
Belle

BELLE2-NOTE-XX-YYYY-ZZZ
DRAFT Version 1.0

March 30, 2020

Hopfield Network for Cluster PID at the PXD

Irina Heinz∗ and Soeren Lange†

Justus Liebig University, Giessen, Germany

Abstract
Due to data measurement, recognizing a real signal out of a large number of background data

arises as a problem at the PXD of Belle II experiment. Thus, the primary objective is finding

an analysis method to separate highly ionizing particles, such as anti-deuterons and magnetic

monopoles, from e.g. beam background.

Since neural networks showed up as a useful tool for image and data recognition, several types

of neural networks for signal recognition of PXD data were developed. A new approach was

considered by taking raw pixel data as input for a Hopfield network, which is a special network

structure usually used for image recognition. Different optimization variants, such as a detailed

analysis of data, improved network performance.

∗Electronic address: irina.heinz@desy.de
†Electronic address: Soeren.Lange@exp2.physik.uni-giessen.de

1

mailto:irina.heinz@desy.de
mailto:Soeren.Lange@exp2.physik.uni-giessen.de

Contents

1. Introduction 1

2. Physics Background and Belle II Experiment 2
2.1. Physics Motivation 2
2.2. Belle II 2

2.2.1. Pixel Vertex Detector 2

3. Hopfield Network 4
3.1. Neural Networks 4
3.2. Structure 4
3.3. Hebbian Rule 4
3.4. Storkey’s Rule 5
3.5. Updating Nodes 5
3.6. Ising Model 6
3.7. Energy 7
3.8. Capacity 7
3.9. ”Post Training” 7

3.10. Activation Function 8

4. PXD Data 10
4.1. Cluster Properties 10
4.2. 3D Pattern 10
4.3. Data Analysis 11

4.3.1. Number of Signal Pixels 11
4.3.2. x- and y-length 11
4.3.3. Maximal Charge 12
4.3.4. Total Charge and Global Position 13
4.3.5. Zernike Moments 14

4.4. Activation Function 16

5. Results 18
5.1. Network Performance 18

6. Conclusion and Outlook 20

References 21

Implementation Details 22
HopfieldNetwork Class 22

2

1. INTRODUCTION

The Belle II experiment, located at high-energy research facility KEK in Tsukuba
(Ibaraki) Japan, started 2018. The asymmetrical electron positron collider SuperKEKB
was designed with a luminosity increase of 40 times compared to the predecessor experi-
ment Belle and focuses on precise measurements of rare processes. Around the interaction
region several detectors are installed, including the Pixel Detector (PXD), which is used for
tracking of charged particles close to the interaction region. Due to data measurement, rec-
ognizing a real signal out of a large number of background data arises as a problem. Thus,
the primary objective is finding an analysis method to separate highly ionizing particles,
such as anti-deuterons and magnetic monopoles, from e.g. beam background.
Since neural networks showed up as a useful tool for image and data recognition, several
types of networks were developed. Already K. Dort [1] and S. Ks [2] considered multilayer
perceptrons and self-organizing maps (SOM) for signal recognition of PXD data by trans-
forming data properties in abstract input vectors.
Now, a completely different approach should be attempted. Instead of abstract input vec-
tors raw pixel data can be taken as input data. Because measured data consists of a pixel
field containing energy information, the idea is to recognize pattern by using a Hopfield
network. This special network structure, in which every node is connected with each other,
is mostly used for image recognition and showed good performances already [3]. Addition-
ally, to achieve better performance, different optimization variants are considered, such as a
detailed analysis of simulation data. For this research no real signal data was available, but
simulated data’s properties could be considered instead.

1

2. PHYSICS BACKGROUND AND BELLE II EXPERIMENT

2.1. Physics Motivation

The standard model of particle physics (SM) contains all so-far observed elementary
particles and three of the currently known interactions: weak, strong and electromagnetic
(EM) interaction. Gravitation is not included. Due to this and other phenomena like dark
matter and dark energy, an extension of the SM is claimed from theoretical as well as
experimental physics. At experiments like Belle II big collaborations of physicists, engineers
and computational specialists are currently working on understanding and studying new
effects in physics beyond the standard model.

2.2. Belle II

SuperKEKB accelerator, where Belle II experiment is located, was build to explore
new physics and try to explain it. The accelerator reaches an instantaneous luminosity of
8 ·1035cm−2s−1, an improvement compared to its predecessor KEKB [4]. This luminosity in-
crease requires an update of the detector positioned at interaction point of electron-positron
collisions.
In Fig 1 one can see the SuperKEKB structure with electron and positron accelerator rings
on the left and a cross section of the collision region surrounded by detectors on the right. It
includes the Pixel Vertex Detector (PXD), the Silicon Vertex Detector (SVD), the Central
Drift Chamber (CDC), a Time of Propagation Counter (TOP), the Aerogel Rich Detector
(ARICH), Electromagnetic Calorimeter (ECL), Superconducting Solenoid and the KL and
muon detector (KLM) [5]. The Vertex Detector consisting of the PXD and SVD provides
accurate tracking close to the interaction region. The Central Drift Chamber (CDC) is
installed for tracking information as well and measures the energy loss of particles. Iden-
tification of particles is done by the TOP and the ARICH. The EM Calorimeter (ECL) is
designed to measure the total energy and the angular position of particles. The outermost
KLM is used for muon and KL identification [1].

2.2.1. Pixel Vertex Detector

The PXD consists of 40 modules in total, which are arranged in two layers of a windmill-
like structure. The inner layer build out of 16 modules has a diameter of 14 mm and the
outer one 22 mm. In Fig 2 one can see 8 ladders building the inner and 12 ladders the
outer layer. Each ladder is made out of two modules glued together. One module contains
250× 256 and the other 250× 512 pixels. Signal measurement is realized by Depleted Field
Effect Transistor (DEPFET) pixel sensors based on p-channel Metal-Oxide-Semiconductor
Field-Effect Transistors (MOSFET).
If one particle hits the detector it causes a signal of pixels around the point of impingement.
These pixels can be combined to a cluster. Clusters have specific shapes, charges and
positions, depending on the sort of incoming particles. Most clusters fit into a 5 × 5 pixel
field. Thus, global data can be transferred in local data with relative coordinates u and
v (Fig. 2). In the following relative coordinates of a local 5 × 5 pixel field will be simply

2

FIG. 1: SuperKEKB accelerator and detectors around interaction region1

FIG. 2: Inner and outer layer of the PXD: One ladder made of two modules, which
measure particles by bunching signal pixels to clusters2

named x and y, since global coordinates are not explicitly mentioned in this research.

[1] https://www.belle2.org/project/super kekb and belle ii
[2] S. Ks, K. Dort, J. S. Lange: Poster on Multiparameter Analysis of the Belle II Pixeldetector’s Data

3

3. HOPFIELD NETWORK

3.1. Neural Networks

In the last few years neural networks got more and more importance in economical,
medical and other sientific sectors, such as data analysis. Especially in image recognition it
yields good results and proved to be very useful. Beside most common network structures like
deep layer systems, a large number of various network structures for different applications
has been created, differing in size, input data, connection between neurons etc.

3.2. Structure

A special architecture of neural networks can be achieved by connecting every neuron
to every other neuron. This idea is used in Hopfield networks. Hopfield networks, named
after John Joseph Hopfield, are especially used for pattern recognition. Therefore, every
pattern entry is a single node, connected to every other node without self-interaction. The
connections are determined by symmetric weights in a weight matrix. This structure implies,
that every node is in the same layer, which is input and output at the same time (Fig 3).
All states are either binary {0, 1} or bipolar {−1, 1}.

FIG. 3: Structure of a Hopfield network with four nodes: every node is connected to each
other and functions as input and output layer node1

3.3. Hebbian Rule

Saving patterns, that the network should remember is done by training. This can be
realized by several learning rules. Each of them will provide a associative memory by cal-
culating the connection weights between two neurons.

[1] https://de.wikipedia.org/wiki/Hopfield-Netz#/media/Datei:Hopfield-net-vector.sv

4

The simplest learning rule for training Hopfield networks is the Hebbian learning rule [6].
The connection between two nodes is determined by the sum of their entries in each pattern,
that should be stored. If the pattern entries xi, xj ∈ {−1, 1}, it holds that

wij =

p∑
k=1

xki x
k
j (1)

in case of binary entries every 0 has to be transformed into -1, this can be done by

wij =

p∑
k=1

(2xki − 1)(2xkj − 1) (2)

with ∀ i = j ⇒ wij = 0 to avoid self-interaction. In the following only bipolar structure
will be used, binary is analogue to this example. For N nodes that yields a N × N weight
matrix, which is symmetric and zero on the diagonal, such that only N2

2
−N weights have

to be calculated[16].

3.4. Storkey’s Rule

Another way of training a Hopfield network is the Storkey learning rule, introduced by
Amos Storkey in 1997. For bipolar input it is defined recursive [7] as

wkij = wk−1ij + xki x
k
j − xki hkji − xkjhkij (3)

and additionally considers the local field

hkij =
N∑

m=1:m6=j

wk−1im xkm (4)

Such as in Hebbian learning rule to aviod self-interaction it requires that wij = 0 ∀ i = j.
Storkey learning rule has shown a significant improvement of capacity for Hopfield networks
compared to the conventional Hebbian learning [8].

3.5. Updating Nodes

Once a network is trained, it can be used for pattern recognition. Therefore, a test pattern
will be given as input. Updating nodes can then be done synchronously or asynchronously.
In synchronous updating all nodes are considered in the same step, i.e. updating one node
doesn’t influence the calculation of all other node states in the same step. However, in
asynchronous updating modification of one node influences the following updates, such as a
cycle of updating every pattern bit contains many sup steps. The order of nodes is randomly
chosen.
In both cases the weighted sum Vij has to be calculated [6]. Therefore, the value of the
considered node and the value of each other node multiplied by the weight matrix is summed
up.

Vi =
N∑
j=1

wijxixj (5)

5

If Vij is greater than a given threshold θi[15], the value will be updated to 1, otherwise it will
be updated to -1. This procedure is repeated until a stable end state is achieved. Since the
network has a limited number of possible states, it can be proven, that it always terminates.
Three different types of end states exist: saved pattern state, reversed saved pattern state
and a spurious state. The last one arises from storing several patterns in Hopfield networks
and should be mostly avoided.

3.6. Ising Model

To understand the idea of the energy function, a simple solid state model is considered.
The Ising model is an approximative description for spin-spin interaction in crystal struc-
tures, which assumes that spins only contain the z-component with values up (1) or down
(-1). The energy of a lattice system (Fig 4) is given by

E = −
N∑
〈i,j〉

Jijsisj − µ
N∑
i=1

hisi (6)

where J describes the spin-spin interaction, si is the z-component of spin, µ the atomic
magnetic moment and hi an external magnetic field interacting with the ith spin. The
expression of 〈i, j〉 determines the range of considered neighbour interactions. Often it
contains only next neighbour interaction, but for calculating the exact model one have to
look at all interactions. To get the equilibrium state, the system have to be at energy
minimum. Therefore, a random configuration of spins is generated. Then, one picks any

FIG. 4: 2D spin lattice structure in Ising model1

spin and calculates the system energy of the flipped spin. If this decreases the total energy,
this spin will be flipped. That way, every spin will be calculated until energy cannot be
decreased any more and a local minimum is reached.

[1] https://www.researchgate.net/figure/Schematic-representation-of-a-configuration-of-the-2D-Ising-model-

on-a-square-lattice fig2 321920877

6

3.7. Energy

Comparing the Ising model to a Hopfield network yields an analogue definition [9] of an
energy function of the system:

E =
1

2

N∑
i=1

N∑
j=1

wijxixj +
N∑
i=1

θixi (7)

The interaction is determined by the connection weight between two nodes and their values
and the external field is replaced by the threshold. Updating nodes implies decreasing the
total energy in every single step, until a local minimum is reached. Thus, once being in
a local minimum the system will stay there. This enables recognition of spurious pattern,
which will be discussed in the following section.

FIG. 5: Schematic figure of an energy function: Starting from a given state (blue dots) the
network will proceed to a local minimum. States are all possible configurations of a

pattern.

3.8. Capacity

The capacity of a network describes how many pattern can be stored, such that it is still
able to recognize them. For Hopfield networks this it not well defined, since different sets
of saved patterns define different weight matrices and thus different energy contours in the
space of states (Fig 5). If saved pattern are ”far” enough, i.e. fulfil special characteristics
concerning orthogonality, the number of stored pattern p learned by Hebbian learning rule
can be approached by p/N < 0.14, where N is again the number of nodes [10]. Nevertheless,
this should be seen as a rule of thumb, because storage capacity in Hopfield networks is very
pattern specific.

3.9. ”Post Training”

One idea of increasing capacity of a Hopfield network is ”post training” [11] [12], i.e.
modifying the trained network’s weight matrix W . Therefore, a complex trained network is

7

considered as shown in Fig 6. A simple idea to emphasize the saved target pattern is to lift

FIG. 6: Schematic figure of a complex network’s energy function: Target pattern (red
dots) should be shifted down, all other local minima should be shifted up. Unstable target

pattern (right red dot) can be avoided by calculating a few steps and lift it up.

the energy of all other sates up and decrease for the target states Xp. To achieve a better
capacity, spurious states Xs should be removed. Thus, a much easier and effective approach
is to lift only these energies (blue up arrows) and additionally decrease them for the saved
states (red dots with down arrows) by a parameter µ.

W = W + µ

∑
x∈Xp

xixj −
∑
x∈Xs

xixj

 (8)

To avoid unstable target patterns as shown in Fig 6 in the middle local minimum, one can
calculate a few iterations, starting from the unstable pattern, and lift up the intermediate
state’s energy.

3.10. Activation Function

In neural networks, the activation function defines the output of a neuron by the given
input. So far, a simple step function was used with threshold θ. The most common activation
functions are logistic sigmoid function and hyperbolic tangent function [9]. In this way,
additional information as probabilities for bit flipping can be fed into the network.

8

FIG. 7: Different types of activation functions to transfer input into output of a neuron1

[1] https://www.researchgate.net/figure/Schematic-representation-of-a-configuration-of-the-2D-Ising-model-

on-a-square-lattice fig2 321920877

9

4. PXD DATA

4.1. Cluster Properties

First, one have to define how to feed data into the network. As described in section 2.2.1,
incoming particles cause signals on several pixels of the detector, which form a cluster. Each
pixel measures an energy in form of charge. Clusters usually are not greater than a 5 × 5
pattern. This data has to be modified, such that the Hopfield network can deal with it as
input. Also the global signal position in the PXD is given as additional information. The

0 0 0

0 010 0

0 167 17

0 1149 130

0

0

0

0

0

0

0 0 0

0

0

0

0

0 0 0

0 1 0

0 1 1

0 1 1

0

0

0

0

0

0

0 0 0

0

0

0

0

FIG. 8: Transformation of local PXD data to valid input for a Hopfiel network

trivial idea is to transform the pixel data as shown in Fig 8, such that every signal pixel gets
the value 1 and all others are 0. This binary data contains only the shape of the measured
cluster. Nevertheless, a cluster has many properties, which can be observed, such as:

• total number of signal pixels

• x-length, y-length

• maximal charge

• total charge

• position in detector and angle

As it turned out, the simple transformation to a binary pattern is not enough informa-
tion to distinguish signal data from background. Therefore other properties should also be
concerned.

4.2. 3D Pattern

One idea to enlarge input information is to include the pixels’ charge values by extending
the 2D pixel field to a 3D pattern, where the third dimension represents charge. Since the
measured charge range is from 0 up to 250, it is split in 5 parts all of the same size of 50.
This value seemed the most suitable not slow down calculation time to much. As shown in
Fig 9 pixel data is easily converted into a binary 3D picture. This enlarges the capacity to
approximately p ≈ 17, instead of 3 for 2D, but since all signals will have a similar shape in
z-direction, not a large increase of capacity is expected.

10

0 0 0

0 010 0

0 167 17

0 1149 130

0

0

0

0

0

0

0 0 0

0

0

0

0

0 0 0

0 1 0

0 1 1

0 1 1

0

0

0

0

0

0

0 0 0

0

0

0

0

1st layer

0 0 0

0 0 0

0 1 0

0 1 0

0

0

0

0

0

0

0 0 0

0

0

0

0

2nd layer

0 0 0

0 0 0

0 0 0

0 1 0

0

0

0

0

0

0

0 0 0

0

0

0

0

3rd layer

FIG. 9: Transformation of 2D pattern into a 3D pattern: one layer represent a charge of
50, so layer 4 and 5 are filled with zeros.

4.3. Data Analysis

Up to now, only shape and a reduced information of charge are taken into account. The
concept of activation functions, described in chapter 3 3.10, enables passing more information
to the network. To understand the role of several properties, it is meaningful to analyse
the given simulation data for the total number of detecting pixels, x- and y- length, such as
the maximal pixel length, maximal charge and the relation between total charge and global
position in the pixel detector. Therefore, the rate of signal and background is calculated and
fitted with a suitable function. The fits can later be included in the activation functions.
How this can be done will be discussed in section 4 4.4.

4.3.1. Number of Signal Pixels

For the total number of pixels measuring energy, the rate for signal and background of
all detected particles is calculated. In Fig 10 the blue line represents the signal and orange
represents background. Fitting the signal with a function

f1(ntot) =
a

1 + exp (b · ntot + c)
(9)

yields the parameters a = 0.55, b = 0.8 and c = −4.84. In this analysis, it is important that
the fitted function is bound to range of [0, 1] in domain of ntot, so that it can later be used
as a probability for bit flipping.

4.3.2. x- and y-length

The same analysis is done for x- and y-length of a cluster. For the fitted function of
x-pixel-length nx, one gets

f2(nx) = 0.5− 0.5

1 + exp(−0.81 · nx)
(10)

and

f3(ny) =
0.5

1 + exp(2 · ny − 9.3)
(11)

11

FIG. 10: (a): Rate of signal (blue) and background (orange) depending on the total
number of pixels ntot, (b): Fitted function f1(ntot) (orange) for the signal rate

FIG. 11: Fit function for signal rate depending on (a) x-pixel-length nx and (b)
y-pixel-length ny

for the y-pixel-length fit. In addition to x- and y-length, the maximal pixel length nmax,
which is equivalent to the maximum of both values, is calculated and observed too. Again,
signal rate and fit function are shown in Fig 12. The function is given by

f4(nmax) =
0.54

1 + exp(3.08 · nmax − 13.34)
(12)

4.3.3. Maximal Charge

By analysing the maximal charge, one obtains a clear trend of signals at higher and
background at lower charges. In Fig 13 (a) rates of signal are shown in blue and background
in orange. Looking only on the signal rate (Fig 13 (b)), the function

f5(qmax) = 1− 1

1 + exp (−a · qmax + b)
(13)

can be fitted, such that a = −0.027 and b = 0.5.

12

FIG. 12: Signal rate of all detected particles in dependence of the maximal pixel length
and fit function f4

FIG. 13: (a): Rate of signal (blue) and background (orange) depending on the maximal
charge qmax, (b): Fitted function f5(qmax) (orange) for the signal rate

4.3.4. Total Charge and Global Position

As next step, the global position and hence the angle of incoming particles shall be
considered. Since only simulation data is analysed, it can be assumed that an event happens
at global origin. Out of the connection line between origin and the global position in the
detector, the track length l is calculated. To include charge loss of particles per track length,
total charge qtot is divided by l. In Fig 14 the signal rate for this ratio is fitted by the function
f6:

f6

(qtot
l

)
= 1− exp

(
−0.01 · qtot

l

)
(14)

13

FIG. 14: Signal rate in dependence of total charge qtot divided by track length and fit
function f6(qtot)

4.3.5. Zernike Moments

Dealing with a pixel patterns leads to the idea of image moments, which describe a
weighted average of image pixel’s intensities, often used in digital image processing. A
special case is described by Zernike moments based on Zernike polynomials, defined by

Znm(x, y) = Znm(ρ, θ) = Rnm(ρ)eimθ (15)

where n− |m| is even and

Rnm(ρ) =

(n−|m|)/2∑
s=0

(−1)s
(n−m)!

s!
(
n+|m|

2
− s
)

!
(
n−|m|

2
− s
)

!
ρn−2s (16)

expresses the radial part [13]. Those form a complete orthogonal set of functions on the unit
disk, which can be directly projected on an image by defining Zernike moments

Anm =
n+ 1

π

∑
x

∑
y

f(x, y)Z∗nm (17)

where f(x, y) contains the charge of each pixel.

14

FIG. 15: The first 21 Zernike polynomials,
ordered vertically by radial degree and hor-
izontally by azimuthal degree1

FIG. 16: 9 × 9 pattern with cut out disk
of a diameter of 9 pixels: charge is repre-
sented by shades of grey, the highest mea-
sured charge is positioned in the centre

In Fig 15 the first 21 Zernike polynomials are illustrated. To adapt them to cluster analysis,
one have to prepare the data first. Since the moments are invariant under rotation, only the
central position has to be found. Therefore, raw local patterns are scanned for their highest
charge. The 5× 5 pattern is transformed to a 9× 9 field with highest charge in the centre
(Fig 16). Next, a disk of a diameter of 9 pixels is cut out and scaled to the unit disk. Out
of this, finally Zernike moments of different orders are calculated. Moments up to order Zm

3

were concerned in this research. An appreciable separation between signal and background
is observed for A00, A20 and A33.

FIG. 17: (a): Number of signal (blue) and background (orange) counts, (b): Caltulated
rate of signal (blue) and background (orange) with fitted function f7(A00) (green) for

signal rate

Results of A00 are shown in Fig 17. The left figure shows a clear separation, where back-
ground (orange) have small values almost all under 100 and signals (blue) contribute to

[1] https://en.wikipedia.org/wiki/Zernike polynomials#/media/File:Zernike polynomials2.png

15

much larger A00 moments. On the right side, signal and background rates are calculated
and signal rates are fitted by the function

f7 (A00) = 1.05 · exp
(
−(0.02 · A00 − 0.44)2

)
(18)

Since this function also should be treated as a probability for the activation function, for
the domain with negative values the function is just set to 0.
The same procedure is done for A20. There, one gets the fitted function

f8 (A20) = 1.2 · exp
(
−(0.01 · A20 + 0.55)2

)
(19)

Again, negative values are simply set to 0 to handle the function as probability. Moment

FIG. 18: Signal rate (blue), background rate (orange) and fitted function f8(A20) for the
signal rate

A33 has also an imaginary part, so real and imaginary part are separately plotted in Fig 19.
The fitted functions are defined by

f9 (Re [A33]) =
1

0.5 + 0.5 · exp (−2 · Re [A33]− 0.5)
(20)

f10 (Im [A33]) = 0.5− 0.5

1 + exp (−Im [A33]− 0.6)
(21)

Other moments didn’t show a good separation of particles, which is why they are neglected
here. However, four additional input information for the network’s activation function are
found.

4.4. Activation Function

In addition to pattern information, the network is so far fed with, ten functions are found
to describe the probability of being a signal for a measured particle with several properties.
This can be included into the activation function, which influences bit flipping during node
updating. In this case of separating two types of particles the network implementation is
quite simple:
The Hopfield network is trained with two prototypes of signals and two prototypes of

16

FIG. 19: Rate of signal (blue) and background (orange) for real (a) and imaginary (b)
part of A33 with fitted functions f9(Re [A33]) and f10(Im [A33]) (green) for signal rates

background. Two weight matrices are defined, one for signals, the other for background.
Both weight matrices are separately calculated as described in section 3 3.3 and 3 3.4, their
weighted sum leads to the full weight matrix. The activation function defines the weights
to sum these matrices. Without it, both are counted equally. The principle is shown in Fig
20. The activation function f specifies the probability of being a signal. It is a combined
function of all fits of the previous chapters, weighted by their rate range of possible domain.
This yields

f =
1

6.6
(0.548f1 + 0.6f2 + 0.352f3 + 0.5f4 + f5 + 0.7f6 + f7 + f8 + 0.5f9 + 0.4f10) (22)

That way, the trained network can use a modified weight matrix to update nodes to recognize
input patterns.

wsignal11 · · · wsignaln1
...

. . .
...

wsignal1n · · · wsignalnn

wbackground11 · · · wbackgroundn1

...
. . .

...

wbackground1n · · · wbackgroundnn

1 − ff

w11 · · · wn1

...
. . .

...

w1n · · · wnn

FIG. 20: Signal and background matrices are summed, weighted by activation function f .

17

5. RESULTS

5.1. Network Performance

A Hopfield network was implemented as described in the previous chapters. During de-
veloping process for the most efficient network, it occurs that the Stokey learning rule, which
predicts a better capacity and lower rate of ”fake” states, didn’t improve efficiency in this
case. It was tested to store two patterns in a 2D pattern. In Fig 21 the weight matrices
after each learning rule are depicted. In Hebb’s learning rule only values of -2, 0 and 2 are
possible. Maxima (yellow) and minima (purple) occur, if both pattern have the same value,
at mixed states the value is 0 (green). Using the other learning rule obviously extrema at
the crossing points, i.e. the differences between patterns, are emphasized much more. Since

FIG. 21: Weight matrices after Hebb’s learning (right) and Stokey’s learning rule (left):
Storkey’s learning rule emphasizes extrema at crossings of saved pattern states and flattens

all other states.

it didn’t lead to an improvement of accuracy, but extended calculation time, the Hebbian
learning rule was chosen.
For several parameters µ the 2D network was ”post trained”. Despite expectations, perfor-
mance did not improve for the stored signal patterns. Thus, ”post training” was discarded
for the further development. Since no additional information is given to the network, signal
and background pattern are to similar to separate from each other.
Another idea to optimize accuracy was to move clusters in a pattern’s corner. Usually, as
shown in chapter 4 4.3 4.3.2 and 4 4.3 4.3.3, cluster sizes are small, such that it seems difficult
to recognize the same cluster on another position. So, clusters are moved to the top left
corner of a pattern before recognition process.
In the next step, patterns were extended to the third dimension to 5 × 5 × 5 and the first
reasonable results with an accuracy[16] of 63.0 % were obtained.
Finally, the activation function was introduced to the network. First, one started to imple-
ment only the local properties’ functions. These are properties of cluster shape and entries,
like total number of signal pixels, x-length, y-length, maximal charge and total charge. The
accuracy was increased to 76.5 %. Since the activation function showed a crucial improve-
ment, the global property of position in the detector was included by adding function f6.
That lead to an accuracy of 95.7 %. Finally, also Zernike moments completed the activation
function, which lead to an accuracy of 97.7 %. Because a ratio of 50:50 is not the usual

18

3D local prop. global prop. Zernike mom. accuracy

X x x x 63.0 %

X X x x 76.5 %

X X X x 95.7 %

X X X X 97.7 %

TABLE I: Accuracy results of included optimization

measuring ratio, one have to calculate efficiency νsignal and background rejection νbackground
to be able to compare it to other networks and methods of separating experimental input.
The efficiency and rejection are given by

νsignal =
number of correctly identified signals

total number of signals
(23)

νbackground =
number of correctly identified background

total number of background
(24)

For the final network with best performance it holds

νsignal = 96.83 %

νbackground = 98.49 %

At this point, it should be mentioned again, that all test and training data were taken from
simulations and are not the real data. Since only real background data are available, no
statistics to adapted activation functions could be made out of real data. Nevertheless,
testing real background data leads to a background rejection of

νbackground = 95.60 %

These values are independent of the input’s ratio of signal and background and can be
compared to other analysis methods.

19

6. CONCLUSION AND OUTLOOK

Hopfield networks in general perform well for image recognition. In this case, it turned
out to be very pattern specific and restricted in capacity. It became clear, that for signal
separation more information than only cluster shape is needed. In this research a lot
of optimization methods were concerned, such as an expansion of dimension showed an
improvement of accuracy. But the best performance we only could achieve by implementing
an activation function to determine a neuron’s output by its weighted input. Obviously,
this successfully provides the opportunity to feed additional data in form of a probability
into the network.
Basically, the implemented method is a mixture of a neural network and previous data
analysis, what makes it static. To enable a more dynamic method, one could also train
the activation function. That would increase the time it takes to train the network, but
makes it easier to adapt it to real data. However, many problems occur with it, such as
guaranteeing convergence of fitting a function to a data set during training process. The
functions’ values also should stay between 0 and 1 to ensure the meaning of a probability.
So this idea arises as a possible but complex opportunity to modify the static behaviour of
the Hopfield network.
Compared to SOMs, a Hopfield network seem to perform better, due to ratio of efficiency
and background rejection, but cannot conquer multilayer perceptrons [1]. Nevertheless,
training this Hopfield network is based on a completely different approach, which also
seems to be reasonable and can still be improved by fine tuning of the activation func-
tion. Since only simulated data was concerned, the network performs worse for real data.
By analysing real signal and background data a more exact activation function can be found.

20

[1] K. Dort, University of Giessen, Search for Highly Ionizing Particles with the Pixel Detector

in the Belle II Experiment , .

[2] S. Kaes, University of Giessen, Multiparameter Analysis of the Belle II Pixeldetectors Data, .

[3] J. J. Hopfield, Neural networks and physical systems with emergent collective computational

abilities, Proceedings of the national academy of sciences 79.8. (1982) 2554–2558.

[4] SuperKEKB and Belle II , https://www.belle2.org/project/super kekb and belle ii .

[5] Belle II Detector , http://belle2.kek.jp/images/BelleII3D.pdf .

[6] Hopfield Network , http://web.cs.ucla.edu/ rosen/161/notes/hopfield.html (IJLTET) .

[7] X. Hu, Bejing Technology Group, Storkey Learning Rules for Hopfield Networks, .

[8] S. A., Imperial College, Increasing the capacity of a Hopfield network without sacrificing

functionality , .

[9] A. Z. A. S. S. Alzaeemi, S. A. S., Activation Function of Hopfield Neural Network in Agent

Based Modeling , Journal of Genetics and Genetic Engineering 2 (2018) 7–14.

[10] L. M. Folli V. and R. G., On the Maximum Storage Capacity of the Hopfield Model ,

Frontiers in Computational Neurocience (2017) .

[11] R. Bhiksha, Carnegie Mellon University Deep Learning, S18 Lecture 20: Hopfield Networks

1 , .

[12] A. A. S. J. Pooja Agarwal, Abhijit J. Thophilus, Leveraging Different Learning Rules in

Hopfield Nets for Multiclass Classification, Future Technologies Conference (FTC) (2017) .

[13] C. K. P. Bhaskara Rao, D.Vara Prasad, Feature Extraction Using Zernike Moments,

International Journal of Latest Trends in Engineering and Technology (IJLTET) 2 (2013) .

[14] The weight matrix can also be normed by the number of nodes, both variants are possible.

[15] θi is usually 0 ∀i for a simple Hopfield model

[16] Accuraccy is defined here as all correctly identified data normalized on all input data (50 %

signal, 50 % background)

21

Implementation Details

The Hopfield network of this research was implemented as a class structure in C++. In
test.cc file an instance of this class is generated, trained and used. In the following the most
important methods are listed. An additional helper file provides important methods to deal
with files and arrays and other calculations.

HopfieldNetwork Class

• void setNumberOfReadPatterns(int num):

Sets the number of training pattern, which will be read out of trainingFilename

located in DetectionData (set in constructor of class). It can be changed by void

setTrainingFilename(std::string filename)

• void setMove(bool ifmove):

Determines, if a cluster will be moved to the left upper corner of the pattern before
training or recognition and is set to false by default.

• void setUseActivationFunction(bool use):

Determines, if the activation function will be used or not. It is set to true by default.

• void train():

Trains the network with Hebb’s learning rule.

• void generateOrderOfUpdatingNodes():

Generates a random chosen order of a cycle to update nodes.

• std::string detect(int* arr):

Recognizes an input pattern. It gets an array of length 25 and return a string with
the recognition result.

• float weightedSum(int networkStatePattern[numberOfNodes], int node):

Calculates the weighted sum and is used in detect method.

• int threshold(float vIn):

Compares the weighted sum vIn to threshold 0.

• float activationFunction(float charge, int xlength, int ylength, int

maxlength, int totalpixels, float tracklength, float a00, float a20,

float rea33, float ima33):

Returns the activation function.

22

	Contents
	Introduction
	Physics Background and Belle ii Experiment
	Physics Motivation
	Belle ii
	Pixel Vertex Detector

	Hopfield Network
	Neural Networks
	Structure
	Hebbian Rule
	Storkey's Rule
	Updating Nodes
	Ising Model
	Energy
	Capacity
	"Post Training"
	Activation Function

	PXD Data
	Cluster Properties
	3D Pattern
	Data Analysis
	Number of Signal Pixels
	x- and y-length
	Maximal Charge
	Total Charge and Global Position
	Zernike Moments

	Activation Function

	Results
	Network Performance

	Conclusion and Outlook
	References
	Implementation Details
	HopfieldNetwork Class

