut;

architecture behavioral of example_uut is

begin

process (CLK) is

begin

if rising_edge(CLK) then

AND_REG <= A(0) and A(1) and A(2);

OR_REG <= A(0) or A(1) or A(2);

XOR_REG <= A(0) xor A(1) xor A(2);

end if;

end process;

end architecture behavioral;

Figure 6.2 shows the waveform produced by the simulation of this example
2
. Note

that, since the outputs are assigned in a clocked process, they change their value

only the rising edges of CLK (corresponding to the behavior of a �ip-�op, which the

synthesis tool would produce). Before the �rst clock edge, the outputs are unde�ned.

In order to avoid ambiguity, the test bench deliberately changes the inputs A only

in-between clock edges.

This is a very basic example of how a test bench can be written. Using more

advanced techniques, the outputs from the UUT can be tested against expected values,

�les can be used for input and output, information can be printed to the console, and

much more.

Such a behavioral simulation is completely independent from the FPGA synthesis

and implementation processes. The VHDL code itself, not the netlist or the �nished

design, is simulated. This can lead to discrepancies between the simulation result and

the behavior of the actual hardware. For instance, a simple hardware description like

in the example does not include component switching and signal propagation times.

All assignments are made without a delay, so clocks and inputs could, in principle,

change with any desired speed. With the 50 MHz clock in the example, the design will

work in both simulation and hardware. If the clock were changed to 1 GHz, however,

the simulation would not complain, but the hardware would stop working.

2
Of course, it is possible to examine the simulation result in much detail with the simulator. For

example, the value of all internal signals of the UUT and any of its submodules, at any time, can be seen.

44 LAB 6. PULSE-WIDTH MODULATION

Listing 6.2: Example test bench

library ieee;

use ieee.std_logic_1164.all;

entity example_tb is

end example_tb;

architecture tb of example_tb is

signal A : std_logic_vector(2 downto 0) := "000";

signal CLK : std_logic := '0';

signal AND_REG : std_logic;

signal OR_REG : std_logic;

signal XOR_REG : std_logic;

constant CLK_PERIOD : time := 200 ns;

begin

uut : entity work.example_uut

port map(

A => A,

CLK => CLK,

AND_REG => AND_REG,

OR_REG => OR_REG,

XOR_REG => XOR_REG

);

CLK_PROC : process is

begin

CLK <= '0';

wait for CLK_PERIOD / 2;

CLK <= '1';

wait for CLK_PERIOD / 2;

end process CLK_PROC;

A(0) <= not A(0) after 200 ns;

A(1) <= '0',

'1' after 400 ns,

'0' after 800 ns,

'1' after 1200 ns,

'0' after 1600 ns;

A2_PROC : process is

begin

wait for 800 ns;

A(2) <= not A(2);

wait for 800 ns;

A(2) <= not A(2);

wait;

end process A2_PROC;

end architecture tb;

6.4. LAB INSTRUCTIONS 45

Another di�erence between simulation and hardware can arise from the implicit

initialization of memory elements by the synthesis tool: A �ip-�op in the FPGA must

have an initial value that it takes immediately after the FPGA is programmed. This

value is usually derived from the default value of the signal used to infer the �ip-�op.

If no default value is given, it is assumed to be '0'. The simulator makes no such

assumption, and regards all signals as unde�ned until they are explicitly assigned a

value.

Process sensitivity list can be an additional snag. The simulator only ever executes

a process if one of the signals in the sensitivity list changes. Synthesis tools, on the

other hand, usually produce the expected netlist even with an incorrect sensitivity

list, and might only throw a warning. This can lead to a completely di�erent behavior

of simulation and netlist.

If a more precise simulation of the hardware behavior is desired, a timing simula-
tion can be made, using the completely routed FPGA design. After the implementation

step, the required FPGA components and their exact con�guration, placement, and

interconnection are known. The simulation is therefore not based on VHDL code, but

on a structural description of the FPGA design, using models for the components, sig-

nal propagation times, etc. While a timing simulation is useful to get a realistic picture

of the behavior of an FPGA design and analyze timing problems, it requires a �nished

design and takes a much longer time than a behavioral simulation. Furthermore, HDL

signal names and hierarchical features can be lost during the implementation process,

making the analysis of the design’s inner workings much harder.

The after statement

In the example test bench, the stimuli for the UUT inputs A(0) and A(1) are created

with concurrent assignments using the after statement. The after statement delays

a concurrent assignment by a �xed amount of time. In case of A(0), an oscillating

signal is produced, because every time A(0) changes, it is scheduled to change again

to the opposite value 200 ns later. For A(1), assignments to �xed values are made at

prede�ned times.

The wait for statement

The stimuli for the UUT inputs CLK and A(2) are produced using processes. (Note

that these processes were given labels, that can help to identify signal drivers during

simulation.) Both processes do not have a sensitivity list that tells the simulator when

to execute them. Instead, the wait for statement is used: The processes are executed

at the beginning of the simulation, and the simulator pauses them for a �xed amount

of time when a wait for statement is encountered. If the end of the process is reached,

it immediately starts again from the beginning, which is why CLK_PROC produces an

oscillating signal. If a wait statement without time speci�cation is encountered, the

process stops inde�nitely.

6.4 Lab Instructions

Exercise 1: LED dimmer

1. Create an entity with the following ports:

46 LAB 6. PULSE-WIDTH MODULATION

• a 1-bit input CLK;

• an 8-bit input vector DC; and

• a 1-bit output PWM.

2. Write a PWM module with the following properties:

• Using the clock input CLK, the module creates a pulse-width modulated

signal PWM.

• The PWM signal has a period of 255 (not 256) clock cycles.

• The PWM signal’s Its duty cycle is determined by DC. It can be regulated

from 0 % to 100 %.

3. Create constraints that assign CLK to the 50 MHz oscillator, DC to the switches,

and PWM to an LED on the Nexys2.

4. Create a bitstream and test the design on the FPGA.

5. Write a test bench that creates the following stimulus:

• CLK is a 50 MHz clock; and

• DC increases from 0 to 255, and stays at every value for two PWM periods.

6. Follow the instructions in appendix A.3 and run a behavioral simulation. Check

that the PWM signal has the correct duty cycle, especially for 0 % and 100 %.

How long does the simulator take (approximately) to simulate 1 s of real time

for this design?

Exercise 2: Frequency generator

1. Create an entity with the following ports:

• a 1-bit input CLK;

• an 8-bit input vector SW; and

• a 1-bit output SPK.

2. Create constraints that assign these ports to the oscillator, switches, and an

extension header pin of the Nexys2.

3. Create a new entity and instantiate it in your top entity. Give it the following

ports and connections:

• a 1-bit input CLK (connect this to CLK);

• a 16-bit input vector FREQ (connect the lower 8 bits to SW and the remaining

bits to zeros); and

• a 1-bit output SND (connect this to SPK).

4. Write a frequency generator module. Using the 50 MHz clock input CLK, the

module generates a square wave SND with a duty cycle of 50 % and variable

frequency FREQ.

6.4. LAB INSTRUCTIONS 47

5. Create a bitstream and test the design on the FPGA. Connect a speaker between

the pin assigned to SPK and a ground level pin. What do you hear for the lowest

frequencies?

6. Next, connect the upper 8 bits of SW to FREQ and the rest to ones. Test the design

on the FPGA. What is the highest frequency you can hear?

7. Write a test bench that creates the following stimulus:

• CLK is a 50 MHz clock; and

• FREQ is 100 for 20 ms, 1000 for 2 ms, and 10000 for 200 µs.

8. Run a behavioral simulation. Which periods do you measure for the three

selected frequencies?

Exercise 3: Melody

Instantiate your frequency generator and write a module that plays a short melody.

Use a state machine or similar construct to go from one note to the next. Come up

with your own melody, or use this one:

• 784 Hz for 130 ms;

• 740 Hz for 130 ms;

• 622 Hz for 130 ms;

• 440 Hz for 130 ms;

• 415 Hz for 130 ms;

• 659 Hz for 130 ms;

• 831 Hz for 130 ms;

• 1047 Hz for 390 ms.

Exercise 4: Loudness regulation for a �xed frequency

1. Copy your PWM module into a new �le and rename the entity. Assign PWM to

the speaker pin instead of an LED.

2. Change the PWM signal, so that it has a frequency of 440 Hz. The duty cycle

should still be selectable from 0 % to 100 %.

3. Create a bitstream and test the design on the FPGA. Which duty cycle gives the

loudest sound? What else do you notice when switching between duty cycles?

48 LAB 6. PULSE-WIDTH MODULATION

Exercise 5 (∗): Frequency generator with loudness regulation

1. Create an entity with the following ports:

• a 1-bit input CLK;

• an 8-bit input vector DC;

• a 16-bit input vector FREQ; and

• a 1-bit output SPK.

2. Create a module that allows you to select the frequency and duty cycle of the

output signal.

3. Create a suitable top module and constraints. Create a bitstream and test the

design on the FPGA.

Lab7

UART

7.1 Learning Goals

• Digital electronics:

◦ UART

◦ RS-232

◦ Oversampling

◦ Shift register

7.2 Basics — Digital Electronics

UART

Data can be transmitted from one device to another using a universal asynchronous
receiver/transmitter (UART). This type of transmission is serial (i.e., bitwise, on a single

wire) and asynchronous (i.e., receiver and transmitted have separate clock sources).

For a two-way communication between two hosts (A and B), two data lines are

necessary: On the A-B-line, host A sends out data on its TX (transmit) port and host

B receives data on its RX (receive) port. On the B-A-line, host B sends out data on its

TX port and host A receives data on its RX port. The electrical characteristics of the

lines depend on the physical standard (usually RS-232).

Sender and receiver must use the same baud rate (i.e., bit rate), parity mode, and

number of data bits and STOP bits. The most common baud rates are 9600 and 115200.

When idle, a UART line is in the logic high state. A single low bit (START bit)

indicates the start of a transmission. Then 7 or 8 payload data bits are sent, with

TXCLK

TX

IDLE START ASCII “X” (0x58) STOP IDLE

Figure 7.1: Timing diagram of a UART transmission of the ASCII letter X, without

parity bit and with a single STOP bit

49

50 LAB 7. UART

TXCLK

TX

RX

Sampled

OK OK OK WRONG WRONG

RXCLK

Figure 7.2: E�ect of an asynchronous data transmission: The receiver clock runs

25 % slower than the sender clock. 0010101 is sent, but 00110. . . is received.

the LSB (least signi�cant bit) sent �rst. Depending on the con�guration, an even or

odd parity bit can follow the payload data. A 1-bit or 2-bit logic high STOP signal

terminates the transmission. Figure 7.1 shows an example UART transmission.

RS-232

RS-232 de�nes physical parameters for a serial communication. For a UART transmis-

sion using RS-232, at least three lines are necessary: In addition to the A-B-line and

B-A-line, the ground of receiver and transmitter must be connected in order to obtain

a common reference voltage.

In RS-232, the logic high state corresponds to a negative voltage (between −3 V

and −15 V) and the logic low state corresponds to a positive voltage (between 3 V and

15 V). The conversion between these voltages and the FPGA I/O levels is handled by

an additional chip on the board. Therefore, from the point of view of the FPGA, 1 and

0 can be used for logic high and low as usual.

When monitoring a UART transmission with a logic analyzer, it is important to

probe the signals before the converter chip (i.e., not on the serial cable), since the

RS-232 voltages can destroy the logic analyzer.

Oversampling

Asynchronous data transmissions lead to certain problems, because sender and re-

ceiver do not use a common clock source. As a result, the clocks are usually out of

phase and can have a slightly di�erent frequency. In addition, there is a delay of the

data signal due to wire propagation times. There is a chance that the receiver samples

the incoming signal at the exact moment of a rising or falling edge, which would lead

to a metastable state of the sampling �ip-�op.

The clock frequency di�erence additionally leads to a drift of the phase di�erence:

In �gure 7.2, the receiver clock is slightly slower than the transmitter clock. The

receiver sees the START bit at some point during its low state. Then it samples the

�rst two data bits correctly. However, because of the slower receiver clock, it misses

the third data bit.

This e�ect can be eliminated by a technique called oversampling: Instead of

sampling the incoming data with a frequency that is equal to the baud rate, a multiple

of the baud rate is used. A common oversampling factor is 16: The receiver clock has

16 times the frequency of the transmitter clock.

If a receiver, oversampling with a factor of 16, detects a START condition—a logic

low after an idle state—this means that it is at a point somewhere within the �rst 16th

7.3. LAB INSTRUCTIONS 51

D

CE

Q D

CE

Q D

CE

Q

SHIFT

CLK

SOUTSIN

Figure 7.3: A 3-bit shift register

of the START bit. Waiting for 8 clock cycles then puts it approximately in the center

of the START bit.

From there it is possible to advance to the approximate center of the next bit in

steps of 16 clock cycles. If the frequency di�erence is not too big, it should be safe to

sample the bit at this point. By repeatedly advancing 16 clock cycles, the remaining

bits of the incoming byte can be sampled.

Shift register

An n-bit shift register can be built out of n D �ip-�ops. All �ip-�ops use the same

clock, and the output Q of each �ip-�op is connected to the data input D of the next.

This is shown for three bits in �gure 7.3.

At each clock edge, an incoming bit SIN is captured by the �rst �ip-�op. At

the same time, the saved bit of each �ip-�op is shifted to the next. In addition, the

clock-enable inputs of all �ip-�ops can be connected to a common SHIFT signal that

controls in which clock cycles a shift occurs.

Shift registers can be used to convert data received on a serial input into parallel

form: Each time a bit is received, it is shifted into an 8-bit shift register; after 8 received

bits, the complete byte can be read out on the outputs of the �ip-�ops.

7.3 Lab Instructions

Exercise 1: Direct loop-back

1. Forward the serial RX input on the FPGA directly to the TX output. In addition,

connect it to one of the extension I/O pins, so that you can monitor the signal

with a logic analyzer.

2. Connect the serial port of the Nexys2 to the serial interface of a PC. Start a

terminal emulator on the PC. On Linux, you can use:

picocom -b 115200 /dev/ttyUSB0

This sets the baud rate to 115200. The device name depends upon the port used,

and might also be /dev/ttyS0, /dev/ttyUSB1, . . .

3. Connect a logic analyzer to the chosen output pin and set it to trigger on a

high-to-low transition (START bit). Send a few bytes from the PC to the Nexys2.

Con�rm that they are reuturned and check the output from the logic analyzer.

52 LAB 7. UART

Exercise 2: UART sender

1. Create an entity with the following ports:

• a 1-bit input CLK;

• an 8-bit input vector SW;

• a 2-bit input vector BTN;

• a 1-bit output LED; and

• a 1-bit output TX.

2. Create constraints that assign these ports to the oscillator, switches, two buttons,

an LED, and the serial TX port of the Nexys2.

3. Create a new entity and instantiate it in your top entity. Give it the following

ports and connections:

• a 1-bit input CLK (connect this to CLK);

• a 1-bit input RST (connect this to BTN(1));

• an 8-bit input vector DIN (connect this to SW);

• a 1-bit input SEND (connect this to a debouncer sourced by BTN(0));

• a 1-bit output IDLE (connect this to LED); and

• a 1-bit output TX (connect this to TX).

4. Write a UART sender module in the new entity. Instantiate inside of it a timer

module and set the output frequency to 115 200 Hz. Use the timer signal in a

state machine.

The state machine starts out in an idle state (indicate this by driving IDLE to

1) and captures the byte on the data input DIN when SEND is 1 during a rising

clock edge. It then sends out the captured byte on TX (8-bit data, no parity, 1-bit

STOP). The state machine is reset if RST goes to 1.

5. Connect the board to a PC and run a terminal emulator that displays the received

bytes.

6. Create a bitstream and test the design on the FPGA.

What is the actual frequency produced by the timer module? Is the frequency

di�erence a problem for the receiver? Check that the PC displays the correct

bytes.

Exercise 3: Simple UART receiver

1. Create an entity with the following ports:

• a 1-bit input CLK;

• a 1-bit input BTN;

• an 8-bit output vector LED;

• an 8-bit output vector C;

• a 4-bit output vector A; and

7.3. LAB INSTRUCTIONS 53

• a 1-bit input RX.

2. Create constraints that assign these ports to the oscillator, a button, the LEDs,

the seven-segment cathode and anode signals, and the serial RX port of the

Nexys2.

3. Create a new entity and instantiate it in your top entity. Give it the following

ports and connections:

• a 1-bit input CLK (connect this to CLK);

• a 1-bit input RST (connect this to BTN);

• an 8-bit output vector DOUT (connect this to a signal);

• a 1-bit output VALID (connect this to a signal);

• a 1-bit output FERR (connect this to a signal); and

• a 1-bit input RX (connect this to RX).

4. Write a UART receiver module in the new entity. Instantiate inside of it a timer

module and set the output frequency to 115 200 Hz. Use the timer signal in a

state machine.

The state machine checks the bits on the RX input when the timer signal is 1.

When it sees a 0 (a START bit), it shifts the next 8 bits into a shift register
1
.

After the whole byte was received, the content of the shift register is output on

DOUT. Check the STOP bit; if it is 0 instead of 1, this is a framing error. Indicate

this by setting FERR to 1. Then indicate the end of the reception by setting

VALID to 1 for one clock cycle.

The state machine is reset if RST goes to 1.

5. Write a clocked process in the top entity. Inside the process, if VALID is 1, assign

DOUT to LED and increment a framing error counter if FERR is 1. Display the

number of framing errors on the seven-segment display.

6. Connect the board to a PC and run a terminal emulator.

7. Create a bitstream and test the design on the FPGA. Send 100 identical characters

to the board. How often do you see the correct character on the LEDs, how

often a wrong one? How many framing errros are counted?

Exercise 4: Oversampling UART receiver

1. Copy the entities from the previous exercise into new �les and rename them.

2. Change the output frequency of the timer to 16×115 200 Hz. Change the state

machine to oversample the received data.

3. Repeat the receiver test. How many incorrect bytes and how many framing

errors do you count?

1
In VHDL, a shift register can be realized with a simple std_logic_vector and assignments of the

form SREG(7 downto 0)<= SREG(6 downto 0)& SIN;.

54 LAB 7. UART

Exercise 5 (∗): RX display

Instead of the framing error count, show the last four received bytes on the seven-

segment display in their ASCII representation.

Exercise 6 (∗): Additional UART modes

Add features to the UART transmitter and receiver, and test them in a suitable way.

• Add an input that chooses between 1-bit and 2-bit STOP. A transmitter with

2-bit STOP does not accept a new byte to send before it has sent two high STOP

bits. A receiver with 2-bit STOP throws a framing error if any of the two STOP

bits is low.

• Add an input that activates parity, and another one that chooses between even

and odd parity. A transmitter with parity inserts a parity bit of the chosen type

between the data and STOP bits. A receiver with parity throws a parity error

(add an additional output for this) if the received parity bit has the wrong logic

level.

Lab8

Memory

8.1 Learning Goals

• VHDL:

◦ Inferring memory

◦ Arrays

8.2 Basics — VHDL

Inferring memory

The VHDL model in listing 8.1 describes a memory with the following properties:

• It is a 256×8 bit RAM: The depth is 256, i.e., the memory can store 256 elements.

The width is 8, i.e., the stored elements and the data ports have a size of 8 bits.

All stored elements can be addressed individually, so the address ports need

log
2
(256) = 8 bits.

• It has independent write and read ports with a common clock.

• If WEN (write enable) is 1 during a clock edge, the byte on input DIN is written

to address WADD.

• If REN (read enable) is 1 during a clock edge, the byte stored in address RADD is

output to DOUT.

• The memory is in read �rst mode: If an address is written to and read from at

the same time, the “old” value will be output on DOUT.

The example code is synthesized as Block RAM in the Spartan-3E.

Arrays

In the example, a new data type is declared for the signal that holds the memory

content. The data type is an array of 256 8-bit vectors. Reading and writing individual

elements of an array works with parentheses, just like addressing single bits in a

std_logic_vector—in fact, std_logic_vector is an array of std_logic.

55

56 LAB 8. MEMORY

Listing 8.1: VHDL model for a 256 × 8 bit RAM

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity ram is

port (

CLK : in std_logic;

WEN : in std_logic;

WADD : in std_logic_vector(7 downto 0);

DIN : in std_logic_vector(7 downto 0);

REN : in std_logic;

RADD : in std_logic_vector(7 downto 0);

DOUT : out std_logic_vector(7 downto 0)

);

end entity ram;

architecture behavioral of ram is

type ram_type is array (0 to 255) of std_logic_vector (7 downto 0);

signal ram : ram_type;

begin

process (CLK) is

begin

if rising_edge(CLK) then

if WEN = '1' then

ram(to_integer(unsigned(WADD))) <= DIN;

end if;

if REN = '1' then

DOUT <= ram(to_integer(unsigned(RADD)));

end if;

end if;

end process;

end architecture behavioral;

8.3. LAB INSTRUCTIONS 57

8.3 Lab Instructions

Exercise 1: Memory module

1. Create an entity with the following ports:

• a 1-bit input CLK;

• an 8-bit input vector SW;

• a 1-bit input BTN;

• an 8-bit output vector C;

• a 4-bit output vector A; and

• a 1-bit input RX.

2. Create constraints that assign these ports to the oscillator, the switches, a

button, the seven-segment cathode and anode signals, and the serial RX port of

the Nexys2.

3. Create a new entity and instantiate it in your top entity. Give it the following

generics:

• an integer AWIDTH (set this to 8); and

• an integer DWIDTH (set this to 8).

Give the new entity the following ports and connections:

• a 1-bit input CLK (connect this to CLK);

• a 1-bit input WEN (connect this to a signal);

• an AWIDTH-bit input WADD (connect this to a signal);

• a DWIDTH-bit input DIN (connect this to a signal);

• a 1-bit input REN (connect this to a signal);

• an AWIDTH-bit input RADD (connect this to a signal); and

• a DWIDTH-bit output DOUT (connect this to a signal).

4. Write a memory module in the new entity. It has the same basic properties as

the one in listing 8.1, but the data and address widths are con�gurable. The

memory depth is as high as possible for the selected address width.

5. In the top entity, instantiate an oversampling UART receiver and a multi-

purpose seven-segment display. Connect them to the memory module in the

following way:

• The �rst byte received over UART is stored at memory address 0, the next

byte at address 1, and so on. After 256 bytes, start over at 0.

• If the button is pushed, the byte from the address selected with the

switches is read back from the memory and displayed on the seven-

segment display.

6. Create a bitstream and test the design on the FPGA.

58 LAB 8. MEMORY

Exercise 2: LIFO

1. Create an entity with the following generics:

• an integer DEPTH; and

• an integer DWIDTH.

Give the new entity the following ports:

• a 1-bit input CLK;

• a 1-bit input WEN;

• a DWIDTH-bit input DIN;

• a 1-bit output DACK;

• a 1-bit output FULL;

• a 1-bit output OVERFLOW;

• a 1-bit input REN;

• a DWIDTH-bit output DOUT;

• a 1-bit output DV;

• a 1-bit output EMPTY; and

• a 1-bit output UNDERFLOW.

2. Write a last in, �rst out (LIFO) memory module in the new entity. This memory

type is also known as a stack: The last element that was written to the memory

is put on top of the stack, and it will be the �rst element that is returned on a

read operation.

Give your LIFO the following features:

• DEPTH sets the maximum number of stored elements and DWIDTH the data

width.

• If WEN is 1 during a clock edge, the data on the DIN port is added to the

stack and DACK goes to 1 for one clock cycle, but only if the stack is not full

(indicated by the FULL �ag). Writing to a full stack leads to the assertion

of the OVERFLOW �ag for one clock cycle.

• If REN is 1 during a clock edge, the data on the top of the stack is output

on the DOUT port and DV goes to 1 for one clock cycle, but only if the stack

is not empty (indicated by the EMPTY �ag). Reading from an empty stack

leads to the assertion of the UNDERFLOW �ag for one clock cycle.

For the calculation of the address counter width, refer to the last part of sec-

tion 3.3.

3. Verify the LIFO’s function by creating a test bench and running a behavioral

simulation. Include the following scenarios in the test bench:

• reading from an empty stack;

• writing to a full stack; and

• simultaneous reading and writing, including cases where the stack is full

or empty.

8.3. LAB INSTRUCTIONS 59

4. Copy the top module from the previous exercise, rename the entity, and replace

the memory module with a LIFO: Bytes received over UART are put on top of

the stack, and a button push gets the top element from the stack and displays it

on the seven-segment display.

Exercise 3 (∗): FIFO

Copy the �les from the previous exercise, rename the entities, and replace the LIFO

with a �rst in, �rst out (FIFO) memory. This memory type is also known as a queue:

The last element that was written to the memory is put at the end of the queue, and

the element at the front of the queue will be the �rst element that is returned on a

read operation.

A FIFO is a bit trickier than a LIFO: You will need to keep track of the position

of the front and the end of the queue, and account for an over�ow of the address

counters in the correct way. Make the same tests (behavioral simulation and UART

bu�er) as for the LIFO.

Lab9

Driving a VGA Monitor

9.1 Learning Goals

• Digital electronics:

◦ VGA

• VHDL:

◦ Memory initialization

9.2 Basics — Digital Electronics

VGA

The Video Graphics Array (VGA) connector on the Nexys2 allows the control of a

monitor. VGA needs at least �ve analog signal wires, plus ground:

• The horizontal synchronization signal (HS) controls the propagation through

the pixels in one line of the display. It goes through four phases:

1. active (HS = 1);

2. front porch (HS = 1);

3. sync pulse (HS = 0); and

4. back porch (HS = 1).

The length of each phase depends on the video mode: the number of horizontal

pixels, vertical pixels, the refresh rate, etc. For example, the active phase has a

length of 640 clock cycles for a display mode with 640 horizontal pixels. One

complete period of the HS signal corresponds to one displayed line.

• The vertical synchronization signal (VS) controls the propagation through the

display lines. It goes through the same phases as HS, but it only advances for

every �nished period of the HS signal, so the phases are much longer. One

complete period of the VS signal corresponds to one displayed frame.

• Three color signals (RED, GREEN, and BLUE) control the intensity of each color

for the pixels. These are analog signals, but they can be varied between a few

61

62 LAB 9. DRIVING A VGA MONITOR

�xed values with voltage dividers on the Nexys2. The color signals are valid

when both HS and VS are in their active phases. They should be 0 if one of HS

or VS is not active.

A nice description of how this works, and about VGA signaling in general, is given

in the Nexys2 Board Reference Manual [2] in the section VGA Port. Please read this

section as preparation for this lab.

9.3 Basics — VHDL

Memory initialization

The example in listing 9.1 shows how to initialize the contents of an inferred memory

block from a �le. It uses some advanced VHDL concepts, like the std.textio package

and a function; you can simply copy this part and use it to initialize your memory

module.

The �le with the initialization data, called init_file.dat in the example, has the

following format:

00000001

00000010

00000100

00001000

00010000

00100000

01000000

10000000

It must contain a line for every element in the memory.

9.4 Lab Instructions

Exercise 1: Solid color

1. Create an entity with the following ports:

• a 1-bit input CLK;

• an 8-bit input vector SW;

• a 1-bit output HS;

• a 1-bit output VS;

• a 3-bit output vector RED;

• a 3-bit output vector GREEN; and

• a 2-bit output vector BLUE.

2. Create constraints that assign these ports to the oscillator, the switches, and

the VGA signals of the Nexys2. (See the the Nexys2 Board Reference Manual

[2] for the VGA pin associations.)

9.4. LAB INSTRUCTIONS 63

Listing 9.1: VHDL model for a 8 × 8 bit RAM initialized from a �le

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use std.textio.all;

entity ram_init is

port (

CLK : in std_logic;

WEN : in std_logic;

REN : in std_logic;

WADD : in std_logic_vector(2 downto 0);

RADD : in std_logic_vector(2 downto 0);

DIN : in std_logic_vector(7 downto 0);

DOUT : out std_logic_vector(7 downto 0)

);

end ram_init;

architecture behavioral of ram_init is

type ram_type is array (0 to 7) of std_logic_vector (7 downto 0);

impure function init_ram (data_file_name : in string) return

ram_type is

file data_file : text is in data_file_name;

variable data_line : line;

variable ram_i : ram_type;

variable bit_word : bit_vector(ram_i(0)'range);

begin

for nline in ram_type'range loop

readline(data_file, data_line);

read(data_line, bit_word);

ram_i(nline) := to_stdlogicvector(bit_word);

end loop;

return ram_i;

end function;

signal ram : ram_type := init_ram("init_file.dat");

begin

process (CLK)

begin

if (CLK'event and CLK = '1') then

if WEN = '1' then

ram(to_integer(unsigned(WADD))) <= DIN;

end if;

if REN = '1' then

DOUT <= ram(to_integer(unsigned(RADD)));

end if;

end if;

end process;

end behavioral;

64 LAB 9. DRIVING A VGA MONITOR

3. Create a timer for generating the horizontal sync signal. Increment the timer

at every other clock edge. Use the timings given in the Nexys2 for a resolution

of 640 × 480 and a pixel clock of 25 MHz. Start with the active phase, followed

by front porch, sync pulse, and back porch.

4. Create a similar timer for the vertical sync signal. Increment the timer at the

onset of the horizontal sync pulse.

5. Outside of the active phases, set the colors to zero. During the display time,

they are controlled by the board’s switches.

6. Create a bitstream and test the design on the FPGA. If you run into problems,

simulate the output from your entity.

Exercise 2: Patterns

Try to create the following patterns on the VGA display:

1. A stripes pattern. (Hint: Use the mod operator.)

2. A checkerboard pattern. (Hint: Use the xor operator.)

3. Circles around the display’s center in alternating colors.

4. An “animated” pattern (e.g., a square or line moving through the display).

5. A pattern with a color rotation.

Exercise 3 (∗): Video memory

1. Create a submodule for a video memory. The memory has 480 × 640 bits that

are initialized from a �le. Each memory bit corresponds to one pixel, so the

picture will be monochrome.

2. Get an initialization �le with picture data from the teaching assistant. Instantiate

the video memory and display its contents on the VGA display.

Exercise 4 (∗): Video data from UART

Fill the video memory with data received over UART. Send a picture from a PC to the

FPGA.

AppendixA

Tutorial: Design Workflow with

Xilinx Tools

A.1 Design Implementation with PlanAhead

This part of the tutorial will guide you through the steps necessary to create a new

FPGA design for the Nexys2 using the Xilinx PlanAhead software and inspect the

synthesis and implementation results. You need access to an installation of the Xilinx

ISE Design Suite.

Creating a new design

1. Open a terminal. Type

planAhead

and press the enter key. A new PlanAhead window should open.

2. Select File > New Project. . . .

3. Click Next.

4. Select a name and location for the project directory. Make sure that Create

project subdirectory is checked. Click Next.

5. Select RTL project. Click Next.

6. Set Target language to VHDL. Click Next.

7. Click Next.

8. Click Next.

9. Select the target FPGA from the part list. Use the available �lters:

• Family: Spartan-3E

• Package: fg320

• Speed grade: -4

65

66 APPENDIX A. TUTORIAL: DESIGN WORKFLOW WITH XILINX TOOLS

The correct FPGA is the one with 9312 LUTs and �ip-�ops. (The exact device

name is xc3s500efg320-4). Click Next.

10. Click Finish.

Adding design sources

1. Select File > Add Sources. . . .

2. Select the type of �le you want to create:

• For VHDL �les, select Add or Create Design Sources.

• For UCF �les, select Add or Create Constraints.

Click Next.

3. Select Create File. . . .

4. In the new window, if you are creating a VHDL �le, set File type to VHDL.

Choose a �le name (without the extension). Set File location to <Local to

Project>. Click OK.

5. Click Finish.

6. If you are creating a VHDL �le, a wizard will appear. The wizard automatically

creates entity and architecture blocks based on I/O port de�nitions. Since we

will write these blocks ourselves, simply click Cancel and Yes here.

The new �les will appear in the Project Manager window under the Sources

pane. VHDL �les are in the Design Sources tree, UCF �les are in the Con-

straints tree. You can open an editor by double-clicking on the �le name.

7. Add your VHDL code and design constraints to the created �les.

Synthesis and netlist schematic

1. Make sure that the correct VHDL �le is selected as the top �le for the project.

Right-click on the correct �le (in the Sources pane of the Project Manager

window) and select Set as Top.

2. Make sure that the correct constraints are activated. By default, PlanAhead

uses constraints from all available UCF �les. Right-click on any UCF �le you

would not like to use and select Disable File. Select Enable File to reactivate

a �le.

3. Select Flow > Run Synthesis.

4. When the synthesis process is �nished, a new window with the text “Synthesis

successfully completed” should pop up. Select Open Synthesized Design

and click OK. (The Device window with an overview of the FPGA die will

open, but it does not contain the whole design yet, since the implementation

processes have not been run.)

5. Click on the top element (marked with a capital N icon) in the Netlist pane of

the Synthesized Design window, then select Tools > Schematic.

A.2. BITSTREAM DOWNLOAD WITH IMPACT 67

6. In the Schematic window you can explore the netlist of your design. For

example, select a LUT by clicking on it in the Schematic window or in the

Primitives tree of the Netlist pane, then open the Truth Table or ROM

Values tab in the Instance Properties pane to view the LUT’s truth table.

You can save the netlist view by right-clicking somewhere in the Schematic

window and selecting Save as PDF File. . . .

Implementation and bitstream generation

1. Make sure that the synthesis is complete and the correct constraints for your

design are enabled.

2. Select Flow > Run Implementation.

3. When the implementation processes are �nished, a new window with the

text “Implementation successfully completed” should pop up. Select Open

Implemented Design and click OK. (When prompted whether Synthesized

Design should be closed, click Yes).

4. In the Device window, you can now explore how the elements from the netlist

were placed in the FPGA. For example, open the Nets and Primitives subtrees

in the Netlist pane by clicking on the circle symbol to their left; then press

Ctrl+A to select all. You should get an impression from the Device window of

how the signals propagate through the FPGA. (You may have to zoom in quite

a lot.)

5. Select Flow > Generate Bitstream.

(When you change something in a source �le and want to create a new bit-

stream, you don’t have to explicitly run synthesis and implementation �rst.

You can simply run Generate Bitstream; PlanAhead will notice that the syn-

thesis results are out-of-date and o�er to automatically rerun synthesis and

implementation before creating the bitstream.)

A.2 Bitstream Download with iMPACT

In this part of the tutorial you will learn how to set up the connection between the

Nexys2 and you PC and download the generated bitstream �le to the FPGA. It is

assumed that you are using a Xilinx Platform Cable USB or Platform Cable USB II.

Hardware set-up

1. Connect the Platform Cable to your PC with a USB cord. The LED should light

up amber.

2. Use the “squid cable” adapter to connect the Platform Cable to the JTAG
1

header

on the Nexys2 board. See table A.1 for the correct mapping.

3. Connect the Nexys2 to your PC with a Mini-USB cable. (We use this connection

only as a power supply.) Make sure the POWER SELECT jumper is set to USB

and the MODE jumper is set to JTAG. Set the POWER switch to ON. The

1
The Joint Test Action Group standard can be used to program, monitor, and debug integrated circuits.

68 APPENDIX A. TUTORIAL: DESIGN WORKFLOW WITH XILINX TOOLS

Header pin JTAG signal Adapter wire color

1 TMS green

2 TDI white

3 TDO purple

4 TCK yellow

5 GND black

6 VREF red

Table A.1: Nexys2 JTAG header pinout

POWER LED on the Nexys2 should light up red, and the LED on the Platform

Cable should turn green.

Bitstream download

1. In PlanAhead, make sure that the bitstream generation is complete.

2. Select Flow > Launch iMPACT. . . .

3. Choose a location and name for the iMPACT project �le. Click Save.

4. Click OK.

5. If everything went right, you should see a JTAG chain in the Boundary Scan

tab: Two icons with a Xilinx logo, representing devices on the Nexys2 that

were detected by the Platform Cable.

One of these devices is the FPGA. To download the bitstream to the FPGA,

right-click on the symbol, choose Program, and click OK.

6. When the FPGA is programmed, the DONE LED on the Nexys2 will light up

amber, and you can test your design. You can leave iMPACT open while making

changes in PlanAhead, and simply reprogram the FPGA after generating a new

bitstream. You only have to restart iMPACT after changing the top module of

your project.

A.3 Simulation with ISim

This part of the tutorial will explain how to create a test bench for a behavioral simu-

lation in PlanAhead, launch the ISim simulator, and examine the resulting waveform.

Creating a test bench �le

1. In PlanAhead, select File > Add Sources. . . .

2. Select Add or Create Simulation Sources. Click Next.

3. Select Create File. . . .

4. In the new window, set File type to VHDL. Choose a �le name (without the

extension). Set File location to <Local to Project>. Click OK.

A.3. SIMULATION WITH ISIM 69

5. Click Finish.

6. To cancel the Define Module wizard, click Cancel, then Yes.

7. The new �le will appear in the Project Manager window under the Sources

pane in the Simulation Sources tree. Right-click on the new �le and select

Set as Top.

8. Add your VHDL test bench code to the created �le.

Launching a behavioral simulation

1. In PlanAhead, select Tools > Simulation > Run Behavioral Simulation

2. In the new window, make sure that Simulation top module name is set to

the entity name of your test bench.

3. Click Launch.

4. If everything worked, a new window with the simulator ISim should open.

Examining simulation results in ISim

1. In ISim, you can �nd a hierarchical tree of your design in the Instances and

Processes window. By selecting an instance, its ports and signals become

available in the Objects window. You can drag any signal you would like to

examine into the waveform window.

2. If not con�gured otherwise, 1 µs of real time is simulated when ISim is started.

In the menu bar, you can set an amount of time for the simulation and click on

the Run button to continue the simulation for that interval. By clicking Run

All, the simulation is continued until it is interrupted by clicking on Break.

Restart lets you start the simulation from the beginning, for example if a new

signal was added to the waveform window.

3. In the waveform window, you can check the simulation results. The time

interval between two events can be measured by placing the two cursors

between them.

AppendixB

Seven-Segment Characters

Table B.1 lists several printable characters (alphanumeric and some punctuation)

along with their ASCII values for upper and lower case. In addition, the d7seg font

from the capbas font collection [1] is given as an example representation of these

characters on a seven-segment display. The values for the CX and DP pins needed to

display these characters on the seven-segment display of the Nexys2 are also listed.

Note that, owing to the small number of elements in seven-segment displays, there is

no distinction between upper case and lower case glyphs in the d7seg font; some of

the glyphs resemble upper case letters, some lower case letters, and a few do not look

very much like either one.

Table B.1: Printable characters with ASCII hex values and an example seven-segment

representation

Character ASCII hex value d7seg font
Upper case Lower case Glyph CG. . .CA DP

! 21 ! 1111101 0

, 2C , 1111111 0

. 2E . 1111111 0

0 30 0 1000000 1

1 31 1 1111001 1

2 32 2 0100100 1

3 33 3 0110000 1

4 34 4 0011001 1

5 35 5 0010010 1

6 36 6 0000010 1

7 37 7 1111000 1

8 38 8 0000000 1

9 39 9 0010000 1

? 3F ? 1111100 0

A 41 61 A 0001000 1

B 42 62 B 0000011 1

C 43 63 C 0100111 1

Continued on next page

71

72 APPENDIX B. SEVEN-SEGMENT CHARACTERS

Table B.1 — Continued from previous page

Character ASCII hex value d7seg font
Upper case Lower case Glyph CG. . .CA DP

D 44 64 D 0100001 1

E 45 65 E 0000110 1

F 46 66 F 0001110 1

G 47 67 G 1000010 1

H 48 68 H 0001001 1

I 49 69 I 1001111 1

J 4A 6A J 1110001 1

K 4B 6B K 0000101 1

L 4C 6C L 1000111 1

M 4D 6D M 0001010 1

N 4E 6E N 1001000 1

O 4F 6F O 0100011 1

P 50 70 P 0001100 1

Q 51 71 Q 0011000 1

R 52 72 R 0101111 1

S 53 73 S 0010010 1

T 54 74 T 0000111 1

U 55 75 U 1000001 1

V 56 76 V 0001101 1

W 57 77 W 0000001 1

X 58 78 X 0101010 1

Y 59 79 Y 1010001 1

Z 5A 7A Z 0100100 1

Bibliography

[1] Phons Bloemen. capbas — capital baseball “matrix printer” font collection. http:

//www.ctan.org/tex-archive/fonts/capbas.

[2] Digilent, Inc. Digilent Nexys2 board reference manual. https://digilentinc.

com/Data/Products/NEXYS2/Nexys2_rm.pdf.

[3] Xilinx, Inc. Spartan-3E FPGA family data sheet. http://www.xilinx.com/

support/documentation/data_sheets/ds312.pdf.

73

http://www.ctan.org/tex-archive/fonts/capbas
http://www.ctan.org/tex-archive/fonts/capbas
https://digilentinc.com/Data/Products/NEXYS2/Nexys2_rm.pdf
https://digilentinc.com/Data/Products/NEXYS2/Nexys2_rm.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf

	Contents
	Nomenclature
	Introduction
	Scope of this Course
	Digital Electronics
	Programmable Logic
	Hardware Description Languages
	Lab Reports

	FPGA Components and VHDL Basics
	Learning Goals
	Basics — Digital Electronics
	Basics — VHDL
	Lab Instructions

	Conditional Assignments
	Learning Goals
	Basics — Digital Electronics
	Basics — VHDL
	Lab Instructions

	Sequential Programming
	Learning Goals
	Basics — Digital Electronics
	Basics — VHDL
	Lab Instructions

	Driving a Seven-Segment Display
	Learning Goals
	Basics — Digital Electronics
	Basics — VHDL
	Lab Instructions

	Finite-State Machines
	Learning Goals
	Basics — Digital Electronics
	Basics — VHDL
	Lab Instructions

	Pulse-Width Modulation
	Learning Goals
	Basics — Digital Electronics
	Basics — VHDL
	Lab Instructions

	UART
	Learning Goals
	Basics — Digital Electronics
	Lab Instructions

	Memory
	Learning Goals
	Basics — VHDL
	Lab Instructions

	Driving a VGA Monitor
	Learning Goals
	Basics — Digital Electronics
	Basics — VHDL
	Lab Instructions

	Tutorial: Design Workflow with Xilinx Tools
	Design Implementation with PlanAhead
	Bitstream Download with iMPACT
	Simulation with ISim

	Seven-Segment Characters
	Bibliography

