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Abstract

In this thesis, a convolutional neural network was trained in the artificial intelligence field of
deep learning, in order to detect patterns created by the cosmological effect known as gravitational
lensing. By doing so, the network is capable of identifying and locating dark matter distributions,
often found to be concentrated within galaxy clusters, in deep field images.
Even though dark matter makes up 85% of the total mass in the universe, it only interacts with
other particles via gravity. Thus laborious lensing and extensive X-ray surveys are necessary to
successfully detect any dark matter accumulation. A trained neural network however, solves this
problem by recognizing even the faintest of structures, while working through large data sets
in little time. The data on which the network is trained and partially validated, is randomly
generated as plots, programmed in python. These illustrations are then dismantled into their
individual pixel values and later imported to the neural network. Based on Keras, the network
uses multiple layers of filters to spot reoccurring arrangements of background galaxies.
It appears that the network performs extremely effective for well lit images, as the binary inputs
hold more lensing features this way. Tasks such as object localization and regression were found
to directly depend on the quality of the pre-processed data.

Keywords

Dark matter, convolutional neural network, computer vision, weak gravity lensing,
galaxy clusters
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Chapter 1

Introduction

Mankind has always been a curious species. Humans themselves however, no more than
clumps of atoms present for only an instant in eternity. And yet generations of humans

have persistently been driven by a pioneering spirit sewn deep into their DNA, to gain knowl-
edge, whilst filling in the blanks. It comes at no surprise, that at the forefront of man’s greatest
intrigue has and always will be the night sky and all the hidden worlds within, that are only ever
revealed when darkness falls upon our horizon. Captured by the sheer magnitude and mystique
of the universe some of the greatest intellectuals to have ever lived dedicated their lives towards
determining our role in the spectrum in relation to what lies beyond.

An indispensable tool for any researcher who tried to further resolve the laws of nature be-
stowed upon us is the natural science of physics. But simultaneously our ever advancing under-
standing has consistently been limited to its technological boundaries. Thus scientific progress
goes hand in hand with technological improvement, as we continue craving to explore worlds either
too small or too large for humans to comprehend in an analytical manor.

A giant leap forward was made in the mid 1940’s as John W. Mauchly and J. Priester Eckert
built the first substantial computer at the University of Pennsylvania called ENIAC (Electrical
Numerical Integrator and Calculator). Since then computers have continuously been improved
and so has our research in regions which we would have never dreamed of exploring a few decades
ago. Today we have reached a point where life without computers would be unimaginable. From
the very basis at which the internet allows humans to connect, all the way up to high performance
computing which we use to solve complex mathematical equations. Whilst doing so we are further
lifting the curtain of ignorance.
Even though manmade machines such as computers help us immensely in looking for answers
to solve the mysteries of the universe, it is not them who are asking the questions. After all,
it takes skills such as perception, reasoning, learning and cognitive response to be able to have
what you might call thoughts or intelligence in general. Fortunately for us the biological neural
network humans use to perform learning tasks on a daily basis can be portrayed in a simplistic
manor with values of 1 and 0 at its very basis. This circumstance serves as the corner stone of
the implementation of so-called AI (Artificial Intelligence).
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The applications for artificial intelligence are endless as it can be applied to almost all sectors
and industries. As technology advances, machines are wired using a cross-disciplinary approach
based on mathematics, computer science, linguistics, psychology, and more. Therefore previous
benchmarks which defined artificial intelligence become outdated. Examples of machines with
artificial intelligence include computers which play chess and self-driving-cars. Each of these
machines must weigh the consequences of any action they take, as each action will impact upon
the end result. In chess, the end result is winning the game. For self-driving cars, the computer
system must account for all external data and compute it to act in a way that prevents a collision.
Naturally scientists have taken to AI as it allows for a whole cluster of new methods on uncovering
even the most remote and inaccessible data sets to date.

Apart from making new discoveries with this technology many researchers are also drawn to
lifting questions that remain unresolved thus far. One example is dark matter, or "matière ob-
scure" in French, as called by Henri Poincaré in 1906. The late 19th century already features
first talks on dark bodies in the milky way derived from the orbital mechanics of stars circling
the centre of our galaxy. Without the necessary technological advances at hand throughout the
20th century, dark matter has mostly remained a mystery. As the picture of dark matter becomes
clearer with time, humanity hopes to further understand its complexity and put it in place with
the other wonders of the universe.
At the beginning of the millennium more insight regarding dark matter was won, when examining
the galaxy cluster 1E 0657- 56, also known as the “Bullet Cluster”. This cluster was formed after
the collision of two large clusters of galaxies, the most energetic event known in the Universe since
the Big Bang. The concentration of mass is determined using the effect of so-called gravitational
lensing, where by light from distant objects is distorted by intervening matter. After studying
visual images of the bullet cluster and calculating the space curvature based on Newtons laws of
gravity direct evidence was given that nearly all of the matter in the clusters is dark.

This thesis is devoted to training an artificial intelligence system by means of image recognition
with diffraction patterns. The aim is for the artificial neural network to make reliable estimations
regarding location and mass of dark matter accumulation in space based on the input data alone.
By doing so a first step can be taken towards tangible analysis of dark matter within our universe
and thus ultimately resulting in a better overall understanding.

All necessary physical problems and fundamentals will be addressed at a commensurate level
at the beginning of the thesis. Afterwards the set up and implementation as well as the mode of
operation of the AI will be explained thoroughly. Following the presentation of the experimental
data concluding results will be evaluated. Lastly an outlook in regard of the recently acquired
knowledge concerning dark matter distribution and its relation to the laws of theoretical physics
will be projected.
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Chapter 2

Physical basics

The physical problems addressed in this thesis are introduced in this chapter. First, the
principles of gravity and relativity in the frame of the universe and the accompanying

curvature of space-time are explained. Also, exploited effects such as light diffraction are discussed
in the context of gravitational lensing.

2.1 Newtonian gravity

The beginning of modern mathematical physics can be dated back to the 5th July 1687,
when Isaac Newton published the “Philosophiæ Naturalis Principia Mathematica” often referred
to as simply the “Principia” [1]. Among other assumptions and axioms it comprises of his laws of
motion and universal gravity. The latter is demonstrated to be a mathematical model which can be
applied to explain or predict the behaviour of all objects in the universe by a single mathematical
equation:

~F g(~r) = G · m1 ·m2
~r2

(2.1)

This equation obviously states that the gravitational force between two objects can be calculated
by inserting their individual masses, relative distance to one another and then multiplying by G,
which encodes the strength of the gravitational force itself. The so-called Newtonian constant is
a fundamental property of the universe.
Today it can be measured at G = (6.6726 ±0.0005) x 10-8 cm

3
gs2

which indirectly points out how
weak of a force gravity is. This is partially the reason why G was first measured 71 years after
Newton’s death by Henry Cavendish in 1798.
Newton’s laws are the key to understanding basic mechanics in the universe. They allow for the
scale and geometry of the universe to be deduced. Also the orbital positions of celestial bodies
can be calculated at any point in the future. Newton discovered his law of gravity by looking
for a simple equation that could describe the apparent complexity of the motions of the planets
around the sun. Keplers three empirical laws of planetary motion form the basis as they can be
derived from Newton’s law of gravity and his laws of motion. His was the first truly universal law
of nature to be discovered.
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2.2 General relativity

Newtonian cosmology is based on several assumptions which are summarized in the cosmolog-
ical principle:

• the universe shows a Euclidean structure

• gravity is the only force in the universe

• the universe is filled with matter uniformly to infinite distances

• the universe is consistently homogeneous and isotope

• no point is of preference

However this model does not add up mathematically if one assumes that space is infinitely
and uniformly filled with bodies that attract each other as undefined present gravitational forces
exercise considerable movement [1]. This instability indicates that Newton’s law of gravitation
can therefore only be applied if all matter is continuously in motion. This is also known as the
gravitational paradox 1.
Based on this; Harlow Shapley published the first of a series of papers that refined the method
used to calculate distances to the stars beyond our solar system established by Danish astronomer
Ejnar Hertzsprung in 1915. Amongst other things this led him to the first measurement of the
size and shape of the Milky Way. Today we know that we live on a disk of stars, spreading 100
000 light years across; with the sun 25 000 lightyears from its centre [2]. Great progress had been
made. But from a physicists perspective there is no doubt that physics experienced a revolution in
1915, because in the November of that year Albert Einstein presented a new theory of gravity to
the Prussian Academy of Science. The theory is known as General Relativity (GR) and it replaces
Newton’s law of universal gravitation. Many physicists regard GR as the most beautiful piece of
physics yet devised by the human mind. The parallels are clear. Without Newton there would be
no fundamental understanding of relating orbital mechanics, whilst without Einstein there would
be no proper comprehension of the structure and behaviour of the universe.

2.2 General relativity

Einstein is most famous for his equation E = mc2. The equivalence of mass and energy also
clarifies the assumption that energy densities can be viewed as sources of gravitational fields. Since
these are not linear, it is not surprising that both the special relativity theory published in 1905
and the differential equations of the GR are of non-linear character. At the heart of the theory
is a very simple assumption that dates back all the way to Galileo. Put simply, there is no way
one can tell whether one is moving or not. As long as there is no external force applied causing
one to accelerate, the right of claiming to be “at rest” can be taken up at all times. However the
all conquering Universal Law of Gravitation did not fit within the framework of special relativity.
Therefore modifications were necessary. Described by Einstein as “glücklichster Gedanke meines
Lebens”, the happiest thought of my life, it occurred to him that the gravitational field has only a

1
H.v. Seeliger, 1895
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Chapter 2. Physical basics

relative existence. In a way it is similar to the electric field generated by induction. As for an ob-
server who is free falling, there exists no gravitational field at least in his immediate surroundings.
With Newton’s apple falling from a tree one might conclude that in Einsteins universe; Newton
as well as the planet beneath his feet are conversely moving upwards to meet the falling apple [1].
Published in 1916 Einsteins theory of GR replaced the force of gravity with geometry and his
four-dimensional space-time continuum of non-Euclidean form, also known as Riemannien geom-
etry 2, in particular, the curvature of space and time.
The deviations of the Euclidean form are due to the distribution and movement of gravitational
masses in space. The deviation from the Euclidean view is measured by the radius of curvature.
The shortest connection between two points in space is then no longer just a straight line, but
a so-called geodesic line, the course of which depends on the metric structure of the point under
consideration. Two parallel lines on the surface of a sphere for example move ever closer as they
continue to be projected. This is how geometry can lead to the appearance of a force. Einstein’s
theory of gravity allows one to calculate how space and time are curved by the presence of matter
and energy and how objects move across the curved spacetime. Spacetime is often described as
the fabric of the universe [3]. Massive objects such as stars and planets tell the fabric how to
curve and the fabric tells the objects how to move. This is the GR equivalent of Newton’s first
law of motion - every body continues in a state of rest or uniform motion in a straight line unless
acted upon by a force.

Figure 2.1: Illustration of a straight line conversion to a geodesic for triangles with a deviating sum
of angles for Euclidean, Spherical and Hyperbolical geometries. Image credit: Janus Cosmological

Earth for example orbits around the sun is a straight line in spacetime curved by the presence
of the sun. Naturally Earth continues to follow this straight line, because there is no external
force to suggest an alternation. This is the opposite of the newtonian description, in which the
earth were to move through space in a straight line, if it wasn’t for the sun’s gravitational force.
The lines themselves appear curved to bystanders for the simple reason that the space upon which
the straight lines are pictured is curved itself. However there is more to Einsteins GR than just
the description of orbits. GR is fundamentally different to Newton’s law because is doesn’t simply
provide a model for the action of gravity, rather, it provides an explanation for the existence of
the gravitational force itself in terms of the curvature of space-time.

2
Named after the german mathematician Bernhard Riemann
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2.2 General relativity

2.2.1 Einstein field equations

Newton’s universal theory of gravitation determines the gravitational potential of a body with
mass M to be:

�(~r) =
GM

~r
(2.2)

In general, the peculiarities of the general theory of relativity have to be taken into account if the

gravitational energy becomes comparable to the self-energy [4]. Einstein’s relativistic field theory
thus includes Newton’s theory of gravity as a borderline case. In order to clarify this better,
Newton’s law of motion, which is known to be

mi
d

2
~ri

dt2
= �G

mimj(~ri � ~rj)

|~ri � ~rj|3
(2.3)

features conic sections as solutions of this equation of motion [5]. They can for example describe

bound or unbound orbits. However, the speed of light is so large that it exceeds the escape
velocity. Thus, the resulting orbit will be an hyperbolic orbit. Alternatively it can also be written
in the form of

ri
2�ij(~ri) = 4⇡G⇢j(~ri) (2.4)

mi
d

2
~ri

dt2
= �miri�ij(~ri) (2.5)

where the gravitational potential results from the mass density used within the Poisson equa-
tion. In this way, the gravitational force is determined directly from the gravitational potential
of the associated mass distribution. The relation regarding gravity made by Einstein is best de-
scribed by his well known field equations, a system of ten coupled, nonlinear, hyperbolic-elliptical
differential equations for the metric tensor gµ⌫ . It can be seen as the relativistic generalization of
Newton’s gravitational potential:

Gµ⌫ ⌘ Rµ⌫ �
1

2
Rgµ⌫ =

G8⇡

c4
Tµ⌫ (2.6)

Formula without the cosmological constant term ⇤gµ⌫ for reasons of simplicity

The right hand side describes the distribution of matter and energy in some region of space-time
and the left hand side describes the shape of space-time as a result of the matter and energy
distribution. With given matter distribution, Einsteins equations allow calculations as to what
space-time looks like. Within the framework of GR, the equation of motion of a particle with
the trajectory parameterized by "u" in the gravitational field, is formulated as

d
2
x
�

du2 = ��µ⌫
dx

µ

du

dx
⌫

du
(2.7)
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Chapter 2. Physical basics

With:

• Christoffel-symbol �µ⌫

• Ricci-tensor Rµ⌫

• Energy-impuls-tensor Tµ⌫

In the context of this bachelor’s thesis, the mathematical operators of these equations will not
further be discussed. The borderline case for newtonian calculations is found to be at

g00 ⇡ �1� 2�

c2
(2.8)

In other words, Newton’s approximation can only be used if 2�
c2

«1, meaning that essentially it
depends on the relationship between

2|�|
c2

⇡

8
>>>>>><

>>>>>>:

10-4 earth

4 · 10-6 sun

3 · 10-4 white dwarf

0.3 neutron star

(2.9)

Generally, a check of the potential � being much smaller than c
2
2 is sufficient. This clearly

implicates that Newton’s laws can be used for most calculations but denser objects create space
curvature which can only be described in a relativistic manor. Central to the exploration of
motion has been the idea of a reference frame.

Figure 2.2: The fabric of curved space exercising an apparent force on a mass. Credit: Now.de.
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2.3 Diffraction - the approximation of scalar waves

The idea is that it is impossible to work out which inertial reference frame one is in, as they are
all absolute equivalent. The statement that all inertial reference frames are equal is one of
symmetry. Symmetry in maths and physics means doing something with the result staying the
same. So when observing motion in an inertial reference frame of Newtons laws of gravity, and
then changing the frame the symmetry in Newtons law allows for one to still make proper
calculations. However the change of the reference system must be recognised. This means that
Newton’s laws are invariant under “Galileon Transformations” [6]. However this varies when the
inertial system is changed into a rotating or accelerated reference system. Accompanied by
fictitious forces the newtonian laws are now no longer invariant. According to the general
principle of relativity, inertial forces are in principle indistinguishable from gravitational forces.
This is also given by the equivalence of gravitational and inert masses. This is partly seen as the
major reason why Einstein replaced Newton’s law of gravity with his theory of GR. Even though
Einstein’s theory of GR has an array of important implications in astrophysical cosmology such
as:

• the existence of black holes - borderline cases of space-time distortion - as an end state for
massive stars

• the prediction of gravitational waves

• the expansion of the universe as one and, in contrary, its beginning, also known as Big
Bang

This thesis will focus only on the diffraction of light due to gravity which can lead to a
phenomenon known as gravitational lensing, in which multiple images of the same distant
astronomical objects are visible in the sky.

2.3 Diffraction - the approximation of scalar waves

The effect given by the wave nature of light explained in the following, ensures that light deviates
from its direction of movement as long as it spreads in a homogeneous and isotope medium when
it passes an obstacle or through an opening [7]. As a result, light does not spread in a straight
line, but can also be seen where, according to the laws of geometric optics, there should be a
shadow. The so-called Huygens-Fresnel principle provides an explanation. Put simply, the waves
intersect because each point of a wave front serves as a center of a new elementary wave.

• Frenetic zones

According to a suggestion made by Fresnel in the early 19th century, all waves
superimposed on a spatial point can be characterized as sources of concentric circles on a
wavefront. The waves emanating from a Fresnel zone have path differences smaller than �

2 .
This means that destructive interference does not occur when two waves superpose [8].
However, for each center of a zone there is a center either in the half adjoining outside or
half adjoining inside in such a way that they extinguish each other with path differences at

8



Chapter 2. Physical basics

exactly �

2 . An exception to this rule only applies to the first half and last half.
This ultimately results in only the maxima being visible as the remaining waves cancel
each other out. The area taken up by the zones can be calculated as:

An = ⇡na� (2.10)

With the help of this formula, the first frenetic zone can be calculated - and from this the
maximum deflection of the light.

✓ = arctan
1p
2

p
a� (2.11)

Figure 2.3: Fresnel zones and reconstruction of a transmissionhologram. Credit: KIT.

The Fresnel approach is transferred to Fraunhofer diffraction if the distance between the
exciter and the object is large compared to the size of the object. In this approach plane
waves meet the diffraction object. Therefore, only Fraunhofer diffraction will be considered
in the following.

2.3.1 Fermat’s principle

As previously established, the consideration of curved spacetime and the use of geodesics need
only be used to correctly describe the present metric, if the Newtonian gravitational potential �
or the relative velocity v have large proportions in relation to c. Under such conditions,
gravitational lensing can be described by a small perturbation of the locally Minkowskian
space-time of an observer co-moving with the gravitational lens [12]. The Minkowski metric of
special relativity, expressed by its line element can be described by the simplified
Friedmann-Robertson-Walker metric:

ds
2 =

3X

i=0

3X

j=0

dxidxjgij = �c
2
✓
1 +

2�

c2

◆
dt

2 +

✓
1� 2�

c2

◆
d~x

2 (2.12)

It turns out that light deflection can equivalently be described by Fermat’s principle, as in
geometrical optics.
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2.3 Diffraction - the approximation of scalar waves

Fermat’s principle states that the path taken by a ray between two given points is the path that
can be traversed in the least time. In order to be true in all cases, this statement must be
weakened by replacing the "least" time with a time that is "stationary" with respect to
variations of the path.

Figure 2.4: Light refraction as perceived for medium crossing rays. Credit: Wikipedia.

The speed of light in a medium with refractive index n is c/n, where c is its speed in a vacuum.
Thus, the time required for light to go some distance in such a medium is n times the time light
takes to go the same distance in a vacuum.
With the propagation condition for light, ds=0, this expression can be rearranged to find the
effective light speed in a weak gravitational field

c
0 =

���
dx

dt

���= c

✓
1 +

2�

c2

◆
(2.13)

Introducing the index of refraction n by the conventional definition c=c/n, we see that a weak
gravitational field has the effective index of refraction

n =
c
0

c
= 1� 2�

c2
(2.14)

As such a light ray geodesic ranging from two points A to B can be written as

Z
B

A

n[~x(l)]dl (2.15)

Furthermore n accounts for the eigentime ds to proportional resulting in the light path

�⌧ = �

Z
B

A

c

n
dt = 0 (2.16)

The variation of ⌧ with respect to the light path leads to the deflection angle

↵̂ =
2

c2

Z
�B

�A

~r?�d� =
4GM

Rc2
(2.17)

which is the gradient of the dimension-less Newtonian potential perpendicular to the light ray,
integrated along the light ray and multiplied by two. Since the speed of the light is reduced in
the gravitational field, c = c/n, the travel time (along the perturbed path) increases.
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Chapter 2. Physical basics

This is the so-called Shapiro delay.3

4t =

Z
dl

c0
�
Z
dl

c
=

Z
(n� 1)dl = � 2

c3

Z
�dl (2.18)

2.4 Gravity lensing

As early as 1911, Einstein pursued his assumption of light deflection in the curvature of space
caused by massive astronomical objects. He recognized, that due to the principle of equivalence,
the trajectory of photons in a gravitational field must also be curved [10]. According to the
well-known Einstein energy-mass relation, a mass can be assigned to the photon of energy
E = h⌫. If photons possess a mass, they must also be able to be influenced by gravitational
fields.

E = mphc
2 = h⌫ ) mph =

h⌫

c2
(2.19)

A deflection of photons moving on null-geodesics should be observable, especially when passing
the sun. He published a version of what later would become the theory of the GR: “About the
influence of gravity on the propagation of light4. In this manuscript he predicts a deflection of
0.85 arcseconds. In the final version in 1916, the value doubled to 1.75 arcseconds. Previously,
the calculations had been made without the effects of the curvature of space and the shift in
time for reference systems specific observers, causing twice the deflection to occur.

Figure 2.5: Light diffraction as perceived on earth due to space distortion caused by large astro-
nomical objects. Credit: Forbes.com

It must be taken into account that the light also moves in time, so that there is actually a
curvature of space-time and not a pure curvature of the three-dimensional space. For this
purpose, the relative deviation of photons travelling at the speed of light with respect to the
change in the gravitational potential, depending on the absolute distance, can be integrated over
the angular space of 180°.

3
Shapiro, 1964

4
Ann. Phys. 35 (1911), s. 895
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2.4 Gravity lensing

Figure 2.6: Illustration of geometric perception of the diffraction angle. Credit: [4]

The factors of space curvature and time shift, which are summarized as �, also influence this
relationship [11]. For particles without resting-mass, � was determined to have the value � = 1 .
The final diffraction can be calculated using the Schwarzschild-radius rs:

↵̂(⇠min) = 2(� + 1) · GM

c2⇠min
=

2rs

⇠min
(2.20)

mass(M�) size(pc) ↵(arcsec)

Sun 1 10-7 1
Galaxy 1011 104 10

Galaxy cluster 1014 105 100

Table 2.1: Comparison of angular diffraction for objects of different mass.

This approach also provides an explanation for light deflection, which can be interpreted as a
kind of refraction. These predictions were experimentally confirmed a few years later when the
astronomers Eddington and Sobral compared photo plates with images of fixed stars during a
solar eclipse on 29th May, 1919 with those previously recorded at night.

Figure 2.7: Scheme of a typical lensing system. Credit: Bartelmann & Schneider, 2001
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Chapter 2. Physical basics

If ~✓, ~�, and ~↵ are small, the true and the observed position of the source are linked by a simple
equation:

~✓Ds = ~�Ds + ~↵Dds (2.21)

The apparent local distortion of a fixed star in the night sky, caused by the curvature of the light
rays around an object rich in mass striking the observer, only includes a simplistic
representation of what is otherwise known as gravitational lensing [12] [13] [14].
As can be seen in formula 2.13 a gravitational lens produces a maximum deflection of light that
passes closest to its center, and a minimum deflection of light which travels furthest from its
center. Therefore, unlike an optical lens, a gravitational lens has no single focal point, but a
focal line. Solely depending on the gravitational potential at hand, lensing effects can be
categorised into two main classes.

2.4.1 Strong lensing

If the source, the massive lensing object, and the observer lie in a straight line, the original light
source will appear as a ring around the massive lensing object, also known as the Einstein Ring.
More commonly, where the lensing mass is complex such as a galaxy cluster and does not cause
a spherical distortion of spacetime, the source will resemble partial arcs scattered around the
lens. The observer may then see multiple distorted images of the same source - also known as
the Einstein cross -; the number and shape of these depending upon the relative positions of the
source, lens, and observer. This relation, as can be seen in 2.9, can be derived from the lens
equation

� = ✓ � ✓E
2 ✓

|✓|2 (2.22)

↵(✓) =
4GM

c2
Dds
DdDs

✓

|✓|2 (2.23)

✓E =

r
4GM

c2
Dds
DdDs

(2.24)

Generally, the strong lensing effect requires the projected lens mass density to be greater than
the critical density

X

cr

=
c
2

4G⇡

Ds

DdsDd
= 0.35

g

cm

✓
DdsDd
Ds

1

Gpc

◆
-1 (2.25)

When multiple images appear, they tend to hover around the Einstein radius. This correlation
can be used to estimate the mass of the galaxy or even a galaxy cluster since the mean surface
mass density inside the Einstein radius equals the critical mean density [15].

h
X

(✓arc)i ⇡ h
X

(✓E)i =
X

cr

(2.26)

M(✓) =
X

cr

⇡(Dd✓)
2 (2.27)
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2.4 Gravity lensing

Figure 2.8: Einstein Ring captured by the Hubble Space Telescope. Credit: NASA

Figure 2.9: Einstein Cross caused by off centered light sources in the background. Credit: Wikipedia

2.4.2 Weak lensing

Even though it is well established that any presence of mass bends the path of light, this effect
does not portrait itself by producing giant arcs and other phenomena as associated with strong
lensing. In fact, the majority of lensing incidents are within the weak lensing regime. Regardless
of the fact that it is impossible to detect deflection in the order of 10% in a single background
source, the presence of the foreground mass can be detected, by systematical alignment of
background sources around the lensing mass. Thus this method is intrinsically statistical for
preferred stretching of the background objects, perpendicular to the direction towards the centre
of the lens. To measure this tangential alignment, it is necessary to measure the ellipticities of
the background galaxies and construct a statistical estimate of their systematic alignment. The
fundamental problem is that galaxies are not intrinsically circular, so their measured ellipticity is
a combination of their intrinsic ellipticity and the gravitational lensing influence. The
measurements of many background galaxies must be combined to average down this "shape
noise”. As the orientation of galaxies is considered to be entirely random, any systematic
alignment between multiple galaxies can generally assumed to be caused by lensing. This
coordinate transformation of the background objects can be split into two terms, the
convergence and shear [16].

An extended distribution of matter is characterized by its effective lensing potential, obtained by
projecting the three-dimensional Newtonian potential on the lens plane and by properly
rescaling it:

 (~✓) =
Dds
DsDd

2

c2

Z
�(Dd~✓, z)dz (2.28)

This lensing potential satisfies the two important properties of

~r✓ (~✓) = ~↵(~✓) (2.29)

4✓ (~✓) = 2(~✓) = �11 + �22 (2.30)
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with
P

(~✓)
X

(~✓) =

Z
⇢(~⇠, z)dz =

1

4G⇡

Z
4�dz (2.31)

and the convergence  defined as:

(~✓) =

P
(~✓)P
cr

=
1

c2
DdDds
Ds

Z
4�dz (2.32)

Figure 2.10: Lensed and unlensed images under the influence of shape noise. Credit: Wikipedia

Figure 2.11: Influence of weak lensing for convergence and shear. Credit: Marko Shuntov

The convergence magnifies the background objects by increasing their size and luminosity, while
conserving surface brightness. A mass distribution with a fixed surface-mass density

P
can thus

be a more or less efficient gravitational lens, depending on the overall extent of the lens system
composed of observer, source, lens and depending on where the lens is located along the
line-of-sight. Lensing is most efficient where the critical surface-mass density

P
cr

is minimal. In
Euclidean space, this would be half-way between the observer and the source. In the curved
space-time of the Universe, the location of maximal lensing sensitivity is somewhat closer in
redshift to the observer. One of the main features of gravitational lensing is the distortion which
it introduces into the shape of the sources. For example, background galaxies can appear as very
long arcs in galaxy clusters. The distortion arises because light bundles are deflected
differentially. Ideally the shape of the images can be determined by solving the lens equation:

~� = ~✓ � ~r~ (2.33)

In particular, if the source is much smaller than the angular size on which the physical
properties of the lens change, the relation between source and image positions can locally be
linearized. Then, the corresponding angular distance of the image point can be approximated by
a first-order Taylor expansion of the lens equation with A as the Jacobian matrix of the
linearized lens mapping.

�~� ⇡ A�~✓ (2.34)
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2.4 Gravity lensing

It has the components

Aij =
��i

�✓j
= �ij �

�
2 (~x)

�xi�xj
with

�
2 (~x)

�xi�xj
=  ij (2.35)

For the physical interpretation of the Jacobi matrix A, it is convenient and instructive to split A
into an isotropic and an anisotropic, trace-free part by taking the trace,

trA = 2� ~r2~ = 2(1� ) (2.36)

and subtracting it from A by means of the unit matrix I to obtain the shear matrix

� := �
✓
A� 1

2
(trA)I

◆
ij =

 
�1

2( 11 � 22) � 12

� 21
1
2( 11 � 22)

!
(2.37)

with the components

�11 =: �1 =
1

2
( 11 � 22) , �22 = ��1 , �12 = �21 =: �2 =  12 (2.38)

Thus, there exists a so-called shear matrix describing a coordinate rotation where ' is the angle
between ↵ and the x-axis. The factor 2 is due to the 2x2 tensor format.

 
�1 �2

�2 ��1

!
= �

 
cos2' sin2'

sin2' �cos2'

!
(2.39)

The shear can be written in complex form:

� = �1 + i�2 = |�|e2i' =
p
�12 + �22 (2.40)

The amplitude describes the amount of distortion, and the phase indicates the distortion
direction. We can also define a tangential and a cross component relative to the direction ':

�t = �Re[�-2i'], �⇥ = �Im[�-2i'] (2.41)

where the factor 2 again implies that the shear is not a vector but a tensor defined by the
trace-free part of the symmetric Jacobian matrix A.

Figure 2.12: Illustration of the tangential and cross components of the shear, measured with respect
to the reference point ✓r at the center of the image. Left: �⇥ = 0 and �t = 1 (outer ellipses),�t = -1
(inner ellipses). Right: �t = 0 and �⇥ = -1 (outer ellipses), �⇥ = 1 (inner ellipses). Credit: [18]
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In this case, in fact, the shear will be always positive and oriented tangentially respect to the
center of symmetry, while the cross component will always be null [17].
These manipulations leave the Jacobi matrix in the form

A = (1� )I � � =

 
1� � �1 ��2

��2 1� + �1

!
(2.42)

The inverse Jacobi matrix determines how sources are mapped on images as linear lens mapping
for weak gravitational lensing is invertible

A
-1 =

1

detA

 
1� + �1 ��2

��2 1� � �1

!
(2.43)

The prefactor in this expression indicates that the solid angle spanned by the image is changed
compared to the solid angle covered by the source by the magnification factor

µ = detM =
1

detA
=

1

(1� )2 � �2 ⇡ 1 + 2 (2.44)

Thus, in weak lensing, the magnification of an image is essentially (i.e. to the first Taylor order)
determined by the convergence , not by the shear �. The distortion induced by the convergence
is isotropic, i.e. the images are only rescaled by a constant factor in all directions. On the other
hand, the shear stretches the intrinsic shape of the source along one distinctive direction. For
this reason, a circular source, which is small enough compared to the scale of the lens, like that
shown in 2.11 is mapped into an ellipse with the properties

✏(~✓) =
a� b

a+ b
=

2�(~✓)

2(1� )
⇡ �(~✓), with a =

r

1� � �
, b =

r

1� + �
(2.45)

Galaxy clusters are the largest gravitationally bound structures in the Universe. When assuming
an Einasto profile5 of mass density for spherical stellar systems, the strength of the tangential
shearing caused by foreground matter can be calculated by creating a magnification map.

Figure 2.13: Reconstruction of dark matter distribution in the Universe. Credit: Scienceblogs.com

Figure 2.14: Weak lensing recording. Credit: Caltech.edu

5
https://arxiv.org/pdf/1610.04620.pdf
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2.4 Gravity lensing

The fact that galaxy clusters are scattered throughout the universe allows for lensing and
magnification of the cosmic shear, as can be seen in figure 2.14. By methods of inversion and ray
tracing galaxy-galaxy lensing enables deeper insight ultimately culminating in a view of the
Universe many billion years ago. As 80% of a galaxies mass is in the form of dark matter, lensing
methods can also be usefull in the exploration and detection of such uncharted accumulations.
Abell 1689, CL0024+17, and the Bullet Cluster are among the most prominent examples of
lensing clusters. Lensing mass maps can also potentially reveal "dark clusters", containing
overdense concentrations of dark matter while providing constraints on models such as MOND. 6

• Mircolensing

Smaller objects, like individual stars, can also act as gravitational lenses when they pass in
front of more distant stars. For a few days or weeks, light from the more distant star
temporarily appears brighter because it is magnified by the gravity of the closer object.
Distortion itself can not be seen, whereas the amount of light received from a background
object changes in time. The effect is small, such that in the case of strong lensing even a
galaxy with a mass of more than 100 billion times that of the Sun will produce multiple
images separated by only a few arcseconds. Galaxy clusters can produce separations of
several arcminutes. In both cases the galaxies and sources are quite distant, many
hundreds of megaparsecs away from our Galaxy [19]. Unlike with strong and weak lensing,
no single observation can establish that microlensing is occurring. Instead, the rise and fall
of the source brightness must be monitored over time using photometry. This function of
brightness versus time is known as a light curve. A typical microlensing light curve is
shown below:

Figure 2.15: Micro-magnifications measured for stars in orbit around an object of a very large
mass. Also known as "Transit method" when observing Exoplanets. Credit: OGLE

Thus mapping the Universe in higher event definition, modified microlensing also serves as
a efficient and succesfull method when searching for exoplanets.

6
Modified Newtonian Mechanics
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Chapter 3

Cosmological properties

The physical universe encompasses all of spacetime and its contents. Such contents are
defined as all of the observable energy. This includes planets, stars, intergalactic dust and

even electromagnetic radiation.
Until about thirty years ago, astronomers thought that the universe was composed almost
entirely of ordinary atoms. However, in the past few decades, there has been ever more evidence
accumulating that suggests there is some new form of matter in the universe which we can not
see. This fact calls into question the previous understanding of the universe and accordingly
requires a comprehensive examination of the individual categories and presentation of their
relative distribution among one another, taking into account the latest discoveries. For this
reason, the elementary components of the known universe, as well as newly acquired hypotheses
will be presented in this chapter.

3.1 Baryonic matter

For the simple reason that most of the mass of an atom is concentrated in its nucleus,
which is made up of baryons, astronomers often use the term baryonic matter to describe

so-called ordinary matter. This ordinary matter includes all accumulations of mass visible to
mankind, meaning the definition is based on electromagnetic interactions. As a matter of fact,
the great majority of ordinary matter in the universe is unseen, since visible stars and gas inside
galaxies and clusters account for less than 10 % of the ordinary matter contribution to the
mass-energy density of the universe. Ordinary matter commonly exists in four states: solid,
liquid, gas, and plasma and is composed of two types of elementary particles: quarks and
leptons. Protons and neutrons are both made up of quarks, where as electrons are categorised
among the lightweight leptons [20] [21].
In astronomical length scales, gravity is the dominant fundamental interaction as its effects are
cumulative, unlike electromagnetism (EM), where positive and negative charges cancel each
other out. As the two remaining interactions, the weak and the strong nuclear forces decline
very rapidly with distance, their effects are confined mainly to sub-atomic length scales. As
baryons consist of quarks, they succumb to all of the forces mentioned above, excluding EM if
not charged.
All known particles are officially categorized into groups of the same attributes using the
so-called standard model of particle physics.
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3.1 Baryonic matter

Figure 3.1: Standard Model of Particle Physics. Credit: Wikipedia

This model lists all so-far experimentally confirmed existing particles which compose
matter. These are grouped in fermions and bosons, based on their spin. Furthermore

fermions can be split into two collections, quarks and leptons, according to their electromagnetic
charge. Within each collection the particles are ranked from left to right in mass. Corresponding
“antimatter” partners as well as the force particles which mediate interactions by energy
transferring are also listed. Such mediation particles, in particular the mass they carry, become
significant when comparing the sum of a quark arrangement with the mass of the corresponding
nucleus. Mediation particles are photons (�) for electromagnetic interactions, gluon (g) for
strong interaction and the gauge bosons Z0, W-,W+ for weak interaction. However, the cause of
the existence of the interactions could be traced back to the ambivalent symmetries. Due to this,
particles of matter maintain a consistent appearance at all times and in all places.
The standard model does not, however, accommodate gravity. A true force particle has not yet
been attained. It can therefore not be a complete description of particle physics. As previously
mentioned, other recent discoveries regarding phenomena such as dark matter indications
demand for the model to be updated. Suitable candidates for particles that make up dark
matter are supersymmetric particles.
Overall the universe appears to have much more matter than antimatter. This occurrence, also
known as baryon asymmetry, is one of the most important phenomena of particle physics not yet
understood, since it cannot be explained by the standard model of elementary physics. This
imbalance between matter and antimatter is partially responsible for the existence of all matter
existing today, since matter and antimatter, if equally produced at the Big Bang, would have
completely annihilated each other and left only photons as a result of their interaction.
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Chapter 3. Cosmological properties

3.2 Dark Matter

Based on the studies of the observable galaxies, the discovery has been made that
the universe contains much more matter than initially thought to be accounted for by the

previously explained ordinary objects. A wide range of strong indirect evidence exists, which
suggests that additional material, not explained within the frame of the standard model, lies
scattered all over the universe. Today it is well established that dark matter makes up about
26% of the energy density of the Universe, while also being about six times more abundant than
ordinary matter [22]. The fundamental nature of such hypothetical matter, however, remains
one of the greatest mysteries in modern astrophysics, as it neither emits nor absorbs light and
therefore can not be detected directly. Unveiling which particle accounts for the majority of the
matter in the Universe is an open question at the interface of particle physics and cosmology.
Reasoning to defend the hypothesis may be derived from its gravitational effects on visible
matter and all encompassing structures throughout the Universe [23]. Some of the experimental
facts that support the idea of dark matter are shown in fig3.2 and will be briefly discussed in the
following.

Evidences

Structure formation

Galaxy rotation curves
CMB

Cluster colisions

for

DarkMatter

Figure 3.2: Some of the most important evidences for Dark Matter.

3.2.1 Galaxy rotation curves

Throughout space, astrophysical objects of all sizes swirl and orbit. To keep these objects
tightly bound together, the gravitational pull felt by an object must be strong enough to

balance the energy it has due to its motion. The rotation curve of a Galaxy (cluster) is the
profile of the circular velocity of the stars (galaxies) around the mass center of the system. Such
profile allows to calculate the mass distribution of the galaxy (cluster) at hand. Historically, the
relation between the mass distribution and the rotation curve was first proposed by Fritz Zwicky
in 1933. He analyzed the velocity dispersion of the galaxies in the Coma cluster, assuming that
the outer galaxies were in circular motion around its mass center. He applied the virial theorem1

to the Coma cluster, in order to estimate its mass and found that roughly 800 galaxies should
exhibit velocities of 80 km/h, however, the observed velocity dispersion was approximately 1000
km/h [24].

1
an equation which relates the average kinetic energy of a system to its total potential energy
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3.2 Dark Matter

He found that the mass from the luminous matter was not enough to keep the cluster bound,
and was several times smaller than the inferred gravitational mass.

Figure 3.3: Observed velocities versus distance from the center of galaxy NGC 3198. The theoretical
prediction before observations followed the trend labeled “disk”, but observations (black squares)
showed constant, rather than decreasing velocity. Adding a contribution from a dark matter halo
(center line) makes the theory match predictions. Credit: Van Albada et al. (L), A. Carati, via
arXiv:1111.5793 (R).

The problem was known as the Galaxy rotation problem. The general idea under this
problem is that when Newton mechanics are used to explain the velocity distribution of

the stars and visible gas in a Galaxy, the obtained profile (disk) does not match with the
observed behaviour which is measured with applied astrophysical techniques such as the
mass-to-light ratio2 and the distribution of stars in the spiral galaxies. This problem is solved,
when the existence of dark hidden mass is assumed. If instead a large fraction of the galaxy’s
mass resided in a diffused dark matter ‘halo’ which extended well beyond the edges of the
luminous matter, the observed galactic rotation curves could be explained. Dark hidden mass is
present in the galaxy with a special distribution which governs its gravitational behaviour.

3.2.2 The Cosmic Microwave Background (CMB)

The CMB is the oldest snapshot of the Universe. It corresponds to the thermal radiation
of the Universe approximately 380.000 years after the Big Bang (z ⇡ 1100, T ⇡ 3000 K).

This radiation was generated in a time in the thermal history of the Universe called
recombination or “time of the last scattering”, which was the time when the electrons and
protons formed bound states and created the neutral hydrogen in the Universe. This discovery,
made by the American radio astronomers Arno Penzias and Robert Wilson in 1964, was
considered a test of the Big Bang theory and the cosmological lambda cold dark matter model
(Lambda-CDM or ⇤-CDM).

2
The mass-to-light ratio (⌥) is the relation between the total mass of a galaxy and its luminosity. In astrophysics

the reference value is the mass-to-light ratio of the sun, for that reason for big objects dominated by DM have a

big mass-to-light ratio.
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Figure 3.4: All-sky picture of the infant Universe created from nine years of WMAP data. The
image reveals 13.77 billion-year-old temperature fluctuations. This image shows a temperature
range of ±200 microKelvin. Credit: NASA / WMAP Science Team WMAP #121238 Image
Caption 9 year WMAP image of background cosmic radiation (2012).

In general, the CMB map has a thermal black body spectrum at a temperature of 2.72548 ±
0.00057 K with a spectral radiance of 160.23 GHz, i.e. in the microwave range of frequencies.
Even more, this spectrum shows tiny temperature fluctuations, which correspond to regions of
slightly different densities which were the seeds of all the structures as the galaxies which are
present in the Universe. The existence of dark matter leaves a characteristic imprint on CMB
observations, as it clumps into dense regions and contributes to the gravitational collapse of
matter, but is unaffected by the pressure from photons. This oscillating effect in the CMB can
be presented in the form of a power spectrum [25].

Figure 3.5: Planck 2015 temperature power spectrum [22]. For multipoles l � 30 is show the max-
imum likelihood frequency-averaged temperature spectrum. The best-fit, i.e. the ⇤CDM theoretical
spectrum is fitted in the upper panel. Residuals with respect to this model are shown in the lower
panel. The error bars show ±� uncertainties.

A careful analysis of the spectrum above shows some special features. The first peak visible
is also known as the acoustic peak and its angular scale l ⇡ 200( 1°in galactic coordinates)

determines the curvature of the Universe. For instance, the latest Planck data combined with
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3.2 Dark Matter

gravitational lensing and baryon acoustic oscillation (BAO) indicate that k = 0.000 ± 0.005 with
95% confidence level. This means that the Universe is spatially flat at high precision. The ratio
between the second and the first peak determines the baryon density. Finally, the third peak in
combination with the first and the second peak can be used to obtain information about the
dark matter density in the Universe. The Wilkinson Microwave Anisotropy Probe (WMAP) was
the first instrument to measure the CMB power spectrum through the first peak of oscillations,
and showed that the existence of dark matter is favored.

3.2.3 Bullet Cluster

In 2006 a group of astronomers studied the merging of two clusters of galaxies 1E 0657-558
collectively known as the bullet cluster [26]. The collision which created this formation is

estimated to have taken place ⇠ 100 million years ago. In general, they found that there are two
concentrations of galaxies separated by ⇠ 0.72 Mpc. The right galaxy is continuously moving
away at speeds of ⇠ 4700 km s�1 and thus creating the name giving bow shock. This
observation depicts a single system in which the baryonic matter was separated from the mass
center of each cluster involved in the collision.

Figure 3.6: The bullet cluster. The green contours are the reconstruction with gravitational lensing
which is proportional to the mass of the system. The white bar represents a distance of 200 kpc
at the location of the cluster. The colored map on the right shows the same image seen in X-ray
for the merging cluster. It was taken with the Chandra satellite after 500 seconds of exposure.
Credit: [26].

By using methods of gravitational lensing, the astronomers were able to reconstruct
the contours of the mass projected for the system. They are represented by the green

contours in fig. 3.6. Additionally Chandra observations of the emitted X-rays by the baryonic
plasma of the system are illustrated as blue crosses in fig. 3.6. An extremely hot gas of particles
pervades the space between each galaxy in a cluster, which accounts for about 90% of the mass
from ordinary matter (rather than stars). When two galaxy clusters collide, the gas particles
become even hotter from crashing into each other, causing an increase in brightness of the X-ray
emission. From this we can tell how energetic the gas is and where it is located. Yellow and red
parts of the image represent the baryonic plasma, which emits the X-rays. Clearly the plasma
distribution does not match the mass distribution found with the gravitational lensing
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reconstruction. If the clusters were entirely comprised of ordinary matter, the location of mass
from the optical observations and the location calculated from gravitational lensing in the bullet
cluster should overlap. Instead, the observations showed a glaring inconsistency. As a
conclusion, during the galaxy merger, the majority of mass in the galaxies behaves almost
collisionless, whilst decoupling from all the baryonic matter. Similar to two clouds colliding and
passing through each other with only the baryonic articles colliding. According to this
interpretation, the principal component of the mass of the system does not interact. It is dark,
not baryonic, and corresponds to the green contours shown in fig. 3.6. Note that this
observation is in favor of the DM interpretation as a particle. Even more, an alternative
explanation using theories of MOND does not predict an offset between mass and light and
could fail to explain this observation of the bullet cluster [27].

3.3 The search for Dark Matter

• Direct Detection

The idea of direct detection of DM is based on the fact that DM particles, so-called non
baryonic Weakly Interacting Massive Particles (WIMPs) or Gravitationally Interacting
Massive Particles (GIMPs) are capable of collision with nucleons. Many experiments to
directly detect and study dark matter particles are being actively undertaken, but none
have yet succeeded. Until now, amongst the experiments for direct detection of DM, the
most restrictive is the Large Underground Xenon experiment (LUX) 2 , which is located
1,510 m underground at the Sanford Underground Laboratory, South Dakota. It is
operated underground to reduce the noise signal caused by high-energy cosmic rays at the
Earth’s surface.

Figure 3.7: The view from inside the Large Underground Xenon (LUX) dark matter detector,
which is nearly a mile underground below the Black Hills of South Dakota. The upgraded detector
just finished its 20-month run without finding dark matter activity. Credit: Matthew Kapust.
Copyright © South Dakota Science and Technology Authority
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It is hoped that the interaction between DM and the liquid Xenon in the detector
generates 175 nm ultraviolet photons and some electrons.
This would be a first step towards confirming the basis of the theoretical assumptions
regarding the all encompassing presence of dark matter. Many supersymmetric models
offer dark matter candidates in the form of the WIMPs Lightest Supersymmetric Particle
(LSP). Separately, heavy sterile neutrinos, a slower form of neutrino that does not interact
through the weak force, exist in non-supersymmetric extensions to the standard model,
which explain the small neutrino mass through the seesaw mechanism.

• Indirect Detection

Indirect detection efforts typically focus on locations where WIMP dark matter is thought
to accumulate the most: in the centers of galaxies and galaxy clusters, as well as in the
smaller satellite galaxies of the Milky Way. These are particularly useful since they tend to
contain very little baryonic matter, reducing the expected background from standard
astrophysical processes. Typical indirect searches look for excess gamma rays, which are
predicted both as final-state products of annihilation, or are produced as charged particles
which interact with ambient radiation, via inverse Compton scattering. Experiments which
have placed bounds on WIMP annihilation, via the non-observation of an annihilation
signal, include the Fermi-LAT gamma ray telescope and the VERITAS ground-based
gamma ray observatory. Although the annihilation of WIMPs into standard model
particles, also predicts the production of high-energy neutrinos, their interaction rate is too
low to reliably detect a dark matter signal at present.
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Chapter 4

Data Processing

Throughout this chapter methods used for data analysis will systematically be introduced,
giving insight into how deep learning techniques will be applied later in this thesis. The

methodology of computer vision based on multilayer networks will be illustrated in the example
of the open-source software libraries Keras and TensorFlow.

4.1 Artificial Neural Network

It might appear rather surprising that Artificial Neural Networks (ANN’s) were in fact
first introduced in 1943 by the neurophysiologist Warren McCulloch and mathematician

Walter Pitts. Their ideas were based on inspiration they had taken from the Biological Neural
Network (BNN) within mammals. Research on the cerebral cortex of the brain has revealed,
that nerve cells appear to be organised in consecutive layers, creating an architecture capable of
processing information. These nerve cells, also known as neurons, are composed of a cell body
containing the nucleus and most of the cell’s complex components, many branching extensions
called dendrites, plus one very long extension called the axon. Near its extremety the axon splits
of into many branches called telodendria which then culminate in synaptic terminals, which are
connected to the dendrites of further neurons. Neurons generate electrical impulses called action
potential which then travel along the axon resulting in the synapses releasing chemical
substances called neurotransmitters, which can be either inhibitory or stimulating [28] [29].

Figure 4.1: Functionality and set up of a biological neuron. Credit: Wikipedia
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This results in the change of the electrical potential of connected neurons. In other words,
the propagation of information within the cell is carried out by the action potentials,

whereas the transmission to further cells is triggered when a certain threshold is overcome.
Today it is assumed that there are approximately 86 billion neurons inside the brain, with each
of them being connected to 1000-10000 others [30].

4.2 Single & Multilayer Perceptron

The workflow of BNN’s was first artificially modelled by Franck Rosenblatt’s Threshold
Logic Units (TLU’s) or simply perceptrons. These replace the synaptical signal with

weighted inputs to detect patterns and a neuron specific bias, which establishes when the neuron
becomes meaningfully active. It also replaces in-cell activation potentials with step functions
and the axon with an output. The TLU then functions as a multioutput classifier. The full
potential of ANN’s has only recently been discovered, as more complex architectures rely on
increasing computing power. This is partially due to Moore’s law1.

Figure 4.2: Structure and mode of operation of an artificial Perceptron. Credit: Towards Data
Science

Unfortunately Perceptrons also have some serious weaknesses, such as the fact that
they are incapable of solving trivial classification problems, also known as exclusive OR or

XOR. Some of these limitations, including the XOR-problem, can however be eliminated by
stacking multiple Perceptrons. The resulting ANN is called a Multilayer Perceptron (MLP). An
MLP is usually composed of:

• one input layer - every TLU represents a feature for example the pixels of an image to be
classified (e.g. a black and white image with pixel values ranging from 0-255)

• one or more hidden layers of TLUs, which perform filter operations on pixel level

• one output layer which represents the target value depending on the application area. In
case of classification the number of output nodes will equal the number of classes

1
http://www.mooreslaw.org
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In general a distinction is made between two types of neural networks [20]:

I. Feedforward neural networks (FFNN)

FFNNs are characterized by unidirectional connections, from input to output. Put simply,
one goes from one layer to the next as there are no connections back to a previous layer.
These layers are also known as fully connected or dense layers. During training they learn
by adapting their connection weights by calculating the difference of its own response with
the supposed outcome of the training set. The largest area of application is found with
Convolutional Neural Networks (CNNs), which are increasingly used in image recognition.

II. Feedback neural networks (FBNN)

Within feedback network the neurons have a direct connection to their immediate
predecessors. They are mainly used for processing problems in which temporal aspects
have to be taken into account explicitly. Therefore these systems are of no further interest
for this thesis.

4.3 Deep Learning

One of the most common AI techniques used for processing big data is machine learning,
a self-adaptive algorithm that gets increasingly better at analysis of patterns with

experience or with newly added data. Deep learning is a subset of machine learning in AI that
imitates the workings of the human brain in processing data and creating patterns for use in
decision making. While traditional programmes build analysis with data in a linear way, the
hierarchical function of deep learning systems enables machines to process data with a
non-linear approach [31].

Figure 4.3: Division of the relationship of AI, ML and Deep learning. Credit: CLEANPNG

As explained previously each level of an MLP architecture learns to transform its input
data into a slightly more abstract and composite representation. The closer the level is to
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the output layer, the higher the complexity of features, which can be recognized, becomes. The
network moves through the layers calculating the probability of each output. If the network did
not accurately recognize a particular pattern, an algorithm adjusts the weights of the
connections as well as the biases. That way the algorithm can make certain parameters more
influential, until it determines the correct mathematical manipulation to fully process the data
and converge. Each mathematical manipulation as such is considered a layer, and complex
networks have many layers, hence the name "deep" networks.

4.3.1 Learning techniques

To optimize the neuronal network until it converges with the correct results, it has to
be trained. Any implementation of neural networks includes parameters that have to be

selected before training. Depending on the implementation, these can resemble the number of
neurons, number of layers, number of epochs, batch size and learning rate. If parameters are not
chosen correctly, results might either be inaccurate, over-fitted, under-fitted or show unexpected
convergence behaviour, such as when "stuck" in a local minima [28].
Depending on the training of neural networks two main types have to be distinguished:

• supervised learning from annotated data

• unsupervised learning - fully automatic learning from non-annotated data

4.3.2 Backpropagation

In order to be able to improve all levels of a MLP, the so-called loss function is used.
It should be noted that the selection of the loss function is based on the area of network

application. Examplamentary the Mean Squared Error (MSE) function is defined as:

E(y) =
1

n

nX

i=1

(yi � ŷi)
2 � 0 (4.1)

Here E is the error, n is the number of training examples and y and ŷ represent the desired
and calculated target values. In order to learn in a further iteration step, the network

tries to minimize the discrepancy between setpoint and target value through backpropagating
the error. The weight adjustment is calculated using the stochastic gradient descent method2:

winew = wiold � ⌘ · �E
�wi

(4.2)

The new weights depend on the error dimension as well as its partial derivative. Latter
is also multiplied by the learning rate which determines the speed of adjustment. These

steps are repeated until the network converges in the solution. In order for this algorythm to
work properly the classical step function needs to be replaced with a well-defined non zero
derivative function such as the logistic (sigmoid) function or the hyperbolic tangent function.

2
After completing a batch in training the negative gradient of all variables is calculated and summed for every

output node. The resulting tweak to each variable minimizes the error for the next training batch.

30



Chapter 4. Data Processing

4.4 Computer vision

One of the most powerful and compelling interdisciplinary fields of artificial intelligence
is computer vision. It focuses on training computers to interpret and understand visual

images. Using digital images from cameras, videos and deep learning models, machines can
accurately identify and classify objects — and then react to what they “see”. Based on skills
such as acquiring and processing it will analyse data sets, check for shapes, borders and
structures and numerical information or simply output form of decision. It involves the
development of a theoretical and algorithmic basis to achieve automatic visual understanding.

Figure 4.4: Multilayer setup with Dense layer before output. Credit: [32]

Usually optical pattern recognition can be achieved with fully connected layers. However,
images with more pixels, i.e. more information, overstrain the computing capacity as

millions of connections would be necessary. This is why so-called convolutional layers are used in
visual computing. Neurons of such a convolutional layer are not connected to every pixel of the
input layer but only to pixels in their receptive field. In turn, each neuron in a second layer is
only connected to neurons within a certain area of the previous layer. This way the network is
able to concentrate on small low-level features in lower layers, followed by high-level features in
latter layers.

Figure 4.5: Convolutional layer including pooling filters extract features from input. Credit: [32]

Figure 4.6: Valid padding with a 2x2-filter. Credit: [32]
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This way a neuron located in row i, column j of a given layer is connected to the outputs of
the neurons in the previous layer located in rows i to i + fh - 1, columns j to j + fw - 1,

where fh and fw are the height and width of the receptive field (see fig. 4.6). It is also possible
to connect a large input layer to a much smaller layer by spacing out the receptive fields. This
dramatically reduces the model’s computing complexity. By representing a neurons weight by an
image the size of the receptive field, filters can be applied in order to enhance the classification
process. Thus, a layer of neurons using the same filter will output a feature map fk, highlighting
the areas of an image which activate the filter the most. This way the output of a neuron in a
convolutional layer, with preceding neurons of weight x, can be calculated as:

zi,j,k = bk +

fhX

u=0

�1
fwX

v=0

�1

fkX

n=0

�1 · xi,j,k · wi,j,k (4.3)

4.4.1 Tensor Flow

TensorFlow is a powerful library for numerical computation. It was developed by the
Google Brain team and is the most popular Deep Learning library to date. At the lowest

level Tensorflow operations such as tf.data, tf.io or tf.image for data loading and processing are
implemented in C++. Many of these operations have implementations called kernels. Each
kernel is dedicated to a specific device type, such as CPUs, GPUs and even TPUs (tenser
processing unit). This is particulary helpful as GPUs and TPUs speed up computations
dramatically by running calculations parallel across multiple threads.
The next step in the hierarchy is Tensorflows DEE on which all low-level APIs (Application
Programming Interface) are run. These include graphs and tensors which can be implemented in
programming languages such as python. More advanced mid-level API’s may include
convolutional layers or functions like the Mean Absolute Error. High-level API’s allow to self
design neural networks as it connects mid and low-level APIs with simplified functions. Amongst
other things the high-level APIs include ready-made estimators, which can already be used for
certain tasks (e.g. classification or linear regression) without major adjustments.

4.4.2 Keras

As already described, TensorFlow is a powerful framework, but due to its complexity
it is not always user-friendly. The founder of Keras, François Chollet, had the idea of

implementing a generically independent framework with several backends3 as part of the
ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operation System) project.
In 2017 Keras was officially added as one of TensorFlows Deep Learning high-level APIs.
Tf.keras4 allows users to easily build, train, evaluate and execute all sorts of neural networks,
while focusing on being modular and extensible. It contains numerous implementations of
commonly used neural network building blocks such as layers, objectives, activation functions,
optimizers, and a host of tools to simplify working with image data.
The development of the ANN will be implemented via the high-level TensorFlow API tf.keras.

3
Microsoft Cognitive Toolkit (CNTK), Theano, Tensorflow

4
https://keras.io/
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Chapter 5

Cluster map modeling

The appearance of night-sky phenomena due to gravity lensing can often be linked to
massive objects by methods of raytracing or N-body simulations. Besides the source being

of baryonic nature, dark matter distributions can also be traced. Based on gravitational
interaction statistical weak lensing serves as precision measurement for dark matter detection.
With the necessity for complex numerical calculations regarding the analysis of the cosmic shear,
an alternative approach concerning artificial intelligence has recently come into focus. In order
for a neural network to recognize patterns and detect mass distributions, it has to be trained.
This is best accomplished by generating simulated test data which will be introduced in this
chapter.

5.1 Dark matter density profiles

The hypothesis for CDM structure formation begins with density perturbations in the
Universe which grow linearly until they reach a critical density, after which they would

stop expanding and collapse to form gravitationally bound dark matter halos. These halos
would continue to grow in mass, either through accretion of material from their immediate
neighborhood, or by merging with other halos. This cosmological structure is best approximated
by a pseudo-isothermal model. However, it cannot be a complete description, as the enclosed
mass fails to converge to a finite value as the radius tends to infinity. Numerical simulations of
the equilibrium configuration of dark matter halos produced in simulations of collisionless dark
matter particles, have resulted in the following universal density profiles [33].

5.1.1 Einasto profile

Originally proposed to describe stellar components of galaxies in 1965, the Einasto profile is
characterised by a double power-law logarithmic slope:

�(r) = �dln⇢

dlnr
(r) (5.1)

which, when integrated, leads to the general density profile

⇢(r) = ⇢sexp

✓
� 2

↵


(
r

Rs
)↵ � 1

�◆
(5.2)

33



5.1 Dark matter density profiles

where ↵ is known as Einasto index, Rs is the scale radius and ⇢s stands for the halo-density at
Rs. Based on the Einasto profile, further double power-law density profiles, such as the NFW
profile, which indicated the existence of a universal density profile for dark matter halos
resulting from the generic dissipationless collapse of density fluctuations emerged [34].

Figure 5.1: NFW plotted against an Einasto profile. Credit: Wikipedia

Figure 5.2: Abell cluster picture ESA for detecting dark matter with assumption of NFW halo
density. Credit: NASA

5.1.2 Navarro-Frenk-White profile

The Navarro-Frenk-White (NFW) profile describes a spatial mass distribution of dark
matter halos, fitted to N-body simulations. The density is given as a function of radius:

⇢(r) = ⇢crit
�c

r

Rs

✓
1 + r

Rs

◆
2

(5.3)

where ⇢crit =
3H(z)2
8G⇡

is the critical density at the redshift z and H(z) is Hubble’s parameter at
that same redshift. The scale radius Rs =

r200
c

is a characteristic radius of the cluster, c is a
dimensionless number known as the concentration parameter, and

�c =
200

3

c
3

ln(1 + c)� c

(1+c)

(5.4)

is a characteristic overdensity for the halo. The virial radius, r200, is defined as the radius inside
which the mass density of the halo is equal to 200⇢c (see, e.g., Navarro, Frenk & White 1997).
The mass of an NFW halo contained within a radius of r200 is therefore

M200 = M(r200) =
800⇡

3
⇢cr200

3 =
800⇡

3

⇢̄(z)

⌦(z)
r200

3 (5.5)
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Chapter 5. Cluster map modeling

where ⇢̄(z) is the mean mass density of the universe at redshift z and ⌦(z) is the density
parameter at redshift z. It was shown that the characteristic overdensity is closely related

to the halo’s formation time: haloes which form earlier are more concentrated. Since more
massive haloes assemble later, they are expected to be less concentrated, giving rise to an
inverted concentration-mass relation. Consequently the total mass of a dark matter distribution
can be calculated by integrating the local density over the radius r

M =

Z
R

0
4⇡r2

⇢(r)dr (5.6)

As previously stated, the local value of the convergence may be expressed simply as the
ratio of the local value of the surface mass density to the critical surface mass density. The

radial dependence of the surface mass density of a spherically symmetric lens such as an NFW
lens is obtained simply by integrating the 3-dimensional density profile along the line of sight

X
(x) = 2

Z
⇢(x, z)dz (5.7)

with a dimensionless radial distance x = r

Rs . The radial dependence of the convergence
due to an NFW lens is then simply

NFW(~✓) =

P
NFW

(~✓)P
cr

(5.8)

Since the NFW density profile is spherically symmetric, the radial dependence of the
shear can be written as

�NFW(~✓) =
¯P
NFW

(~✓)�
P

NFW
(~✓)P

cr

(5.9)

where ¯P
NFW

(~✓) is the mean surface mass density interior to the dimensionless radius x.

5.2 Lensing map simulation

In order to properly simulate a model of weak lensing effects caused by dark matter, a weak
lensing regime needs to be implemented on an otherwise random background of galaxies.

Figure 5.3: Background galaxy lensing simulation. Credit: [35]
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By doing so, a simplistic 2D representation of the lensing influence in a otherwise 3D
space can be displayed. The influences of both convergence and shear then become visible,

depending on the amount of foreground mass and its distribution by local distortions.

Figure 5.4: Ellipticity distortion under weak lensing influence. Credit: Wikipedia

N-body simulations are often used to create so-called shear maps. Derived from the
gradient of the tangential alignment of galaxy filaments within a cluster, maps of the local

apparent shear lead to the reconstruction of a convergence map. These are used to accurately
calculate mass distributions of lensing objects, as can be seen below [36] [37] [38].

Figure 5.5: Magnification map illustrating mass distribution. Credit: Cosmosat

Figure 5.6: Shear map, derived from ellipticity studies. Credit: PB works:gravity lensing

In order to reduce the complexity of detecting lensing mass distributions based on optical
analysis, the development of a training data set for a neural network application, will be

based on recurring pattern formation, i.e. tangential shearing. As mentioned before tangential
alignment of background mass consequently implies cross shearing of zero. Furthermore this
approach supports lensing identification with convolutional layers.
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Chapter 5. Cluster map modeling

5.2.1 Basic mathematical framework

To ensure consistency throughout the training data general mathematical conditions,
describing the model, need to established. The gravitational potential from which the

effective lensing potential is calculated for example, will be assumed to be generated by a point
mass [17]. Thus the lensing potential can be solved for axial geometry

 (~r) =
Dds
DsDd

2

c2

Z
�(~r, z)dz =

Dds
DsDd

4GM

c2
ln(r) (5.10)

with � = �GM

R
. Additionally the weak lensing regime usually features values of  « 1 and

0  �  1, which is why the Jacobian matrix can henceforth be written with the unit matrix
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�11 � �22

2�12

!
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and �2 = 0 for tangential alignment. Moreover the formula for �1 can be further simplified when
the objects on the focal line of the observer are arranged to Dds = Dd, with Ds = Dd:

�1 =
2Dd
c2

·r(�11 � �22) = GM
2Dd

c2
·
✓

1

r112 � 1

r222

◆
(5.13)

Alternatively, it can be written as:

�1 = rs ·Dd · 1

rij2
(5.14)

The model assumes a variable Einasto profile of dark matter mass density

⇢(r) = ⇢0 · exp(�Ar
↵) (5.15)

with parameters A and ↵ determining the strength of the tangential shearing caused
by foreground dark matter [39]. That way the strength of the lens can be increased by

varying the parameters of the Einasto profile as

M = 4⇡

Z
R

0
r
2 · ⇢(~r)dr = ⇢0 ·

4

3
⇡r

3-↵ · exp(�Ar
↵) (5.16)

As all background galaxies are simulated in an equal manor, the second term of formula 5.14 can
be set to be a constant, describing either Dd or Dds of all galaxies in respect to the optical axis.
As the distance Dd is directly linked to the angle-dependent deflection regarding the locations rii

and rjj, it needs to be determined while taking both prospects into account.
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5.2 Lensing map simulation

This way the requirement 0  �  1 can be adhered to. Now �1 solely depends on rij,
which in a 2D depiction portrays the radial distance from the gravitational lense to the

respective galaxy. Combined with formula 2.39, and the vector format in formula 5.12, the
tangential rotation ' can be calculated as:

1� �1 = cos(2') , ' = arccos(1� �1) (5.17)

With increasing shear, depending on mass of and distance from the lens, the rotation angle
increases from ' = 0° for � > 0 up to ' = 90° for � > 1.

5.2.2 Cluster formation

Since a galaxy cluster is used as the source for the lens, its properties, as well as the
properties of the dark matter halo contained within, need to be identified and determined.

Even though galaxy clusters are the largest gravitationally-bound structures in the universe
harboring star formations, black holes and AGNs1, they are dominated by dark matter. Most of
the normal light-emitting matter is in the form of hot plasma, the intracluster medium (ICM).
Galaxy clusters cover a range of mass, with the lowest mass end being known to contain up to
100 galaxy groups [40].

mass[%] detection

Galaxies 1-2 Optical observations
ICM 10-13 Plasma at high temperature emits x-ray radiation

Dark Matter 85-90 Inferred through gravitational interactions

Table 5.1: Relative proportion and detection of all mass in the universe.

The ICM is hot due to the massive potential well of galaxy clusters. The gravitational
potential energy of material falling into the cluster leads to shock heating of the gas to 10s

of millions of °C or 2-15 keV, depending on the total mass of the cluster. Because of the size of
clusters, this material is very tenuous, with only roughly between 10 and 10000 particles in each
cubic metre of cluster. The density increases towards the centre of the cluster. The ICM emits
X-rays strongly due to its high temperature via the Bremsstrahlung emission process.
Supermassive black holes are often found at the centre of clusters, accreting matter which leads
to highly energetic jets of material being accelerated into the ICM, preventing it from cooling
rapidly. Even though clusters primarily consist of dark matter, it is evident, that its density is
far from the critical Schwarzschild density ⇢c [41]:

⇢c =
3c6

32⇡G3M2 =
1.61 · 1026

Rs2
kg

m3 (Rs in meters) (5.18)

Typically the mass of a cluster ranges from 1012 � 1016 solar masses (M�). At the same
time, diameters usually span from 1 to 5 mpc. Based on data collected from the milkyway and
its nearest neighbour the virgo cluster 16.5 mpc away, measurements of the power spectrum
were used to calculate the value of a quarter of the total energy density in the universe.

1
Active Galactic Nucleus
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Chapter 5. Cluster map modeling

Based on these findings, the dark matter lensing mass will be calculated in the following.
For spherical and radially symmetrical formations with M = 1014 ·M� and d = 3mpc

the average dark matter density is found to be:

¯⇢DM =
M

V
=

0.85 · 1014 ·M�
4
3⇡ · (d2)3

=
1.691 · 1044

kg

4.155 · 1069m3 = 4.069 · 10-25 kg

m3 (5.19)

The literature value is found to be slightly higher at ⇢DM = 8.913 · 10-24 kg

m3 [42].
This approximation also checks out when integrating the core density ⇢0 in regard of the

Einasto profile with the variables:

↵ A r [Mpc] ⇢0[
kg

m3 ] M [kg] rs [pc]

0.06 0.2 1.5 10-21 1.858 ·1044 8.942

Table 5.2: Example parameters for dark matter distribution in galaxy cluster.

Note that the core denisty ⇢0 is larger than ¯⇢DM, as the cluster density, e.g. the dark matter
density increases inwards.

Figure 5.7: Dark matter density function. Credit: Rechneronline.de

For a set lensing mass MDM, the tangential shearing can be calculated considering only the
lensed galaxy span rij in regard to the breadth Dds. As mentioned before, the relation of

these two variables needs to meet the condition of 0  �  1. As later simulations will set a
minimal distance at 0  rij, the range will be fit to a [-8, 8] xy-grid in units of mpc for a fixed
galaxy plane located 10 Gpc away. That way formula 5.13 is simplified to:

� =
2GDds

c2
· MDM

rij2
= 4.813 · 10-46mpc

2

kg
· MDM

rij
(5.20)

The following simulations will apply a mathematical torque on the elongated galaxies,
rotating them to generate circular tangential alignment around the lensing mass. The

then visible effect will decrease with increasing distance. Thus the pattern in regard to the
placement and number of foreground masses, can be used to train the optical neural network.
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5.3 Data creation in Python

In similar fashion to the left image in figure 5.3 the training data consists of a square frame
filled with short dashes each with a centered rotational axis. These dashes, representing

the background galaxies, are scattered at random while being distributed uniformly. When
scattered, the additional degree of freedom regarding the rotational orientation is also assigned
arbitrarily. After placing a mass on the 2D plane, the otherwise expected tangential shearing of
the background galaxies will be converted to a rotational angle. That way the intrinsic galaxy
ellipticity can be displayed without having to induct � into the dimension of the semi-axis. The
focus will be set solely on the spin of the galaxies. This tangential alignment will then be made
visible, by applying a angle of rotation to all galaxies in relation to their placement on the 2D
plane. In addition, the galaxies will be stretched tangentially around the foreground mass,
illustrating the effect of arc emergence. The data created will then be saved in a frame which
can later be used to be fed into the neural network.

5.3.1 Lensing plots

The plots which later will serve as training and validation data are created in an
open source cross-platform integrated development environment (IDE). In this case, the

Anaconda IDE Spyder. First, the necessary libraries need to be imported.

1 # @author: William Roster
2

3 import numpy as np
4 import matplotlib.pyplot as plt
5 import pandas as pd
6 import pickle
7 from PIL import Image, ImageDraw

The background galaxies are generated with random coordinates and orientations
as well as a random intrinsic ellipticity. Later is measured in regard to a tangent on the

equipotential line engulfing the lensing mass. Simultaneously the cross product between the
galaxy vector itself and the vector spanning from lensing mass to the galaxy serves as placement
detection and allows for a establishment of the correct adjustment direction as each quadrant
needs to be handled differently.

1 def generate_arrow_array(size, massp = [0,0]):
2 # initializing variables
3 angle = [], dx = [], dy = [], x = [], y = [], c = [], c_start = []
4 midx = [], midy = [], vecMGx = [], vecMGy = [], relAngle = [], dist = []
5

6 # calculate intrinsic ellipticity
7 def angleCalc(vec1, vec2):
8 skal = vec1[0] * vec2[0] + vec1[1] * vec2[1]
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9 absV = np.sqrt(vec1[0]*vec1[0] + vec1[1]*vec1[1]) * np.sqrt(vec2[0]*vec2[0] +
vec2[1]*vec2[1])

10 tempAngle = np.arccos(skal/absV) #cutting angle
11 if(vec1[0] * vec2[1] - vec1[1] * vec2[0] > 0):
12 if(tempAngle > np.pi/2):
13 tempAngle = np.pi - tempAngle
14 orient = 1 # cross product serves as indicator for later adjustment

turning direction
15 else:
16 orient = -1
17 else:
18 if(tempAngle > np.pi/2):
19 tempAngle = np.pi - tempAngle
20 orient = -1
21 else:
22 orient = 1
23

24 return (np.pi/2 - tempAngle),orient #intrinsic angle in relation to
equipotential

25

26 # generate random orientations and rotations
27 for i in range(0, size):
28 angle.append(np.random.rand()*np.pi)
29 dx.append(length*np.cos(angle[i])*8)
30 dy.append(length*np.sin(angle[i])*8)
31

32 # generate random coordinates
33 x.append((np.random.rand()*2-1)*8)
34 y.append((np.random.rand()*2-1)*8)
35

36 # calculate rotational axis
37 midx.append(x[i] + dx[i]/2)
38 midy.append(y[i] + dy[i]/2)
39

40 # vector stretching from lensing mass to galaxy
41 vecMGx.append(midx[i]-massp[0])
42 vecMGy.append(midy[i]-massp[1])
43 dist.append(np.sqrt(vecMGx[i]**2 + vecMGy[i]**2))
44

45 # convert intrisic rotation to value[0,1]
46 for i in range(0, size):
47 c_start.append(angleCalc((vecMGx[i],vecMGy[i]),(dx[i],dy[i]))[0]/1.57)

As described in subsection 5.2.1 the rotation angle is derived from �, which
in turn depends on the mass as well as the relative distance. The borderline case is set at

� = 1, as more than perfect alignment is not achievable. Thus the intrinsic rotation sets a
limiter on the applied rotation. All calculations are made in the scale of mpc.
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1 def gamma(d,m,g,c0,mpc):
2 rs = [] # Schwarzschild radius
3 ds = [] # distance in image plane
4 rsmpc = [] # Schwarzschild in mpc
5 rs = ((2*g*m)/c0**2)
6 rsmpc = rs/mpc
7 ds = 10000 # 10 gpc
8 gammaE = (((rsmpc*ds)/(d)**2)) # see formula 5.14
9 if (gammaE > 1):

10 gammaE = 1 # borderline case
11

12 return gammaE
13

14 def phi(d,m):
15

16 return np.arccos(1-gamma(d,m,g,c0,mpc)) # applied rotation angle, see formula 5.17

In the following, ' is applied to all background galaxies. Thus all coordinates, orientations
and angles need to be recalculated and adjusted. Another feature of lensing is obviously

illustrated by the tangential smear of the galaxies closest to the lensing mass. Consequently the
galaxies are stretched in regard to the value of '. This can be seen clearly when comparing
figures 5.8 and 5.9.

1 def update_arrow_array(midx,midy,dist,angle,relAngle,mass, size):
2 newAngle = [], newx = [], newy = [], newdx = [], newdy = []
3

4 for i in range(0, size):
5 tmpAngle = phi(dist[i],mass)
6 stretch = 1 + (tmpAngle * 2) # tangential smear
7 if(tmpAngle > relAngle[i][0]): # rotation limiter
8 tmpAngle = relAngle[i][0]
9 if(relAngle[i][1] == -1): # rotation adjustment direction

10 tmpAngle = -tmpAngle
11 newAngle.append(angle[i] - tmpAngle) # resulting ellipticity
12

13 # new mass to galaxy vector
14 newdx.append(length*stretch*np.cos(newAngle[i])*8)
15 newdy.append(length*stretch*np.sin(newAngle[i])*8)
16

17 #new galaxy coordinates
18 newx.append(midx[i]-(newdx[i]/2))
19 newy.append(midy[i]-(newdy[i]/2))
20

21 # convert applied rotation to value[0,1]
22 for i in range(0, size):
23 c.append(phi(dist[i],mass)/1.57)
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Chapter 5. Cluster map modeling

A panda data frame is used to properly observe and monitor the adjustments of
all the galaxies and their characteristics. The data frame can either monitor every

individual galaxy in regard to their coordinates and rotation before and after lensing or
document the lensing mass for every example generated. For later, the range is set to the
variable "example".

1 def gen_data_frame_for_plot(midx, midy, dist, angle, relAngle, mass, massp):
2 data = {’midx’ : midx,
3 ’midy’ : midy,
4 ’dist’ : dist,
5 ’angle’ : angle,
6 ’relAngle’ : relAngle,
7 ’mass’ : [mass for i in range(0, len(midx))],
8 ’masspx’ : [massp[0] for i in range(0, len(midx))],
9 ’masspy’ : [massp[1] for i in range(0, len(midx))]}

10

11 df = pd.DataFrame(data, columns=[’midx’, ’midy’, ’dist’, ’angle’, ’relAngle’,
’mass’, ’masspx’, ’masspy’])

12

13 return df

Finally the programme can be run in order to generate training data by applying a random
mass in the range of 1044-45

kg at a random location. The plots are then saved in numbers
up to 10s of thousands to provide an extensive training and validation data set. In this case 750
background galaxies are chosen, to avoid creating a fluid-like dynamic, which would be too easy
to spot, while ensuring enough structure for pattern formation to commence.

1 for j in range(0,example): # example amount of random data sets
2 # generate random mass and mass coordinates
3 random_m = np.random.rand()*10
4 if(random_m < 5):
5 mass = ((random_m+5)*10**44)
6 else:
7 mass = ((10-random_m)*10**45)
8 massp=((np.random.rand()*2-1)*8),((np.random.rand()*2-1)*8)

One example of such a lensing simulation can be seen in figures 5.8 and 5.9. The color
scheme in both figures shows the absolute ellipticity. As at first the intrinsic ellipticity is

the only influential parameter, the full scheme of the colorbar is spread uniformly across the 2D
plain. After the lensing effect takes places, the greatest ellipticities are found closest to the
lensing mass. The data used later to train and validate the neural network will be of simplified
nature. As the intensity of tangential shearing is not made visible by a color scale in space, the
neural network will be working with black and white binary images. That way the network will
only be training in a 1 dimensional color scheme, thus reducing the necessary amount of data.
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5.3 Data creation in Python

Figure 5.8: Uniformly distributed galaxies without the influence of a foreground lensing mass
illustrated by a marker. (unlensed)

Figure 5.9: Direct comparison to fig. 5.8 under the influece of m = 3.377046392177419e+45 kg.
The relative ellipticity is illustrated with the respective color scheme. (lensed)

5.3.2 Input conversion

Furthermore the plots will be saved at a resolution of 200x200 pixels. With features taking
up approximately 1

16 of the 2D plane, this results in exactly 2500 pixels per event. In
comparison, the well known MNIST database of handwritten digits with black and white
numbers scaled at 28x28 pixels result in 784 pixels per image. This way the network will be able
to detect even the smallest of events in high resolution wide angle recordings.

1 img2 = Image.new("L", (pix,pix))
2 draw = ImageDraw.Draw(img2)
3 pixel_coords_x = pixel_mpc*df_final[j].x.values + (pix/2) #coordinates to pixel
4 pixel_coords_y = -pixel_mpc*df_final[j].y.values + (pix/2)
5

6 for i in range(0, (len(pixel_coords_x))): #set limiter to 200x200pixel
7 if (df_final[j].xdx[i] > 8):
8 df_final[j].xdx[i] == 8
9 elif (df_final[j].xdx[i] < -8):

10 df_final[j].xdx[i] == -8
11 elif (df_final[j].ydy[i] > 8):
12 df_final[j].ydy[i] == 8
13 elif (df_final[j].ydy[i] < -8):
14 df_final[j].ydy[i] == -8
15

16 pixel_coords_xdx = pixel_mpc*df_final[j].xdx.values +(pix/2)
17 pixel_coords_ydy = -pixel_mpc*df_final[j].ydy.values + (pix/2)
18 for i in range(0, (len(pixel_coords_x))):
19 draw.line((( pixel_coords_x[i] , pixel_coords_y[i] ),( pixel_coords_xdx[i] ,

pixel_coords_ydy[i] )), fill=’white’, width = 1) #draw line for lensed galaxies
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Chapter 5. Cluster map modeling

For the network to be able to digest 40000 input values, the images need to be broken into
single pixel values and then converted into a 2D numpy string. This is done for both the

labeled and the unlabeled input data. Here 200x200 images are generated and then drawn upon
with the same data available as displayed in images 5.8 and 5.9. Afterwards they are appended
to an array which is later normalized and 0-centered before being converted to a .npy file and
saved on the disc. The generated data is now seperated in 2 arrays. The first array holds a list
of "example-amount" 2D numpy arrays broken down into pixel values of either -0.5 or 0.5. This
data will serve as image input. The second array is a list of the same amount featuring 3D
vectors holding the normalized pixel values of the mass coordinates and the normalized value of
its weight. Their values range from 0 to 1 as this has to do with later calculations within the
network, including the activation function and will be used as the reference data.

1 # save image data to numpy array - list of np arrays
2

3 img2.save(path3 + str(j) + path4)
4 arr = np.array(img2)
5 wholeArray.append(arr)
6 wholeArray=np.asarray(wholeArray)
7 wholeArray_labelled=np.asarray(wholeArray_labelled)
8 divider = [255]
9 wholeArray=wholeArray/np.max(divider) - 0.5

10

11 #save arrays as list
12 np.save(path5 +"Unlabeled_"+"("+str(len(wholeArray))+",200,200)" , wholeArray)
13 np.save(path5 +"triple_Labeled_"+"("+str(len(wholeArray_labeled))+",1,1,1)" ,

wholeArray_labeled)

Figure 5.10: Uniformly distributed galaxies under the influence of m= 2.829735283373411e+45
kg, imported as an array figure. Resized to image format 200x200 pixel.

Figure 5.11: Input reference data to fig. 5.10 holding information about the mass coordinates at
[y= 173, x=66].
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5.3 Data creation in Python

These images encoded in the 2D arrays can then be imported and re-displayed as figures
in the neural network. An example is given above. In this case the reference input is also

portrayed as an image, however an image as reference for an image would not work, as the
network would have to be able to find the right pixel among 40000. That is why the coordinates
can either be converted into values ranging from 0 to 200 or normalized as recently explained,
drastically reducing the computing complexity.
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Chapter 6

Neural network

Even though the primary task of a Convolutional network is ususally known to be performing
image classification, the field of computer vision has been revolutionized since the

introduction of CNN’s for two simple reasons. Firstly images used for computer vision problems
nowadays are often 224x224 or larger. That comes out to 224 x 224 = 50,176 input features. A
typical hidden layer in such a network might have 1024 nodes, so 50,176 x 1024 = 51.38 million
weights and biases would have to be trained for the first layer alone. The seemingly simply task
can then quickly become extremely extensive and impossible to implement. Luckily, pixels are
most useful in the context of their neighbours. As images are made up of objects featuring
small, localized features the necessity for every node to look at every pixel in the first hidden
layer becomes redundant. Secondly, the locations of features within an image vary. However, the
network should be able to detect features, regardless of their position. This chapter will
therefore focus on the step by step implementation of a convolutional neural network.

6.1 Implementing a CNN in Keras

As mentioned before Keras is a high level API which allows users to develop and design
neural networks on a tensorflow backend. As tenserflow is a low level API implemented in

Python the following source code is also written, compiled and executed in the Anaconda IDE
Spyder. Similar to the creation of the training data the necessary libraries need to be imported
first. In doing so, the respective tools used to build the model are also imported.

1 # @author: William Roster
2

3 import tenforflow as tf #backend
4 import numpy as np
5 from numpy import load
6 import matplotlib.pyplot as plt
7 import keras.backend as K

It is a known fact, that Keras performs best when the input is 0-centered. Additionally
Keras expects a 4 dimensional input featuring the amount of data, its 2D pixel values and

the number of features to expect, in this case 1 (binary). After loading the input data for
training and validation the images need to be reshaped to fit Keras demands.
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6.1 Implementing a CNN in Keras

1 #import normalized data from numpy arrays
2

3 train_images = load("/Users/william/Desktop/PYTHON/numpy_arrays/
4 np_array_Unlabeled_(50000,200,200).npy")
5 train_all_labels = load("/Users/william/Desktop/PYTHON/numpy_arrays/
6 np_array_triple_Labeled_(50000,1,1,1).npy")
7 test_images = load("/Users/william/Desktop/PYTHON/numpy_arrays/
8 np_array_Unlabeled_(10000,200,200).npy")
9 test_all_labels = load("/Users/william/Desktop/PYTHON/numpy_arrays/

10 np_array_triple_Labeled_(10000,1,1,1).npy")
11

12 #resize images
13 train_images = np.expand_dims(train_images, axis=3)
14 test_images = np.expand_dims(test_images, axis=3)
15

16 print(train_images.shape) # (example, 200, 200, 1)
17 print(train_all_labels.shape) # (example, 3)
18 print(test_images.shape) # (example2, 200, 200, 1)
19 print(test_all_labels.shape) # (example2, 3)

Next the filters and pooling layers are defined. These are called upon, when the network
layers themselves are filled with parameters. Even though the network designed, works in

a sequential order it is set up using Keras functional API model rather than the sequential
model for reasons of flexibility. The functional API offers many alternatives, such as shared
layers, multiple inputs and parallel motions. This allows for the network to be altered in any
desired way. More complex network architectures usually perform better with more extensive
problems featuring further unknown variables.

6.1.1 Functional API Model

After setting up the layers with defined inputs and outputs the model can be constructed
and viewed using summary. Now the model can be compiled. Here the optimizer and its

learning rate as well as the loss function and the visualization are defined. Then the model is
fitted with training and validation data.

1 def euclidean_distance_loss(y_true, y_pred): # loss function
2 return K.sqrt(K.sum(K.square(y_pred - y_true), axis=-1))
3

4 model.compile(tf.keras.optimizers.Adam(lr = 0.0008), loss=euclidean_distance_loss,
5 metrics=[tf.keras.metrics.RootMeanSquaredError()],)
6

7 history = model.fit(x=train_images, y=train_all_labels, epochs=40,
8 validation_data=(test_images, test_all_labels), shuffle=True, batch_size= 64)
9

10 model.save_weights(’cnn_final.h5’)
11 model.save("triple.h5")
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Chapter 6. Neural network

Figure 6.1: Visualization of the program flow chart in sequential design. Each layer contains
further information about the respective parameters being used. Credit: Netron

After the batch size is set the network will start training and backpropagating for the
number of epochs set before. This way the network can be called upon when wanting to

apply it to a new set of data without having to run the training sequence once more. When
calling summary, python displays an overview of all the network layers and the individual
parameters featured within each layer, as well as the total number of trainable nodes and biases.
This can be illustrated using Netron, see above. The returned parameter overview is displayed in
the list below:

• Total parameters: 357,507

• Trainable parameters: 357,507

• Non-trainable parameters: 0
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6.2 Network validation

6.2 Network validation

After supplying the model with all necessary input the training routine is run for
the chosen number of epochs. The number of epochs is crucial, as the network should be

trained enough to have a solid level of accuracy while not being overfitted at the same time.
This is usually prohibited from happening by adding so called Dropout layer in the networks
architecture. These are handed a parameter ranging from 0 to 1 representing the percentage of
nodes which are randomly ignored when running a training sequence. This effect also allows the
network to learn more selectively with deeper features hidden within the convolutional layers.
Depending on the optimizer options such as the "slow gradient descent" (SGD) feature a
manually settable learning rate (LR). Again, this involves a little bit of trial and error as there is
no universal applicable "best setting". If the learning rate is too low the network might get
stuck in a local minima, if it is too high it might keep overshooting the global minima instead of
gradually moving closer and finally converging.
While training, the network continuously computes the MSE or, put simply, the loss as well as
the inverse accuracy for both, the training and validation set after every epoch. The time needed
to train the network on 1 epoch depends on the number of trainable parameters, as
backpropagation is performed after every training circle. This is also why more often than not,
less is more. A network with millions of connections might have trouble finding decisive
advantages with changing specific weights for certain nodes. That being said the network might
need plenty connections which all allow to be altered slightly to perform better results. Usually
a larger set of training data with more complex patterns requires more network parameters.
After training is completed the training results can be displayed. The validation results
obviously serve as benchmark for further external data.

6.2.1 MSE results

The network performance after training completion is displayed in the table
below. Obviously the end result is completely dependent on all parameters and will most

definitely perform distinctively different under new settings. Thus far the following parameter
setup allowed the network to output the best training results.

inputtrain inputval lossval MSEval

50000 10000 0.0379 0.0301

epochs: 40

Table 6.1: Network parameter output and summary

As can be seen in the figures 6.2 and 6.3 the deviation error is marginal as of the
first epoch. Afterwards the loss as well as the MSE only gradually decline with increasing

epochs. Higher percentages, i.e. steeper climbs or slower, less steep approaches could be
achieved by alternating the framework of the network by changing the number of parameters
involved or whole layers themselves.
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Chapter 6. Neural network

Figure 6.2: Plot illustrating both, the training and validation mean squared error (MSE) for a
training sequence 40 epochs.

Figure 6.3: Plot illustrating both, the training and validation model loss, calculated in euclidean
vector lengths, for a training sequence 40 epochs.

In this case the network achieves a validation accuracy of roughly 96.5%. Even though
this is a rather good result it needs to be taken into account, that the data used, was

normalized. This means that the values ranging from 0 to 1 obviously represent percentages. A
second percentage of a first percentage is therefore strongly dependent on the first value.
For example 3% error of 0.4 of a coordinate equals: ± 0.03 ·80 =± 2.4.
On the other hand 3% error of 0.8 of a coordinate equals: ± 0.03 ·160 =± 4.8. This implies that
the networks deviation needs to be interpreted under the observation whether the result is of
high >1 or low >0 nature. In addition the graphs illustrating the validation error and loss are
very unsettled. This might be due the fact, that the learning rate is too low and the network
performance is stuck in a local minima. At the same time a lower learning rate could smooth the
validation graph, producing results with more continuity and stability throughout the training
epochs. However the training graphs are very steady and constantly decreasing in comparison.
This can be a case of overfitting which could be solved by introducing regularisers to the layers.
On the other hand is may be plausible that the network needs more epochs to gradually
converge and balance out the irregularities.

6.3 Cross-Check performed on Universe footage

As the network focuses on pattern recognition only, black and white binary images of the
night sky, capturing weak lensing effects, should serve as an ideal test for final validation.

As the network has only "known" binary data, any test data needs to be transformed in to
according format first. Luckily any rgb image can first be turned into a grayscale image before
being further reduced in features by applying a threshold for black and white class segregation.
This does however also harbour error potential as galaxies and in particular galaxy clusters are
not evenly bright. They usually have a brightness distribution which depends on the amount of
stars at a specific location within the cluster and decreases outwards. When turning the rgb
image to grayscale the according colours are interpreted differently.
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6.3 Cross-Check performed on Universe footage

This means that the color of the emitted light, which ultimately might be evenly bright, is
valued differently. After the threshold is applied to turn the images into binary, the before
feature heavy grayscale image is converted into a hard edge blur of black and white. This has
great influence on the networks performance as extremely elongated galaxies, which serve as best
possible lensing indicator are dropped, as they appear less bright than an ordinary galaxy. That
way the images losses important information about the most telling section of the image. One
potential solution to this problem would be to use grayscale simulations. However these require
a closer-to-reality image, which would have to be copied from deep space recordings. As the
network needs extensive amounts of training data the generation of such simulation data would
be very tedious.

6.3.1 Ratification with Hubbel

Deep filed images taken by the hubble space telescope have been giving astronomers
a much better understanding of the universe for the past 30 years. Among the pictures

taken, galaxy clusters are also often found. Even though the images are usually taken so that
the main attraction, the centre of the cluster is in the middle of the picture, these images can
still be used as proper validation for the network. Besides the estimate for the DM coordinates,
the network will also calculate a value for the mass. Obviously this value is restricted to the
mathematical framework introduced in chapter 5.2.1 which accurately states the region of mass
and space taken into account. While the coordinates are independent and can be approved by
looking at the image there is no legit measurement of the dark matter distribution among either
cluster. In the following two validation examples will be given.

• Abell 1689

One of the best known and studied galaxy clusters in the greater research area of dark
matter accumulations is the cluster named Abell. It has many different sections, each
accounted for with a number tag. In this case the network will be looking at an image
taken from abell 1689 which shows intense weak lensing effects as can be seen in the
sectional cutout in fig. 6.5.

Figure 6.4: Abell 1689 and cutout section under the influence of weak lensing. Credit: NASA
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First of all the image needs to be transformed as explained above. The network then
predicts the coordinates [y: 97, x: 110]. This pixel and the surrounding area is highlighted
in red. Keeping the validation error of 0.03 in mind, this calculation results in y: 97 ±
2.91, x: 110 ± 3.30. With a root MSE of approximately 7.3 pixels this equals a deviation
of 4.09%, making this calculation 95.91% accurate.
This result is based on my personal assumption, that the mass is placed at [y: 90, x: 112].
The calculated mass is illustrated by the yellow dot, circled red, wheres as my human
suggestion is marked red, circled white.

Figure 6.5: Binary conversion of fig. 6.4(left) and respective mass coordinates(right) highlighted
for both, network and human estimate. Credit: NASA

• MACS J0416.1-2403

This is one of six galaxy clusters being studied by the Hubble Frontier Fields program,
which together have produced the deepest images of gravitational lensing ever made. It is
thought that MACS J0416.1-2403 contains a significant amount of dark matter. Compared
to other commonly observed galaxy clusters, it is more efficient at producing multiple
lensed images of background galaxies [43].

Figure 6.6: MACS and cutout section J416 under the influence of weak lensing. Credit: NASA
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This has primarily come into focus after it was announced as gravitationally lensing the
most distant galaxies at redshift z=12. In this second example the network outputs the
coordinates [y: 69, x= 59]. The error remains the same, thus the error margin is y: 69 ±
2.07, x: 59 ± 1.77. For an estimated mass at [y: 67, x: 63], the absolute deviation is 4,2
pixels or 3.54%. This, in respect of the pixel values, converts to a accuracy percentage of
96.46%.

Figure 6.7: Binary conversion of fig. 6.6(left) and respective mass coordinates(right) highlighted
for both, network and human estimate. Credit: NASA

6.3.2 Evaluation

For both examples, the network predictions were almost perfect. These estimates obviously
depend on where the mass distribution is actually placed in reality. In this way and form

one can only assume by investigating and interpreting the lensing patterns among the images. In
addition dark matter halos or accumulations are usually spread throughout the cluster, turning
a pin-point location into an educated guess. However, the network did perform extremely well
under the conditions given. If further adjustments, regarding the input data pre-processing, were
to be made, neural networks certainly provide the capability of reliably producing high-quality
outputs for given mathematical frameworks, exceeding beyond 96% accuracy.
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Chapter 7

Conclusion

With artificial intelligence being implemented ever deeper in day to day life, this thesis
attempts to apply modern data science algorithms to astronomical forefront research in

the field of dark matter. With a continuously growing understanding of the universe and its
composition, dark matter has recently become one of the biggest questions to be answered when
it comes to solving complex theories such as the accelerating expansion of the universe.
Unfortunately the examination of dark matter is vastly restricted, begging for alternative study
methods.

The progress made in the field of data analysis in recent times, in particular when it comes
to object recognition, allows for scientific research to process and handle experimental

data in new ways. Ultimately acquiring knowledge from correlations undiscovered before. A
similar approach was taken in the frame of this thesis as artificial intelligence is trained to
discover and characterize dark matter accumulations in space. These are currently known to
predominantly appear in galaxy clusters. However, the experimental data on dark matter is
minimal and neural networks require thousands of training data examples in order to properly
apply weights and biases to achieve acceptable results. This is why, based on general dark
matter knowledge, a frame of appearance for a mathematical description was defined in order to
generate simulated lensing data.

For reasons of simplicity and to force the network to look for hidden features amongst
the training data the images were uploaded as binary pixel arrays. With neural networks

being multi functional many forms of learning architectures can be implemented. These include
MLP’s, Regression and Categorization. The network presented in this thesis is of strictly
sequential manor. By doing so, both the coordinates as well as the mass are estimated for a
given image. Consequently the loss function considers all 3 outputs when altering the system
variables. However this can lead to inaccuracy as the network can use convolutional layers to
filter the image in order to find the lensing pattern. The mass is therefore also depicted from the
whole image, even though its value prediction is strongly linked to the magnitude of the
tangential shearing in immediate proximity around the mass coordinates. To overcome this issue
it is highly recommendable to split the sequential network model, thus allowing it to use two
inputs instead of one. This way the network would first use the simulated images to establish
the mass coordinates. These coordinates would then be forwarded into a secondary input layer,
which would also be fed with the, in the first input layer featured, simulated images.
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From this secondary input layer the network can then perform regression, by finding a
correlation between the location and the pattern before starting to make predictions. This way
the network would learn to concentrate on the location and therefore the desired section of the
image, before any further calculations were to take place. Besides the alternation of the number
of inputs, making use of the functional API also enlarges the possibilities of multi-layer
connections such a used in ResNet. Thereby multiple connections can be strung without
overwhelming the network with millions of system parameters. In general the focus should be
set on making the network deeper, by adding many small layers, rather than wider by cramming
more information into bigger filters.

Future analysis regarding this topic should also consider implementing the possibility
of multiple lensing effects at once. As mentioned before, dark matter is spread across

galaxies and often tends to be located on the outer edges, rather than centered in the middle.
X-ray surveys may deliver more applicable data to properly simulate dark matter density
distributions in space in order to properly identify accumulations in clusters when observing
weak lensing events. In conclusion computer vision tools, such as pattern recognition, prove to
be implementable for any given object recognition task under the prerequisite of well prepared
and purified data, as networks are only as smart as one programmes them to be.
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Appendix A

Hard drive: Python documentation

The documentation of the code written and used in this thesis for:

• The generation of training and validation data sets on the creation of weak lensing patterns

• The design of a neural network performing weak lensing pattern recognition

can be found on the hard drive CD which is attached to the inside rear cover of the thesis.
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