
Justus-Liebig-Universität Gießen
II. Physikalisches Institut

Classification of low momentum π0
Mesons at the Belle II experiment by use

of deep learning algorithms
Klassifizierung von π0 Mesonen mit kleinem Impuls am Belle II

Experiment unter Nutzung von Deep Learning Algorithmen

Bachelorthesis

Author:

LUKAS HOLLER

Supervisor:

APL. PROF. JENS SÖREN LANGE

Gießen, September 30, 2020

Abstract

This study aims at identifying low momentum π0 mesons with machine learning algo-
rithms at the Belle II experiment.

To find π0 mesons, reconstruction software tries to match photon pairs created by the
π0 → γγ decay. Conventional methods can identify π0 mesons with a momentum
greater than 230 MeV/c reasonably well. But in the lower momentum range, the back-
ground exceeds the signal by far, and the identification becomes more difficult. This
study uses random forests, feed-forward neural networks, and siamese neural networks
to identify these low momentum pions. Therefore, features from possible photon pairs,
reconstructed by the detector software, are selected and passed to the classifiers. The
studied low momentum π0’s are created by the D∗0 → D0 π0 decay, whereby the D∗0

mesons at Belle II are, for example, produced in the e+e− → Υ(4S) → B+B− and
B+ → K+D∗0D̄0 decay [1].

Especially the feed-forward neural networks and siamese neural networks accomplished
this task fairly well with an area under the curve (AUC) for the Precision-Recall curve
of 0.882. Random forests, with an AUC of 0.812, were primarily used to identify the
input feature importance. Despite dealing with pairwise input, causing potential sym-
metry and information loss problems when using feed-forward neural networks [2], the
performances of the tested feed-forward neural networks and siamese neural networks
are identical. The found results suggest a pattern underlying the data, which causes an
upper limit in performance with the used methods.

Contents

1 Introduction 1

2 Theory 3
2.1 Standard Model of particle physics . 3

2.1.1 Matter particles . 3
2.1.2 Carrier particles . 5
2.1.3 Limits of the standard model 6

2.2 The Belle II experiment . 7
2.2.1 Overview . 7
2.2.2 Detectors . 8
2.2.3 The Belle II Analysis Software Framework (BASF2) 13

2.3 Classification methods . 14
2.3.1 Measuring performance . 15
2.3.2 Precision Recall Curve . 17
2.3.3 Decision trees . 18
2.3.4 Random forest . 21
2.3.5 Neural network . 21
2.3.6 Siamese neural network . 24

3 Analysis 27
3.1 Data generation . 27
3.2 Data preparation . 32

3.2.1 Data selection . 32
3.2.2 Data scaling . 35

3.3 Evaluation . 38
3.3.1 Random Forest . 38

3.3.2 Neural network . 41
3.3.3 Siamese neural network . 45

4 Discussion and Conclusion 49
4.1 Discussion . 49
4.2 Conclusion . 53

Appendix 54

Bibliography 67

1 Introduction

Experimental results indicate that mesons can build molecules. Above 3.75 GeV/c2,
particle states, which defy the theoretical expectations and therefore are called exotic,
have been observed. One theory is that these states are meson molecules [3]. Com-
bination of D and D∗ mesons are good candidates for these molecules, due to their
combined mass being just above this threshold of 3.75 GeV/c2 [1]. The D-D∗ pairing
called X(3872) was found in the year 2003 [4]. Currently, researches try to observe the
D∗-D∗ molecule called X(4014) at, for example, the Belle II experiment. Because D∗

mesons mainly decay into pairs of D0 and π0 mesons, the good reconstruction of π0’s
is critical for identifying D0∗ . Most π0’s originating in the decay of such D0∗ mesons
have a momentum of less than 230 MeV/c [1]. The π0 mesons decay into a pair of
photons with a low momentum as well. The problem is that these photons, and therefor
the π0’s, are harder to detect because the background is significantly higher in the low
momentum region.

This thesis aims at identifying these low momentum π0 mesons with machine learning
algorithms like artificial neural networks. The idea of artificial neural networks [5, 6] is
to adopt the behavior of human brains. Artificial Neural networks (ANN) are systems of
nodes (perceptrons) that are connected. Typically a node in an ANN receives the values
of connected nodes multiplied by individual weights corresponding to the connections,
computes the sum over all inputs of the node, and might apply a function to scale the
sum. The network is trained by altering the weights between nodes to get closer to the
desired output. A commonly used architecture for ANN’s is the feed-forward structure.
Feed-forward artificial neural networks consist of several layers of nodes whereby each
node of every layer is connected to each node of the following layer. An ANN can be
understood as a function with many input parameters.

1

CHAPTER 1. INTRODUCTION

The strength of neural networks is that tasks do not need to be solved analytically, which,
for some cases, is almost impossible due to the complexity of a problem (for example
software for self-driving cars). Furthermore, neural networks can learn to recognize
non-trivial patterns in datasets. In the ’90s neural networks started to become popular,
but the breakthrough of neural networks started around the year 2010 with the increase
in computing power [7]. Today neural networks are not limited in their size and play an
important role in nearly all aspects of our life. The use cases for neural networks range
from speech and image recognition to suggestions on what we may like to buy or watch.

The strength of machine learning algorithms to find patterns in data during a learning
process should be used in this thesis to create classifiers that can identify π0 mesons
with a momentum below 230 MeV/c reliably.

The first chapter after the introduction describes the theoretical background, such as the
standard model of particle physics, the Belle II experiment, different machine learning
approaches, and the evaluation of classification algorithms. In the following chapter, the
process of creating the data with a Monte-Carlo simulation, the preparation of the data,
and the evaluation and implementation of the different machine learning algorithms is
described. Chapter 4 discusses and compares the results and concludes the thesis.

2

2 Theory

2.1 Standard Model of particle physics

The standard model [1, 8] of particle physics is currently the best theory to describe the
fundamental particles and their interactions by the electromagnetic, weak, and strong
force. In the standard model, these forces are mediated by quanta called carrier parti-
cles. Thereby the fundamental particles are separated into matter and carrier particles,
and the Higgs boson, giving the other particles their mass. The standard model ex-
plains nearly all experimental results and correctly predicted many phenomenons, like
the Higgs boson discovered in 2012.

2.1.1 Matter particles

The fundamental matter particles [1, 8] are divided into different groups based on their
properties. First, the particles are separated into elementary fermions with a half-integer
spin and elementary bosons with an integer spin. The fermions, which have a spin of
1
2
, are further divided into particles with a color charge called quarks and into leptons

without a color charge. The quarks consist of the up, charm, and top quark with a charge
of 2

3
and down, strange, and bottom quark with a charge of −1

3
. The electron, muon,

and tau are the three leptons with a charge of -1 and the electron neutrino, the muon
neutrino, and the tau neutrino are the uncharged leptons with very little mass.
The quarks and leptons are grouped into three generations based on their mass. The first
generation consists of the lightest elementary particles of each type, being the up, down
quark, the electron, and electron neutrino. These light particles are the building block
for all stable matter in the universe today. The heavier ones in the second and third-
generation (compare table 2.1) are, due to their mass, less-stable, and decay quickly.

3

CHAPTER 2. THEORY

Despite the mass, spin, and charge the particles can be identified by several other proper-
ties called flavor quantum numbers. These properties, including the spin and the charge,
combined give each particle a flavor. For both leptons and quarks, this includes the weak
isospin T3. The electron, muon, and tau have a weak isospin of 1

2
like the up, charm,

and top quarks. The remainings leptons and quarks have a weak isospin of −1
2
.

Table 2.1: The fundamental particles of the standard model (translated from [8]).

Elementary fermions Elementary bosons

3 generations
3 interactions

(gauge bosons)
higgs-
boson

light medium heavy strong em. weak

6 lep-
tons

electron-
neutrino
νe

muon-
neutrino
νµ

tau-
neutrino
ντ

bosons

W+

W−

Z0

H

electron
e−

muon
µ−

tau
τ−

photon

γ6 quarks
down d

up u
strange s
charme c

bottom b
top t

gluon
g

for fermions:
additionally the same table for antiparticles

for bosons:
antiparticles already included

Leptons are distinguished by quantum numbers for each generation. The electron and
the corresponding neutrino have an electronic lepton number Le of +1, the second gen-
eration leptons a muonic lepton number Lµ of +1, and the third generation leptons a
tauonic lepton number Lτ of +1.

Quarks carry a baryon number B = 1
3

instead of a lepton number and differ in their
quark flavor quantum numbers. The quarks quantum numbers include the third compo-
nent of the isospin I3, the strangeness, the charm, the bottomness, and the topness. De-
spite the isospin, the other quantum numbers are defined by the number of anti strange,
charm, anti bottom, or top quarks. For all the quarks, the quark flavor quantum numbers
are 0 despite one entry. Up quarks have a I3 of 1

2
, down quarks of −1

2
, strange quarks

a strangeness of -1, charm quarks a charm of 1, bottom quarks a bottomness of -1, and

4

CHAPTER 2. THEORY

top quarks a topness of 1. Further quarks carry a color-charge of red, green, or blue.
Under normal conditions, these colors cannot be isolated and observed. The quarks
have to form hadrons, which are color neutral. This phenomenon is called confinement.
A hadron is color neutral when, for example, a color and its anti-color bond together
in mesons or when a red, a green, and a blue quark (or three antiparticles with antired,
antigreen, and antiblue) form a baryon. When dealing with antiparticles the signs of all
flavor quantum numbers are swapped.

2.1.2 Carrier particles

The electromagnetic, weak, and strong force is mediated by carrier particles. These car-
rier particles [1, 8], also called force particles, are gauge bosons with a spin of 1. When
particles interact with a certain force, the corresponding carrier particles are exchanged.
The electromagnetic force is carried out by photons (γ). Because photons are massless,
the electromagnetic force is effective over a long-range.

The strong force is mediated by eight gluons and is responsible for binding quarks
and thereby forming hadrons. These gluons interact between color-charged particles,
each consisting of a combination of color-charge and anticolor-charge. Because gluons
themselves carry a color-charge, they interact among themselves. Due to this the strong
force is short-ranged.

The weak force is mediated by the W+, W−, and the Z boson and interacts with all
particles. Because the W± and Z bosons are relatively heavy (about 80 times the mass of
a proton), the weak interaction is very short-ranged. The Z boson is its own antiparticle,
and thus all charges and flavor quantum numbers are zero. Therefore the Z boson can
only change the spin and momentum of particles. W± are responsible for the decay and
conversion of particles, whereby the weak force is the only force that can interact with
neutrinos. A typical example is the β−-decay when a down quark decays into an up
quark emitting a W− that further decays into an electron and an electron neutrino.

5

CHAPTER 2. THEORY

2.1.3 Limits of the standard model

The standard model [8] is currently the best theory to describe all known particles and
their interactions. All found particles till today are consistent with this model, and many
phenomenons can be explained with it. Still, the standard model is not a final theory
and leads to some fundamental physical questions regarding the model: Why do these
particles have their particular mass, and what causes the large difference between the
generations? Is there a carrier particle for the gravitational force? What is dark mat-
ter? Further, the standard model has 25 fundamental parameters, like several coupling
parameters for the interactions and the masses of the leptons and quarks. This is not
necessarily a problem but suggests that there could be undiscovered correlations like a
unification of the fundamental forces implied in some experimental results.

6

CHAPTER 2. THEORY

2.2 The Belle II experiment

2.2.1 Overview

The Belle II experiment and the SuperKEKB accelerator (Fig. 2.1), at which the ex-
periment is performed, are upgrades of the Belle experiment and the KEKB accelerator
located in Japan [9, 10, 11, 12].

In the Belle experiment, the CP-violation (violation of CP-symmetry) in the neutral B
meson system was successfully measured. CP symmetry states that when a particle
is swapped with its antiparticle and the coordinates are inverted, the physics should
be the same. CP-violation is one reason why the universe today is dominated by matter
over antimatter. Otherwise, the amount of matter and antimatter would be equal because
antimatter annihilates in contact with matter, and the Big Bang created equal amounts of
both. But the found CP-violation in the neutral B meson system is not enough to explain
the whole asymmetry. The Belle II experiment tries to study the related phenomena
further and tries to find physics beyond the Standard Model of particle physics (often
referred to as "new physics").

Figure 2.1: The SuperKEKB accelerator (left) and an inside look into the Belle II detec-
tor (right) [12].

The SuperKEKB accelerator is an asymmetric electron-positron collider. In the low-
energy ring (LER) positrons with an energy of 4 GeV are stored and in the high-energy

7

CHAPTER 2. THEORY

ring (HER) electrons with 7 GeV are stored (Fig. 2.1 (left)). The two beams collide
with a center of mass energy of

√
s = 10.58 GeV. This energy is in the region of the

Υ(4S) resonance, which then decays mostly into B0B
0

and B+B− pairs. Due to this,
the SuperKEKB accelerator is a B-factory.

Another important feature of the SuperKEKB accelerator is its planned very high lu-
minosity of 8 · 1035cm−2s−1. This luminosity is needed to very precisely measure rare
decays. On the other hand, the high luminosity creates more data and thus more back-
ground. The Belle II detector system and software have to cope with this higher back-
ground. In particular the detectors closer to the interaction point, such as the pixel
detectors 14 mm away from the center of the barrel, are affected.

2.2.2 Detectors

The Belle II detector setup [9, 10, 11, 13] is depicted in Figure 2.2. Closest to the
interaction point is the Vertex detector (VXD), followed by the Central Drift Chamber
(CDC). The Vertex detector provides information about decay vertices and information
about low momentum tracks. The Central Drift Chamber is used to reconstruct momenta
and charges of tracks. These two detectors are surrounded by a particle identification
system (PID) and the electromagnetic calorimeter (ECL). Both detectors are placed in
the barrel of the Belle II detector and as well in the forward endcap in case of the PID
or in both endcaps like the ECL. As the name states, the particle identification system is
designed to identify charged particles. With the electromagnetic calorimeter electrons
and photons can be detected.

These detectors are placed in a homogeneous 1.5 T magnetic field, which is provided
by a superconducting coil placed in the barrel after the ECL. The above-mentioned
detectors are further surrounded by a K0

L and muon detector (KLM). The KLM detector
can distinguish between muons and hadrons and can identify K0

L in combination with
the previous detectors.

In the used coordinate system, the z-axis is pointing in the direction of the electron beam
(fig. 2.2 from left to right), the y-axis points upwards and the x-axis points away from
the center of the accelerator.

8

CHAPTER 2. THEORY

Figure 2.2: Side view on the top half of the Belle II detector [9].

2.2.2.1 Vertex detector (VXD)

The Belle II vertex detector is made up of two different detectors, a silicon Pixel De-
tector (PXD) and a Silicon Vertex Detector (SVD). Combined these two detectors have
six layers. The two innermost layers are the silicon Pixel Detector, and the four outer
layers are the Silicon Vertex Detector. Due to the high luminosity of SuperKEKB, and
the resulting higher background, the detectors, especially the innermost, need to be very
precise. Therefor for the two inner layers, with radii at 14 mm and 22 mm, pixel sensors
are used, with a total of eight million pixels. The four other layers with radii ranging
from 38 mm to 140 mm are far enough away from the interaction point that strip detec-
tors can be used.

The vertex detector is used to reconstruct the trajectory of charged particles.

2.2.2.2 Central Drift Chamber (CDC)

The Central Drift Chamber (CDC) is a large volume drift chamber filled with 50% he-
lium, 50% ethane gas, containing sense and field wires. It surrounds the vertex detector
and has an inner radius of 160 mm and an outer radius of 1130 mm.
When charged particles pass through the detector, they create electron-ion pairs. Due
to an applied electric field between the field wires and the sense wires, the electrons are
accelerated and create a shower of electrons by electron ionization. This shower can

9

CHAPTER 2. THEORY

be measured with the sense wires. This way it is possible to reconstruct the tracks and
momenta of charged particles. Further, this provides some information for particle iden-
tification by measuring the energy loss of particles. This is especially important for low
momentum particles, which may not reach detectors designed for particle identification
more outwards.

The CDC used in Belle II contains 14336 sense wires arranged in 56 layers. To perform
a 3D reconstruction of the helix tracks, the layers are grouped into nine superlayers, con-
taining six layers each (eight for the innermost). The superlayers orientation alternates
between being aligned parallel to the beampipe/z-axis (axial layers) and at a non-zero
angle to the beampipe (stereo layers).

To cope with the high background, the layer density is higher closer to the interaction
point.

2.2.2.3 Particle Identification (PID)

The particle identification system at Belle II has a Time-Of-Propagation (TOP) detec-
tor, which is located in the barrel region of the detector and an Aerogel Ring-Imaging
Cherenkov (ARICH) detector located in the forward endcap.

Both detectors use the Cherenkov effect. When a charged particle passes through a
medium with a higher speed than the speed of light in the given medium, it produces
light, Cherenkov light. The angle Θ between the particles trajectory and the emitted
light is given by cos Θ = (nβ)−1 with the ratio between the particle speed and the speed
of light (in vacuum) β = vp/c and the refraction index of the medium n. The created
light cone can be measured and be used for particle identification.

The Time-Of-Propagation detector is placed around the Central-Drift-Chamber and con-
sists of 16 quartz modules with a thickness of 20 mm. When charged particles pass
through the detector, they produce Cherenkov photons with different angles Θ. The
photons are reflected in the quartz radiator and measured with a micro-channel plate
(MCP). The MCP only provides two spatial coordinates, but with very precise timing
(30 ps), it is possible to obtain the 3-dimensional information. The conceptual overview
is shown in fig. 2.3.

10

CHAPTER 2. THEORY

Figure 2.3: Conceptual overview of TOP counter [9].

For the forward endcap a Aerogel Ring-Imaging Cherenkov (ARICH) detector is used.
In an aerogel radiator, consisting of two different aerogel layers (n1 = 1.046 upstream
and n2 = 1.056 downstream), Cherenkov photons are created. The light cones are
detected with a photon detector (MCP) (fig. 2.4). The used design provides a good
separation of kaons and pions, and pions, muons, and electrons below 1 GeV/c.

Figure 2.4: Proximity focusing ARICH - principle [9].
Note: The used aerogel radiator for Belle II is, in contrast to the figure, two
layers with different refractive indices are used.

11

CHAPTER 2. THEORY

2.2.2.4 Electromagnetic calorimeter (ECL)

The main purpose of the electromagnetic calorimeter (ECL) is to detect the energy and
angular coordinates of photons and to identify electrons. This is especially important for
the Belle II experiment because, during the decay of B-Mesons, about one-third of the
created particles are neutral. In order to reconstruct the B mesons, it is very important
to precisely detect photons in a wide energy range.

The electromagnetic calorimeter consists of a 3 m long barrel structure surrounding the
Time-Of-Propagation detector and two endcaps with a total of 8736 CsI(Tl) (caesium
iodide doped with thallium) crystals. This way, the electromagnetic calorimeter covers
about 90% of the solid angle in the center-of-mass system.

The effect used in the electromagnetic calorimeter is that when electrons and photons
travel through the scintillation crystals, they produce very similar electromagnetic cas-
cades. Photons produce secondary electrons (pair production, photoelectric effect, ...).
The electrons, for example, free other electrons or radiate photons when interacting with
the crystal material. This way, the energy of the particle is deposited in the calorimeter.
With a photomultiplier at the end of each crystal, the amount of photons from a particle
is measured. The number can be converted to the absorbed particle energy. Electrons
and photons can be distinguished by checking if a charged track from the previous de-
tectors can be matched to the events measured in the ECL.

2.2.2.5 K0
L and muon detector (KLM)

The K0
L and muon detector (KLM) consists of alternating layers of 4.7 cm thick iron

plates and detector elements. In the barrel, the KLM has 15 detector layers and 14 iron
plates, and in the endcaps, the KLM consists of 14 detector layers and 14 iron plates.
Due to the high background, scintillators are used for the two innermost detector plates
of the barrel and all layers of the endcaps. For the other detector layers of the barrel,
two resistive plate chambers (RPCs) per layer are used. These RPCs consist of two
glass sheets (high voltage electrodes) with a thin gas volume in between them. Charged
particles passing through the RPC ionize the gas molecules and create a spark that can
be measured.

12

CHAPTER 2. THEORY

Due to the higher penetration power of muons compared to hadrons, muons can be
distinguished from hadrons. The combined 4.7 interaction lengths of the KLM and the
ECL are enough that the hadrons energy gets dissipated, and the hadrons are stopped.
Neutral K0

L mesons can be identified because they can create clusters in both ECL and
KLM, but they cannot produce charged tracks in the detectors in front.

2.2.3 The Belle II Analysis Software Framework (BASF2)

The Belle II Analysis Software Framework BASF2 [10, 13, 14, 15] is a crucial part
of the Belle II experiment. It provides the complete software and tools needed for the
Belle II experiment. This includes collecting the data from the detector or otherwise
generating and simulating data with a Monte Carlo simulation, then reconstruct the
particles and their properties from the acquired data and analyze the reconstructed data.
The process of how to generate, simulate, and analyze data is explained in more detail
in subsection 3.1.

BASF2 is written in C++14, but a Python interface is provided with many Python scripts
(steering files). This makes BASF2 accessible for more users, and scripting is easier
because users can write their own modules in Python. The data is handled with ROOT
objects and files.

Figure 2.5: Overview of the tasks the BASF2 framework can perform [14].

13

CHAPTER 2. THEORY

2.3 Classification methods

Classification methods [16], as the name states, are methods that decide, based on a
given object (input), in which category an object most likely belongs or how to label this
object. Classification methods apply to a wide variety of tasks, ranging from medical
tasks, classify if a person has cancer based on a ct scan, email providers checking if an
email is ’spam’ or not, or for classifying road signs for autonomous driving. Due to the
importance of classification tasks, many different methods are available today. In this
thesis Decision Trees, Random Forests, and different kinds of Neural Networks will be
discussed and used.

The steps when creating a classifier are to prepare the data, tune the classifier settings,
train the classifier, and then measure its performance on some test and validation data.
The test data is mostly data close to the training data but still new data for the classifier
and is used to measure the performance of the classifier. Validation data is data that
is completely new and independent from the training data and should be used because
some classifiers tend to overfit data, and to receive less biased performance feedback.
Overfitting means that the classifier does not learn to recognize a pattern in the dataset
but remembers the tuples from the training set. This can be identified when the per-
formance on the training data is improving, but the performance on the validation data
starts to decline. When the performance of the classifier is not satisfying, the process
goes back to step one, two, or three.

Programming classifiers can be done in python with the scikit-learn library [17], which
provides a wide range of tools for data analysis and machine learning. Other important
python libraries are Tensorflow [18] and Keras (Tensorflow API) [19], which provide
tools to create neural networks. Keras further provides the option to run on the GPU
(NVidia), which results in significantly better run times compared to the CPU. Overall
phyton provides many libraries for handling and manipulating large datasets and visu-
alizing data. For this thesis, Jupyter Notebooks [20] have been used as they offer a lot
of interactivity and code readability.

A subset of classification tasks is binary classification. Binary classification is used for
tasks where only two possible outputs exist (for example, 0/1, true/false, ’spam’/’non-
spam’, ...). Within this thesis, the objective for the binary classifiers is to decide if a

14

CHAPTER 2. THEORY

given pair of photons originate from a low momentum π0 created by a D0∗ → D0π0

decay or not.

Many classifiers do not directly output 0 or 1, typically the output is a value between 0
and 1. This output can be interpreted as a probability, whereby a value closer to 0 or 1
indicates that a given tuple is more likely a 0 or 1. To perform a prediction based on this
continuous value, a threshold is used. All values above the threshold are labeled as 1,
and all below, or equal to the threshold, as 0. The standard threshold is 0.5. Changing
this threshold can change the performance of a classifier significantly, as shown in figure
2.6 where a higher and lower threshold both performs better than the standard threshold
of 0.5.

0.53

0.91

0.43

0.11

Output of the
classifier

1

1

0

0

Predictions
(Threshold 0.5)

1

1

1

0

Predictions
(Threshold 0.33)

0

1

0

0

Predictions
(Threshold 0.66)

0

1

1

0

True labels

Figure 2.6: Example of how different output scores lead to different prediction in de-
pendency of the chosen threshold and thus to different recall and precision
scores.

2.3.1 Measuring performance

When testing a binary classifier (Decision Tree, Random Forest, Neural Network, ...)
several parameters are used to measure the performance [21, 22, 23]. The most basic
parameter used for all further measurements originates from distinguishing how the data
was classified in comparison to the true label. A tuple is categorized as true positive
(TP) or true negative (TN) when the prediction of the classifier was correctly positive

15

CHAPTER 2. THEORY

or correctly negative. When the classifier wrongly classified a given tuple as positive or
negative, the outcome is false positive (FP) or false negative (FN). This categorization
can be illustrated as a confusion matrix shown in Table 2.2.

Table 2.2: Example of a confusion matrix.
Actual class:

Positive
Actual class:

Negative
Predicted class:

Positive
True Positive

(TP)
False Positive

(FP)
Predicted class:

Negative
False Negative

(FN)
True Negative

(TN)

The most intuitive approach to use these parameters to measure the performance is the
accuracy given by the equation:

Accuracy =
TP + TN

TP + FP + FN + TN
=

of correct classifications
of classifications

(2.1)

The downside of the accuracy is that it does not give any information about how well
a certain label is classified. For example, a test dataset is made up of 90% ’true’ tuples
and 10% ’false’ tuples. Even when a classifier wrongly classifies all tuples as ’true’, the
overall performance is still 90%. This is not only a problem during the evaluation but
also during training. If the training data is heavily unbalanced, the classifier may learn
to classify the whole datasets as the over-represented label. This happens because even
if a few tuples are wrongly classified, the over-represented label is correctly classified,
and due to this, the classifier still performs well regarding the accuracy.

To take this into account the performance can be measured by the precision, the recall,
and the F1-score. All these scores focus on the performance of the positive label be-
cause, for this thesis and most classifiers, the attention is on classifying correctly the
positive label, not the negative one.

Precision =
TP

TP + FP
(2.2)

16

CHAPTER 2. THEORY

Recall =
TP

TP + FN
(2.3)

F1 score =
2TP

2TP + FN + FP
(2.4)

Precision is the probability that a positive prediction is truly positive. On the other hand,
the probability that an actual positive class is correctly classified as positive is called re-
call. The F1 score is a combination of the precision and recall score.
To decide which parameter is most relevant, the purpose of a classifier has to be con-
sidered. If a classifier should, for example, detect a tumor on a ct-scan, a high recall is
wanted. Because otherwise some tumors, would not be found and cause a serious health
risk. Contrarily, precision should be favored when it is important that a positive outcome
is truly positive. This may be the case when police investigators use face recognition
to find criminals. With a high precision, it can be prevented that the officers arrest the
wrong person. In most cases, it is important to find a balance between these parameters.
This can be done by using the F1 score. Another option is the Precision-Recall curve.

For every used prediction threshold, a precision-recall pair exists. By varying the thresh-
old, either precision or recall can be maximized. Hereby, a higher precision normally
results in a lower recall and vice versa. For every use-case, a good trade-off between the
parameters has to be found.

2.3.2 Precision Recall Curve

A Precision-Recall Curve (PRC) [22, 23] depicts this tradeoff between precision and
recall, and provides a visual interpretation of how good a classifier performs indepen-
dently of the used threshold. In a PCR, the precision recall points for different decision
thresholds are plotted and connected. Figure 2.7 depicts the PRCs of a dataset with 33%
positive labels with a random, a perfect, and a sample classifier. A random classifier has
a constant precision corresponding to the percentage of positive labels independently of
the recall. All curves above this line perform better than a random classifier. The best
classifier has a precision of 1 for all recall values despite the case where the recall is 1.
When the recall is 1, the precision can have all values above the precision of a random

17

CHAPTER 2. THEORY

classifier. The performance of a typical classifier is normally between those curves.

Another parameter to measure the performance obtained from the Precision-Recall Curve
is the area under the curve (AUC) with a perfect AUC of 1. The strength of the AUC
score is that it measures the performance of the classifiers for different thresholds in
comparison to the F1-score. The F1-score takes the recall and precision into account as
well, but only at a given threshold.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Perfect
Random
Sample classifier

Figure 2.7: The Precision Recall Curve for a random classifier, the perfect classier and
a sample classifier. The used dataset contains 33% positive labels.

Compared to the often used ROC plot, the precision-recall curve should be used when
the dataset is imbalanced, meaning one label is being overrepresented [22]. In the case
of this thesis, as shown later, the negative label outweighs the positive.

2.3.3 Decision trees

Decision trees [24, 25, 26, 27] are a pretty simple approach to classification (and regres-
sion) problems. Decision trees classify data by starting at the root node and splitting the
dataset. The split is done by a decision function (decision node). The decision function
is, for example, if a given feature x is above or below a certain value or in a certain
range of values. A decision node is not limited to one feature, it can split the dataset by

18

CHAPTER 2. THEORY

asking multiple ’questions’ at once. After the root node, this process continues with the
internal nodes and ends when a leaf node is reached. The given tuple of the dataset is
assigned the label of the leaf node it ends in. Figure 2.8 depicts a simple example of a
use-case for decision trees.

Figure 2.8: Simple example of a decision tree [26].

The main parameters of decision trees are the depth of the tree, the maximum number
of leaves, and how the splits are done. The depth of a decision tree is the length of the
longest path or, in other words, the number of layers of internal nodes and leaves. Figure
2.8 has, for example, a depth of 3. Another way to prevent the tree from becoming too
complex is to set a maximum number of leaves. This may be helpful if a certain classi-
fication (extracting a specific label) is easily done by a few decision nodes, but another
classification in the same tree needs more steps and would be cut off by a maximum
depth.

The actual training of a decision tree is the optimization of the split criteria at each
node. Commonly used measures to describe the goodness of a split are the Gini Index
and Entropy. The Gini Index is defined by:

1−
∑
i

(pi)
2 (2.5)

19

CHAPTER 2. THEORY

where pi is the probability that an object is being classified to a certain class at some
node or leaf [27]. The Gini Index (also known as Gini coefficient) measures how pure,
regarding the labels, the data is or how well the labels have been separated by an applied
split. The optimal score is a Gini Index of 0.

Another function, used to measure how well decision nodes perform, is Entropy:

∑
i

(−pi log2(pi)) (2.6)

with an optimum (or max purity) of 0 [27]. To obtain the ’best’ split for a given node
the weighted Gini index or the weighted Entropy of each branch is subtracted from the
Gini index or the Entropy of this particular node. The split with the highest score is
considered the ’best’ split. In practice, the difference between the two functions is, for
the most dataset, insignificantly small.

The strength of decision trees lies in their simplicity [25]. The idea behind them is very
simple and the data requires little to no preparation. Decision trees can be visualized
very well. This can lead to a better understanding of the dataset and give information
about how classes are distinguishable. This includes that decision trees can give infor-
mation on how important which input variable is (feature importance) for classifying the
input [25]. This information, about how capable a given feature is to differentiate the
dataset, can, for example, be used to decide which features a neural network is trained
on.
A downside of decision trees is that trees cannot handle noise or small changes in the
training data very well. These small changes often result in completely different trees
with strongly varying performances. Another problem with decision trees is overfitting.
Especially large trees tend to overfit the data because nearly every tuple of the training
dataset has created a single leaf during the training. This can be reduced by, for exam-
ple, limiting the max depth of a tree, set a maximum number of nodes, or by setting a
minimum number of samples for a node to be split further.

20

CHAPTER 2. THEORY

2.3.4 Random forest

A random forest [28, 29] is a collection of uncorrelated decision trees and, therefore,
an ensemble method. The classification is done by a majority vote of all trees. The
combination of many different trees should boost performance and reduce statistical
errors.

The most important task, when creating the trees, is to create uncorrelated trees. This
can be obtained in several ways. One option is to provide different training data for each
tree. This can be done by using a different subset of the training data for each tree, using
feature selection and train each tree only on a subset of all features, or by using linear
combinations of the input. Another way is to use random splits when creating trees.

The strength of random forests is that they are not as susceptible to overfit as single
decision trees. This is due to the Strong Law of Large numbers reducing the overall error
when using uncorrelated trees. The other big strength of random forests is that a large
number of relatively weak trees can together form a strong classifier. For example, take
three decision trees, which alone are correct 80% of the time. If these trees are combined
to a random forest and decide via majority vote, the probability that the ensemble is
correct is

P(correct) = 1−
(
0.23 + 3 · 0.22

)
= 0.88 (2.7)

The accuracy increases with the number of used trees in the ensemble. To guarantee that
the ensemble performs better than some single trees, it is important that the trees are un-
correlated. Otherwise, all three trees would classify more or less the same 80% correct,
and thus the overall performance would be roughly 80% as well. Furthermore, random
forests are capable of giving an even more detailed look into the feature importance.

2.3.5 Neural network

Artificial neural networks or simply neural networks [5, 6, 11] are an adaptation of the
neural networks in our brains and the try to mimic their behavior. Our brain consists
of neurons that are connected. The electric signals in our brains travel through these

21

CHAPTER 2. THEORY

networks, and the individual neurons may block a signal coming from another neuron,
transmit it, or even intensify the signal before passing it on to some other neurons.
Artificial neural networks are build in a comparable manner. The neurons in the artificial
neural network are called nodes and are connected. The decision of how these nodes
are arranged is an important task when designing a neural network and influences the
performance of a neural network drastically.

A simple approach for a neural network is a feed-forward neural network. In this net-
work, several layers of neurons are connected, and an input is fed forward through the
layers (fig. 2.9).

Output LayerHidden LayersInput Layer

I1

I2

I3

I4

α

Figure 2.9: Illustration of a feed-forward artificial neural network with four input nodes,
two hidden layers with five and three nodes and a single output node.

The first layer is the input layer and the nodes have the values of the input features. Typ-
ically all nodes of one layer are connected with all nodes of the next layer. A connection
between two nodes is called a weight (W11, W12, ...). When data is passed through the
network the value of a node is computed as the sum h over all previous nodes times the
weights of the corresponding connection. Additionally, a bias can be added to this sum.
Then this sum is typically passed through a function to limit its range. Typical functions

22

CHAPTER 2. THEORY

are the tangens hyperbolicus with a range from -1 to 1, the RELU function given by the
equation relu(h) = max(0, h), or the Sigmoid function with output values between 0
and 1. When using, for example, the tangens hyperbolicus the value xi of the i-th node
in a layer is calculated by

xi = tanh

(
bi +

∑
j

ωi,j uj

)
(2.8)

with the bias bi, the nodes uj of the previous layer, and the corresponding weights ωi,j
connecting the two layers [6].

The weights are containing the entire information of the neural network. During the
training process the target is to find the values with the best performance. This is done by
providing the neural network with training data. The data is used to adjust the weights
to reduce the deviation between the prediction and the true labels. Methods used to
decrease this output error are called optimizer and try to find minimum for the overall
output error of a neural network (loss) in the multi-dimensional weight space. The main
differences between the optimizers are how fast they alter weights (learning rate), how
they change the learning rate over time, and how do they decide what weights to change
how. Backpropagation (short for backward propagation) is an algorithm to calculate the
gradient for the neural weights in regards to the loss. This is done backwards through
the model. Beginning with the last layer going backwards to the first, the weights are
adjusted along the gradient with the learning rate defining the magnitude of change. Due
to performance reasons, back-propagation is normally not applied after every training
sample, mostly this is done after a certain number of samples combined in a so-called
batch.

The loss is calculated with a loss function. For binary classification a typical loss func-
tion is binary cross-entropy:

Loss =
1

output size

output size∑
i=1

yi log ŷi + (1− yi) log(1− ŷi) (2.9)

with the true label yi and the predicted label ŷi [30].

23

CHAPTER 2. THEORY

When creating a neural network the main challenges are to find the right amount of
layers, nodes per layer, and activation functions for these layers. A small number of
layers and nodes per layer can be computed faster but may not provide enough degrees
of freedom to find the underlying pattern. A neural network with more layers and nodes
per layer is significantly slower to compute but may be more capable to solve a given
task. Another problem that comes with more degrees of freedom is the risk of overfit-
ting. This can be partially prevented when during the training random weights between
nodes are set to 0. This acts similar to adding noise to training data because the network
is forced to adapt to slightly change situations and is called dropout.

The strengths of a neural network are that they are capable of finding patterns in data that
humans can not recognize. They can handle high-dimensional data and find important
features without any prior knowledge. Furthermore, they can solve tasks where it is
nearly impossible to write algorithms by hand, for example, to recognize traffic signs in
a video.

2.3.6 Siamese neural network

The input of these artificial feed-forward neural network is, in this thesis, a pair of
photons each with an individual feature vector. One decision that needs to be made is
how to create the input vector based on this pair. The option used in this study is to
concatenate the vectors of each photon in a pair. Other options [2] are the Hadamard
product where the i-th feature of each photon is multiplied to create the input vector
or to use the Cartesian product and create a vector containing each possible product
between the two single-photon features.
Hereby symmetry is the main concern. Symmetry in this context means that a pair of
photons create the same result regardless of their order of input. When noting the neural
network as a function f with the two photons −→x 1 and −→x 2 as an input pair, symmetry
can be noted as:

f(−→x 1,
−→x 2) = f(−→x 2,

−→x 1) (2.10)

24

CHAPTER 2. THEORY

But regardless of how the vectors are concatenated information is lost or symmetry is
not guaranteed for a feed-forward neural network [2]. Due to these problems, a feed-
forward neural network mostly performs worse than so-called pairwise neural networks
or Siamese neural networks which are designed to guarantee symmetry.

Input B

Output B

Input A

Output A

Prediction

|Output A - Output B|

=

Figure 2.10: Illustration of a siamese neural network.

The structure of a Siamese neural network [2, 31, 32] is depicted in figure 2.10. First,
the two features vectors of each photon in a pair are propagated through a feed-forward
neural network. To ensure symmetry the two neural networks share their weights, thus
being the same network. This ensures the same output for a certain photon regardless
if it is propagated through the first or the second network. The two outputs than need
to be merged. The function used to merge needs to be symmetric otherwise the order
of photons would alter the result. For this thesis, the absolute distance between the

25

CHAPTER 2. THEORY

output vectors is used. This output is then once again propagated through a different
feed-forward neural network which outputs the prediction.

Siamese neural networks have typically, compared to feed-forward neural networks,
a better performance when pairwise input is used. Further, it ensures symmetry and
prevents information loss compared to merged input vectors.

26

3 Analysis

3.1 Data generation

As previously mentioned, the basf2 framework [14, 15, 33, 34] is not only capable of
collecting the data from the Belle II experiment, it can simulate data as well. The ad-
vantage with this is that the decay channels of the starting Υ(4S) and for the decay
products can be modified. This gives the possibility to create exactly the particles which
are needed for certain analysis. In the case of this thesis, π0 mesons with a low mo-
mentum are needed. These low momentum pions are created during the D∗0 → D0 π0

decay [1]. The π0 mesons decay into a pair of photons that are then detected.

The decay channels for the simulation are given in a decay file. Listing 3.1 is a section
of the whole decay file used in this thesis. The complete decay file can be found in the
appendix (listing 4.1).

Listing 3.1: Section of the decay.dec file.� �
1 Decay D*0
2 0 . 6 5 D0 pi0 PHOTOS VSS ;
3 0 . 3 5 D0 gamma PHOTOS VSP_PWAVE ;
4 Enddecay

5 CDecay anti -D*0� �
First, the particle to decay is specified in line one. In the two following lines, two
different decay channels are specified. The first value is the branching ratio, followed
by the daughters of the particle specified in line one. The ’PHOTOS’ parameter enables
final state radiation for this decay [34]. ’VSS’ and ’VSP_ PWAVE’ specify the decay
model. Each model respects specific angular distributions of the particles. ’VSS’ stands
for a decay of a vector to a pair of scalars and ’VSP_ PWAVE’ means that a vector
decays to a scalar and a photon. ’Enddecay’ tells the interpreter that no more decay

27

CHAPTER 3. ANALYSIS

channels for the D∗0 will follow. ’CDecay anti-D*0’ creates analog the same decay
channels with the anti-particles. The decays defined for D∗0 in this section can (without
the anti-particle decays) be written as:

65% D∗0 → D0 π0

35% D∗0 → D0 γ
(3.1)

If a decay of a certain particle is not specified in the decay file, the normal decay chan-
nels will be used. This also includes particles that were created via specified decays like
the π0’s create in the decay channel of the D∗0 .

Table 3.1 contains all decay channel defined in the complete decay file 4.1 in the ap-
pendix, despite the antiparticle decays of D∗0 and D0. Besides the decay channel
D∗0 → D0 π0, to create low momentum π0, several other π0 are created in other speci-
fied decays with the target to create a few extra π0 mesons. These extra π0’s should help
the classifier to learn to differentiate not only between background and real π0’s but also
between the π0’s from the wanted decay and other π0’s.

Table 3.1: Decays defined in the decay.dec file. Note that for the anti-particles of D∗0

and D0 the decay channels are defined analog to the here given channels.

Decay channel Branching Ratio
Υ(4S)→ B+ B− 100%

B+ → K+ D∗0 D
0

50%

B+ → K+ D0 D
∗0

50%
D∗0 → D0 π0 65%
D∗0 → D0 γ 35%
D0 → K− π+ 13%
D0 → K− π+ π0 47%
D0 → K− π+ π0 π− 27%
D0 → K0

S π
+ π− 13%

D0 → K− K+ 13%

28

CHAPTER 3. ANALYSIS

The next step is to initialize the simulation with a given number of events (number of
Υ(4S) mesons). In the appendix in listing 4.2 the corresponding source code (steering
file) can be found. The generator receives the number of events and the custom decay
file that should be used. The outcome is saved as a ROOT file [33] and is passed to the
simulation.

The simulation is done with the code in listing 4.3. In this file, the previously cre-
ated Υ(4S) mesons are first simulated (Monte Carlo), which includes their decays, the
radiation they produce, and how all these particles pass through and interact with the
detectors. The resulting data from the detectors is then reconstructed the same way data
from a real experiment would be. The only difference is that for a Monte Carlo sim-
ulation, the experimental results can be matched to the previous simulation. Thereby
the information if a measured track or particle corresponds to a simulated particle or
background noise is obtained. The result is stored in a ROOT file in the mDST (mini
data summary table) format and contains several classes of information [15]. One, for
example, to store the particle tracks and one storing the reconstructed clusters in the
ECL. When using data from a Monte Carlo simulation another class called MCParticle
contains the information about the previously simulated particles like their momentum,
decay products, and so on, to later match them with the reconstructed particles. Despite
that, the reconstructed data now contains the particles that can be reconstructed directly
from detectors, like π+ mesons and photons. The other particles, like π0 mesons, can
be reconstructed with another steering file.

The listing 4.4 (appendix) contains the script used to process all 100 simulations at
once, with the core part of this script displayed in listing 3.2. In the first line, a path is
created in which the modules are arranged [13, 15]. In line three the previously created
data is loaded from a given path (’args.inputfile’). As mentioned, this mDST format
contains the particles that can be directly reconstructed, like photons. In the fifth line,
these photons are loaded in a list called ’all’. With ’matchMCTruth’, the reconstructed
photons are matched with the corresponding particles during the simulation. Then the
π0 → γγ decay is reconstructed, and the π0 mesons are saved in a list called ’pi0’, which
is again matched with the π0’s during the simulation. In the next line, the reconstructed
’pi0’ list is saved as a ROOT file with the name given by the input variable ’args.ntupel’
appended by ’_pi0.root’. ’var_mother’ and ’var_pi0’, defined in listing 4.5, contain a list

29

CHAPTER 3. ANALYSIS

of variables that are saved. This includes, for example, the momentum in the z-direction
for both daughters and the angle phi of both daughters. Further, the momentum p of
the π0’s, the difference dM between the reconstructed mass and the π0 mass of about
135 MeV/c2 [1], and if a reconstructed π0 matches a π0 from the simulation, are saved.
Why these variables have been chosen we will be disused in the next section 3.2.1. To
execute the previous statements, ’process(xxx)’ is called. This executes the modules
which have been added to the path created in line one. The created data is again stored
in a ROOT file.

Listing 3.2: The core part of the python script (listing 4.4) for reconstructing the
π0 → γ γ decay.� �

1 xxx = create_path ()
2

3 inputMdst ("default" , args .inputfile , path=xxx)
4

5 fillParticleLists ([(’gamma:all’ , ’’)] , path=xxx)
6

7 matchMCTruth (’gamma:all’ , path=xxx)
8

9 reconstructDecay (’pi0:pi0 -> gamma:all gamma:all’ , ’’ , path=xxx)
10 matchMCTruth (’pi0:pi0’ , path=xxx)
11

12 variablesToNtuple (’pi0:pi0’ , var_mother + var_pi0 + [’p’ , ’dM’ , ’isSignal’] , filename=
args .ntuple + "_pi0.root" , path=xxx)

13

14 process (xxx)� �
A more detailed overview of the basf2 framework can be found in the "The Belle II
Core Software" paper [15] from the Belle II Framework Software Group.

The generation and the simulation have been done a total of 100 times on the computing
system provided by Belle II with 1,000,000 events per run. The data now consists of 100
files, each containing the chosen variables from all possible π0 mesons reconstructed by
the software from the measured photons. This includes correctly paired π0’s and π0’s
from wrongly paired photons or background photons.
The left plot in figure 3.1 depicts the difference between signal π0’s and the background
as a function of the momentum. The background is peaking around a momentum of 120
MeV/c, this is why often a threshold of about 230 MeV/c is used when analyzing π0’s.

30

CHAPTER 3. ANALYSIS

Only about 2.7% of the reconstructed photon combinations correspond to signal π0

mesons. This could be due to photons that are matched incorrectly, background photons
that are matched with each other, or real photons being matched with background pho-
tons. Many phenomenons are causing this background. Part of the background beam
is produced by synchrotron radiation caused by the e+e−-beam. Other reasons are, for
example, QED processes or impurities within the detectors, such as gas atoms, which
can cause background radiation when struck by other particles or photons.

The right histogram in figure 3.1 compares the π0’s originating from the D∗0 → D0 π0

decay and the other π0 mesons which are not part of the background but from vari-
ous other decay channels . The π0’s created by the D∗0 decay are mostly below the
230 MeV/c threshold and are the subject of this thesis. These π0’s are labeled as 1 (sig-
nal) and used for training. The other π0 mesons makeup about 75 % of all π0’s and are
from other decay channels, such as two of the defined D0 decay channels and from the
natural decay channels of K± mesons. These other π0’s are labeled as 0 as well as the
beam background. The classifier should learn to discriminate between the π0 mesons
from the wanted decay and every other reconstructed π0, whether it was reconstructed
correctly or not.

0.0 0.2 0.4 0.6 0.8 1.0
p(0) [GeV/c]

0

5000

10000

15000

20000

25000

30000

Ev
en

ts

Background
Signal

(a)

0.0 0.2 0.4 0.6 0.8 1.0
p(0) [GeV/c]

0

100

200

300

400

500

600

Ev
en

ts

0's from D*0 D0 0

other real 0's

(b)

Figure 3.1: (a) Comparison of the Background to signal ratio. (b) Histogram of the
signal π0 mesons and other π0’s that are not part of the background.

31

CHAPTER 3. ANALYSIS

3.2 Data preparation

Preparing the data consists of two main steps. First, the features that should be used,
need to be chosen. As second the data needs to be prepared and modified to achieve the
best performance with the classifiers.

3.2.1 Data selection

To achieve the best performance with the classifiers, collinearity between variables
should be avoided. To do so, first all available variables were collected and then re-
duced during multiple steps, to obtain the features used as input for the classifiers. The
predefined steering file variables.py, which can be run by in the basf2 environment with
the ’basf2 variables.py’ command, contains all available variables.
In the first step, all available variables were collected, despite obviously dependent vari-
ables like the energy and the momentum of a photon, where only one was selected. To
check for further collinearity the Variance inflation factor (VIF) is used [35, 36]. This
factor provides information about how much correlated a variable is compared to the
others. Hereby a higher VIF indicating more dependencies. The VIF can be computed
for every variable, and then variables with a high VIF can be dropped. The threshold
used was 10, which indicates high correlations.

After the preparation 16 features per photon remain. In total, the classifiers have an
input of 32 features due to the comparison of two photons. The used features can be
found in table 3.2 together with the VIF-scores. In the appendix the full list including the
description from the variables.py steering file can be found (tab. 4.2 and 4.3). Later the
feature importance is measured with random forests to study if the number of features
used can be reduced further.

Three of the input variables are depicted in figure 3.2. Hereby the first and the second
photon is plotted separately, and the background is reduced by 95% to make the signal
more visible. The order of the photons is given by the reconstruction software. No
difference can be seen between the momenta of the photons. Only between the first
and second photon of the consAngleBetweenMomentumAndVertexVector variable, a
significant difference can be found. For the error of the momentum in the z-direction,

32

CHAPTER 3. ANALYSIS

a small difference is observed. Plots of the distributions from all input variables can be
found in the appendix (fig. 4.2, 4.3, 4.4, and 4.5).

Table 3.2: Variables used for training and VIF scores.
Kinematic variables Cluster variables
Variable name VIF Variable name VIF

pz 1.97
cosAngleBetweenMomen-
tumAndVertexVector

2.06

pxErr 3.69
cosAngleBetweenMomen-
tumAndVertexVectorInXYPlane

4.29

pyErr 3.77 clusterTiming 1.01
pzErr 3.90 clusterErrorTiming 2.95
phi 2.49 minC2TDist 3.72
b2bPhi 2.46 clusterZernikeMVA 6.04
pRecoilPhi 1.56 clusterLAT 3.21

clusterAbsZernikeMoment40 4.59
clusterAbsZernikeMoment51 4.93

33

CHAPTER 3. ANALYSIS

4 2 0 2 4
0

20000

40000

60000

80000

100000

Ev
en

ts
pz_1

Background
Signal

4 2 0 2 4
0

20000

40000

60000

80000

100000

Ev
en

ts

pz_2
Background
Signal

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

5000

10000

15000

20000

25000

30000

Ev
en

ts

cosAngleBetweenMomentumAndVertexVector_1
Background
Signal

1 0 1 2 3
0

10000

20000

30000

40000

50000

60000

70000

Ev
en

ts

cosAngleBetweenMomentumAndVertexVector_2
Background
Signal

0 2 4 6 8
0

20000

40000

60000

80000

100000

120000

Ev
en

ts

pzErr_1
Background
Signal

1 0 1 2 3 4 5
0

10000

20000

30000

40000

50000

60000

Ev
en

ts

pzErr_2
Background
Signal

Figure 3.2: Distribution of the momentum in z-direction, the error of the momentum
in z-direction, and the cosAngleBetweenMomentumAndVertexVector input
variable. Hereby the first (..._ 1) and second photons (..._ 2) are separated.
The plots for all input variables can be found in the appendix (fig. 4.2, 4.3,
4.4, and 4.5).

34

CHAPTER 3. ANALYSIS

3.2.2 Data scaling

The data preparation consists of multiple steps. Initially, the overall amount of data is
reduced with two cuts. First, the π0 mesons with a momentum above 230 MeV/c are cut
off because the pions below this threshold are the interesting ones for this thesis. The
second cut is done to eliminate some background. When plotting the difference dM of
the reconstructed mass from the known π0 mass of the signal (the π0’s from the D∗0

decay) and the background (fig. 3.3), it can be observed that the mass difference dM
of the background is spread more widely. This can be used to eliminate background
by applying a cut where only the data with an invariant mass between -0.075 and 0.02
GeV/c2 is kept. With this cut, the background is reduced by about 70% with a loss of
only 1% of the signal π0’s.

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
dM(0) [GeV/c2]

0

5000

10000

15000

20000

25000

30000

35000

40000

Ev
en

ts

Signal
Background

Figure 3.3: Histogram of the π0 mesons invariant mass of the signal and background.

The next step is to create the labels. The link to jupyter notebook containing the cor-
responding code can be found in the appendix 4.2. A label of 1 represents the wanted
low momentum π0’s created during the decay of the D∗0 . This is done by checking
if ’isSignal’ equals 1, which means the reconstructed particle is not part of the back-
ground, and by making sure that the π0 originates from the desired decay. This is done
by checking if ’genMotherPDG’ equals 423 or -423, which is the PDG code for D∗0

and the corresponding anti-particle. The remaining data is labeled with 0.

35

CHAPTER 3. ANALYSIS

As seen before, the background exceeds the signal by far. The datasets of each simu-
lation contain only about 2.5% tuples labeled as 1. To create more balanced datasets,
95% of the background π0’s are dropped. As a result, the created datasets contain about
33% data labeled 1.
The last modification done to the data, is to scale the data featurewise to a mean value of
0 and a standard deviation of 1. This transformation is not mandatory but can speed up
the training process of neural networks. This is done with the StandardScaler method
provided by the sklearn.preprocessing library. To scale the data from each simulation
equally, the StandardScaler is fitted on a certain number of simulations (in this case 50)
and then applied on all datasets. This way all datasets are transformed the same way
and the transformed datasets are still comparable. This should ensure that the trained
classifiers perform well even on never before seen datasets.

In the end, the datasets from all 100 runs (simulations) are concatenated, whereby 4
runs are separated as validation data and shuffled. The remaining 96 runs are shuffled
and split up into training and test data. From the 96 runs, 75% of the tuples are used for
training, the remaining ones for testing. In total, all datasets contain 1,914,246 events
of which 625,729 are labeled with a 1. Table 3.3 summarizes all key parameters and
contains the number of events in the different datasets and the ratio of data labeled 1 in
comparison to the whole dataset. Note that the exact number of events in the different
datasets is not consistent even when creating the dataset from the same simulations.
This is caused by the dropping of tuples labeled as 0, which is done randomly. But due
to the largeness of the dataset, the overall alterations are small.

A link to the GitHub repository containing the code can be found in the appendix 4.2.

36

CHAPTER 3. ANALYSIS

Table 3.3: Summary of the key parameters of the simulated and prepared data.
Total number of runs 100

Number of runs used for validation 4
Number of events per run 1,000,000
Total length of the dataset 1,914,246

Number of low momentum π0 combinations 625,729

Length of the dataset
training 1,378,943

test 459,648
validation 75,655

Percentage of low momentum
π0 combinations

training 0.327
test 0.326

validation 0.326
Number of features 32 (16 per daughter)

37

CHAPTER 3. ANALYSIS

3.3 Evaluation

To measure the performance, the area under the curve (AUC), the F1-score on the test
and validation data, and the precision on the validation data is used. The area under the
curve provides information about the overall performance of the classifier 1. The F1-
scores for the training and validation data can be compared to check for overfitting. The
precision of the validation data is important because this parameter should be as high
as possible to ensure that the predicted low momentum pions are correctly classified as
such. Hereby the F1-scores and the precision are calculated with a decision threshold of
0.5 for the whole evaluation.

3.3.1 Random Forest

First random forests are used to determine the feature importance and as an first attempt
to create a valid classifier. In the beginning, two decision trees are compared before
several random forests of different sizes are used.

The difference between the two trained decision trees is the criterion used to identify the
best splits. For the trees, the Gini and the Entropy methods are used. Table 3.4 contains
the results from both trees. Despite no restrictions on the trees regarding depth, the
maximum number of leaves or nodes, and creating only pure leaves containing only
a single label, both trees do not overfit. Overfitting can be detected by a significantly
higher F1-score on the training data compared to the validation data. The precision of
both trees is similar with about 62% of positive predictions being truly positive. This
is about double the precision of a random classifier, which would have a 33% precision
score due to a balance of 1:2 positive labels to negative labels in the training set.

The feature importance of both trees is depicted in figure 3.4. The importance is plotted
for each variable and each photon. As mentioned for the input vectors of the decision
trees, the two feature vectors for each photon are concatenated. In the figure, the first
and second photon is distinguished to identify differences between those. Both plots are
already pretty consistent and indicate clear differences in feature importance. Strange is
that there is a significant difference between the feature importance of the first and the

1The AUC score is not used for decision trees, only for random forests and the different neural networks.

38

CHAPTER 3. ANALYSIS

Table 3.4: Comparison of two decision trees with a different splitter criterion. The used
decision threshold for the F1-scores is 0.5.

Split criterion
F1-score

(trainings)
F1-score

(validation)
Precision

(validation)
Gini 0.628 0.628 0.623

Entropy 0.633 0.629 0.626

second photon for some variables. Intuitively the feature importance should be equal
for both photons because the order of a pair should be irrelevant. Only for the cosAn-

gleBetweenMomentumAndVertexVector and the pzErr variable, a difference would be
expected due to the previously found differences in the distributions of the first and sec-
ond photon for these variables. The plots of the other variables showed no differences
between the two photons.

clusterAbsZernikeMoment40

clusterAbsZernikeMoment51

clusterErrorTiming

clusterLAT
clusterTiming
clusterZernikeMVA

phi
pz b2bPhi
cosMomemtumVertex

cosMomemtumVertexInXYPlane

pRecoilPhi
pxErr
pyErr
pzErr
minC2TDist

Feature

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fe
at

ur
e

im
po

rta
nc

e
/ a

.u
.

First photon
Second photon

(a)

clusterAbsZernikeMoment40

clusterAbsZernikeMoment51

clusterErrorTiming

clusterLAT
clusterTiming
clusterZernikeMVA

phi
pz b2bPhi
cosMomemtumVertex

cosMomemtumVertexInXYPlane

pRecoilPhi
pxErr
pyErr
pzErr
minC2TDist

Feature

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fe
at

ur
e

im
po

rta
nc

e
/ a

.u
.

First photon
Second photon

(b)

Figure 3.4: Feature importance for the two decision trees. (a) Entropy, (b) Gini.

To improve the performance of decision trees and get an averaged feature importance,
random forests are used. Due to overfitting being no issue for decision trees, the trees
in the random forests are not restricted either. The differences between the forests are
the number of estimators used, and again the split criterion during training. Table 3.5

39

CHAPTER 3. ANALYSIS

contains forests with 20, 40, and 100 estimators for both Gini and Entropy, and one
large random forest with a total of 250 trees with Entropy as the split criterion. Again
the differences in performance between Gini and Entropy are insignificant. Overall the
performance of the forests is pretty similar. Larger forests tend to have a better AUC
and F1-score than smaller forests, but the precision is, despite some small fluctuations,
consistent. Figure 3.5 (a) depicts the precision-recall curve for the forest with 100 esti-
mators and Gini as the split criterion. As expected, random forests perform better than
single decision trees. The F1-scores are about 0.1-0.14 points higher, and the precision
is about 14% higher. Still, a higher precision would be desirable. Furthermore, with a
growing forest size, the computing times start to increase significantly.

Table 3.5: Performance of different random forests. The used decision threshold for the
F1-scores is 0.5.

Number of
estimator

Split criterion AUC
F1-score

(trainings)
F1-score

(validation)
Precison

(validation)
20 Gini 0.791 0.720 0.721 0.763
20 Entropy 0.792 0.727 0.729 0.760
40 Gini 0.804 0.734 0.735 0.766
40 Entropy 0.807 0.741 0.743 0.761

100 Gini 0.812 0.743 0.744 0.767
100 Entropy 0.817 0.749 0.751 0.763
250 Entropy 0.821 0.754 0.754 0.765

Figure 3.5 (b) confirms the feature importance obtained from the single trees. There are
still discrepancies in some variables between the ’first photon’ and the ’second photon’.
Regarding the feature importance clusterTiming, clusterZernikeMVA, and minC2TDist

have the highest importance, followed by clusterErrorTiming, pz cosAngleBetweenMo-

mentumAndVertexVector (cosMomemtumVertex), and pzErr. pxErr and pyErr have a
lower feature importance but still slightly higher than the remaining features, which all
have a similar importance. Despite some features being certainly more important, even
the lowest feature importance score is only a third of the highest. That implies that
all features contribute to the classification to a certain extend. Still, the idea is to take

40

CHAPTER 3. ANALYSIS

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Random Forest

(a)

clusterTiming

minC2TDist
clusterZernikeMVA

pzErr
clusterErrorTiming

cosMomemtumVertex

pz pxErr
pyErr
pRecoilPhi
clusterAbsZernikeMoment40

clusterAbsZernikeMoment51

b2bPhi
phi
cosMomemtumVertexInXYPlane

clusterLAT

Feature

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fe
at

ur
e

im
po

rta
nc

e
/ a

.u
.

First photon
Second photon

(b)

Figure 3.5: (a) Precision-Recall curve for the random forest with 100 estimator (Gini)
and (b) the feature importance for the same classifier sorted by the first pho-
ton.

the most important features, including pxErr, pyErr, and higher, and train the neural
network only with these features to create a less complicated and faster learning neural
network. But due to all features contributing to the classification in the random forest,
this smaller input may not be sufficient enough. This selective input needs to be tested
against the full input to ensure that a potential information loss does not cause a decrease
in performance.

3.3.2 Neural network

In the next step, feed-forward neural networks are used for the classification. First a
network with the same architecture, despite the input layer size, will be trained with all
and with the most important features to compare the performance. Subsequent three
networks, each consisting of four layers but different amounts of nodes, will be trained
and compared. The batch size used for all feed-forward neural networks and Siamese
neural networks is 1024 with the ’Adam’ optimizer and binary corssentropy as a loss
function.

To spot a potential difference between the used input features, two feed-forward neural
networks with identical nodes despite the input nodes are tested (table 3.6). Figure 3.6 (a)

41

CHAPTER 3. ANALYSIS

contains the accuracy during each training epoch. The performance of the network with
all features is significantly better. This applies not only to the accuracy but the AUC,
the F1-scores, and the precision as well (see table 3.8). This result is consistent for other
tested networks. Due to this, for the further feed-forward neural network, all features
are used.

Table 3.6: Design parameter of the feed-forward neural network.
Layer - Activation Nodes

0 (Input) - - 32 / 18
1 Dense tanh 128
2 Dense tanh 32
3 Dense tanh 8

4 (Output) Dense sigmoid 1

To compare the performance of different feed-forward neural networks and find an op-
timal configuration, three networks will be compared. The amount of layers is four for
all networks. The difference is in the number of nodes per layer. One network has a
small number of nodes ranging from 4 to 40, one has a medium amount with 8 to 128,
and one ranging from 32 to 512 is significantly larger compared to the first ones. The
detailed configurations can be found in table 3.8.

Table 3.7: The feed-forward neural networks used for comparison. The type and acti-
vation function for each layer resembles the ones from the network given in
table 3.6.

Layer
Nodes

small medium large
0 (Input) 32 32 32

1 40 128 512
2 20 32 128
3 4 8 32

4 (Output) 1 1 1

42

CHAPTER 3. ANALYSIS

0 50 100 150 200 250 300 350
Epoch

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

Ac
cu

ra
cy

All features
Important features

(a)

0 50 100 150 200 250 300 350
Epoch

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

small
medium
large

(b)

Figure 3.6: (a) Comparison of the accuracy when using all features or only the important
ones. (b) Comparison of the accuracy for the neural network. The training
for the large network was stopped before overfitting occurred (25 steps).

The medium-sized network and the small network start to plateau towards the end of the
350 epochs (fig. 3.6). These two networks have fewer parameters that can be adapted
during training than there are training examples, and therefore overfitting is less likely,
and the accuracy evens out. The large network reaches the same accuracy as the smaller
ones in fewer steps, but overfitting starts to become an issue. Figure 3.7 depicts the train-
ing and validation accuracy for the large network during training. After about 20 to 25
steps the validation accuracy peaks and starts to decrease despite the model improving
on the training data. When comparing the validation accuracy during the training of the
large and the medium model, the accuracy of the medium model increases the whole
plotted 100 epochs. Despite this rapid overfitting, the large model reaches a similar
accuracy as the medium model in fewer epochs before decreasing again.

To compare the overall performance of all three models, early stopping was used to stop
the training process as soon as the validation accuracy started to decrease. With early
stopping, the accuracy during training for all three models is almost identical. This is
confirmed when comparing the AUC, the F1-scores, and the precision (table 3.8). The
medium network seems to be slightly better with, for example, the precision being 0.5-
0.7% percentage points higher. But due to certain randomness, when creating neural
networks (for example, random starting weights, random batches, ...), the performance
can change slightly. Therefore all three models perform equally well.

43

CHAPTER 3. ANALYSIS

0 20 40 60 80 100
Epoch

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

Ac
cu

ra
cy

Training
Validation

(a)

0 20 40 60 80 100
Epoch

0.850

0.855

0.860

0.865

0.870

0.875

0.880

Ac
cu

ra
cy

medium
large

(b)

Figure 3.7: (a) Overfitting in the large feed-forward neural network, (b) Comparison of
the validation accuracy of the medium and large network.

Compared to random forests, the performance increased significantly. For example,
the precision gained about 3.5 % percentage points. But, as previously discussed, the
pairwise input creating a potential symmetry and information loss problem is still mostly
neglected. To consider this in the next step, siamese neural networks will be used.

Table 3.8: Performance of the feed-forward neural networks from table 3.8. The used
decision threshold for the F1-scores is 0.5.

Neural Network
size

AUC
F1-score

(trainings)
F1-score

(validation)
Precison

(validation)
small 0.880 0.823 0.822 0.797

medium
(all features)

0.882 0.824 0.822 0.802

medium
(important features)

0.851 0.795 0.794 0.760

large 0.874 0.819 0.816 0.795

44

CHAPTER 3. ANALYSIS

3.3.3 Siamese neural network

Again several combinations of nodes per layer are tested and compared. The design
parameters of the used networks can be found in table 3.10. The first feed-forward
neural network of the siamese neural network consists of 2 layers and the second one of
three layers. The first siamese neural networks, of the three tested networks, all have 96
output nodes that are merged, the other node numbers are altered. The last two models
in table 3.10 have the same weights as network 1, but the number of output nodes of
the first network is greater. The idea is to test if the higher amount of information of
each photon (more output nodes of the first feed-forward neural network), provided for
comparison, results in a better performance. Table 3.9 shows the type of the layer and
the activation function used for all networks, and exemplary the nodes of the first neural
network. The basic conditions as batch size, optimizer, and loss, for testing, are adopted
from the feed-forward neural networks in the previous section. To prevent overfitting,
early stopping was used as soon as the validation loss decreased over 20 epochs.

Table 3.9: Design parameter of the siamese neural network (network 1 in table 3.10).
Layer Type Activation Nodes

A0 (Input) - - 128 128
A1 Dense tanh 64 64
A2 Dense tanh 96 96
B0 absolute difference - 96
B1 Dense tanh 32
B2 Dense tanh 8

B3 (Output) Dense sigmoid 1

As previously, the AUC, the F1-scores, and the precision are compared. Table 3.11
contains these parameters for the five networks. The found results are pretty similar
for all models. Small differences can be seen in the accuracy during training (figure
3.9 (a)), but the Precision-Recall curves are, despite some fluctuation near a recall of 0,
indistinguishable.

As done with the feed-forward neural networks, the performance of a siamese neural
network with all features as input is compared to the performance of a network, with

45

CHAPTER 3. ANALYSIS

Table 3.10: Siamese neural networks used for comparison. The type and activation func-
tion for each layer resembles the ones from the neural network given in table
3.9.

Layer
Nodes

network 1 network 2 network 3 network 4 network 5
A0 (Input) 128 48 128 128 128

A1 64 16 64 64 64
A2 96 96 96 160 250
B0 96 96 96 160 250
B1 32 32 128 32 32
B2 8 8 16 8 8

B3 (Output) 1 1 1 1 1

the same architecture, despite the input vector consisting of only the important features.
For a single network, the performance was significantly worse with only the important
features, and therefore the previous siamese neural networks were trained on all fea-
tures. For comparison, the first siamese neural network was again trained, with only the
most important features. When comparing the performance (table 3.11), the network
with only the important features still performs worse. This is confirmed when compar-
ing the validation accuracy during training and the Precision-Recall curve in figure 3.9
(a) and (b). But when comparing the PRC, the network trained with fewer input features
has still a decent performance.

46

CHAPTER 3. ANALYSIS

0 20 40 60 80 100 120
Epoch

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

Ac
cu

ra
cy

network 1
network 2
network 3
network 4
network 5

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

network 1
network 2
network 3
network 4
network 5

(b)

Figure 3.8: Comparison of all networks from table 3.10: (a) accuracy during train-
ing (the training was stopped when overfitting started) (b) Precision-Recall
curves.

Table 3.11: Performance of the siamese neural networks from table 3.10 and the first
network training only with the most important features. The used decision
threshold for the F1-scores is 0.5.

Network AUC
F1-score
(training)

F1-score
(validation)

Precison
(validation)

1 0.881 0.825 0.825 0.795
2 0.881 0.824 0.822 0.798
3 0.881 0.824 0.822 0.798
4 0.880 0.821 0.819 0.806
5 0.880 0.822 0.819 0.801

1 (important
features)

0.834 0.779 0.775 0.762

47

CHAPTER 3. ANALYSIS

0 50 100 150 200 250 300 350
Epoch

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

All features
Important features

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

All features
Important features

(b)

Figure 3.9: Comparison of the first network (compare table 3.10) with all input features
and only the important input features: (a) training accuracy, (b) Precision-
Recall curves.

48

4 Discussion and Conclusion

4.1 Discussion

The three classification methods, especially the feed-forward neural network and the
siamese neural network, have an acceptable performance. In table 4.1 the performances
of the three methods are summarized. The random forests perform slightly worse than
the neural networks and have significantly longer computing time, especially with more
trees. The performances of both the Siamese neural networks and the feed-forward
neural networks are almost identical. The same result can be found when comparing
the Precision-Recall curves (fig. 4.1 (a)). Thereby all models differ significantly in their
weights after the training. Reasons for this equal performance could be that all networks
find the same pattern in the data, or that the upper bound regarding the accuracy is
reached due to a certain noise in the data. Otherwise, higher fluctuations between the
models and even between networks with the same architecture trained multiple times,
would be expected. These fluctuations are mostly caused by certain random parameters
during training, such as the starting weights of the connections.

When plotting the momentum distribution of all signal π0 mesons and the momentum
of all true positive predictions (fig. 4.1 (b)), slower pions seem to be predicted more
accurately, but no distinct pattern can be found with confidence.

To study the performance a bit more in-depth, figure 4.1 (c) depicts all outputs made
by a siamese neural network for three simulations with the positive labels marked in
green. The classifier seems to be pretty confident when labeling most of the negative
cases, as they have output values very close to zero. Labeling the positive cases seems
to be harder since the output scores for positive labels are more spread, and the highest
value is only 0.965. This difference is partially due to the imbalance in the dataset

49

CHAPTER 4. DISCUSSION AND CONCLUSION

Table 4.1: Comparison of the performance of the random forest, feed-forward neural
network, and siamese neural network with the highest precision.

Classifier AUC
F1-score
(training)

F1-score
(validation)

Precison
(validation)

Random forest 0.812 0.743 0.744 0.767
Neural network 0.882 0.824 0.822 0.802
Siamese neural

network
0.880 0.821 0.819 0.806

(67% negative labels, 33% positive labels), but the peak just above 0 is still significantly
higher compared to what the imbalance would cause.

This plot, as well as the PRC’s, are suggesting that the used threshold should be in-
creased, especially when higher precision is wanted. For example with a threshold of
about 0.86, the precision reaches 91.2% with a recall, the probability that a positive
class is labeled as such, of still 50%.

When comparing the performance of the tested neural networks with all input features
and only the important features. The performance with only the important features is
worse. But the classifiers are still capable of achieving decent AUC-scores of about 0.84
and good PRC’s (compare figure 3.9). This concludes that the important features, and
maybe even fewer, are providing enough information to classify many tuples correctly.
Still giving more features enables the classifiers to get even more tuples correctly. It
is possible that feed-forward neural networks or siamese neural networks with only the
important features would be able to this as well, but considerably more steps or training
data would be needed (compare figure 3.6 and 3.9).

Despite the differences in the architecture, the feed-forward neural networks do not
seem to suffer any information loss or symmetry problems due to the merged single-
photon vectors. Especially interesting is that symmetry does not cause a problem, be-
cause the training data contains every pair only in one combination. This could be
because the π0’s can be distinguished by certain patterns that the feed-forward neu-
ral network can learn because the training data is sufficiently large enough, containing

50

CHAPTER 4. DISCUSSION AND CONCLUSION

enough pairs in both orders.

To research the performance of a trained classifier with π0 mesons from other decay
channels than the used one, the first feed-forward neural network was used to classify
other π0’s. In figure 4.1 (d) all other real π0’s are plotted as a function of the momentum.
These π0’s are partially misclassified as positive by the classifiers, but only in the mo-
mentum range where the training examples are located. The false-positive predictions
are marked in green in the figure. Overall, the classifiers seem to have no particular
difficulties differentiating between the wanted π0 mesons and other real π0 mesons.

51

CHAPTER 4. DISCUSSION AND CONCLUSION

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Random Forest
Neural network
Siamese neural network

(a)

0.00 0.05 0.10 0.15 0.20
p(0) [GeV/c]

0

100

200

300

400

500

Ev
en

ts

Positive labels
True positive

(b)

0.0 0.2 0.4 0.6 0.8 1.0
p(0) [GeV/c]

0

5000

10000

15000

20000

Ev
en

ts

Predictions (Propability)
Positive labels

Prediction

(c)

0.0 0.2 0.4 0.6 0.8 1.0
p(0) [GeV/c]

0

500

1000

1500

2000

2500

Ev
en

ts

's from other decay channels'
Positive predictions out of these

(d)

Figure 4.1: (a) Comparison of the best Precision-Recall curve of a random forest, a feed-
forward neural network, and a siamese neural network. (b) Histogram of all
positive labels and the correctly predicted positive labels. (c) Histogram of
all prediction probability’s for a siamese neural network, with the positive
labels marked in green. (d) Histogram of the momentum of π0 mesons from
different decay channels than the desired one, and out of these the π0 mesons
that were falsely predicted positive marked in green. For (b), (c), and (d)
three simulation runs were used.

52

CHAPTER 4. DISCUSSION AND CONCLUSION

4.2 Conclusion

In conclusion, random forests, feed-forward neural networks, and siamese neural net-
works are capable of identifying low momentum π0 mesons from the background rea-
sonably well. Hereby feed-forward neural networks with all features and siamese neural
networks with all features perform the best. Depending on the decision threshold, a pre-
cision of over 90% can be achieved with a recall still above 50% .
The results indicate that the data has an underlying pattern that makes π0’s distinguish-
able from the especially high background in the low momentum spectrum. Further
research could be done to find this potentially underlying patter, which may apply to
different particles as well, and regarding this, finding the core features needed for the
classification.

53

Appendix

54

Appendix

Code - Classifiers and analysis

The Jupiter notebooks used for preparing the data, building the classifiers, and analyzing
the performance can be found in the GitHub repository hosted at
https://github.com/LukasHoller/Bachelorthesis-Code.

The source code is divided into a single notebook for each classification method, one
notebook ’data_ preparation’ used for preparing the data, and two notebooks used for
analyzing and plotting the data as well as the results.

Code - Generation, simulation and reconstruction

Listing 4.1: Decy file used for simulation - decay.dec.� �
1 Decay Upsilon (4S)
2 1 . 0 B+ B - VSS ;
3 Enddecay

4

5 Decay B+
6 0 . 5 K+ D*0 anti -D0 PHOTOS PHSP ;
7 0 . 5 K+ D0 anti -D*0 PHOTOS PHSP ;
8 Enddecay

9

10 Decay D*0
11 0 . 6 5 D0 pi0 PHOTOS VSS ;
12 0 . 3 5 D0 gamma PHOTOS VSP_PWAVE ;
13 Enddecay

14 CDecay anti -D*0
15

16 Decay D0

17 0 . 1 3 K - pi+ PHOTOS PHSP ;
18 0 . 4 7 K - pi+ pi0 PHOTOS D_DALITZ ;
19 0 . 2 7 K - pi+ pi+ pi - PHOTOS PHSP ;
20 0 . 1 3 K_S0 pi+ pi - PHOTOS D_DALITZ ;
21 0 . 1 3 K - K+ PHOTOS PHSP ;
22 Enddecay

23 CDecay anti -D0
24

25 End� �

55

https://github.com/LukasHoller/Bachelorthesis-Code

Appendix

Listing 4.2: Phyton script for generating 1.000.000 events.� �
1 import basf2 as b2

2 import generators as ge

3 import modularAnalysis as ma

4

5 # Defining custom path

6 my_path = b2 .create_path ()
7

8 # Setting up number of events to generate

9 ma .setupEventInfo (noEvents=1000000 , path=my_path)
10

11 # Adding generator

12 ge .add_evtgen_generator (path=my_path , finalstate=’signal’ ,
13 signaldecfile=b2 .find_file (’../decay_file/decay.dec’))
14

15 # If the simulation and reconstruction is not performed in the sam job,

16 # then the Gearbox needs to be loaded with the loadGearbox() function.

17 ma .loadGearbox (path=my_path)
18

19 # dump generated events in DST format to the output ROOT file

20 my_path .add_module (’RootOutput’ , outputFileName=’out.root’)
21

22 # process all modules added to the path

23 b2 .process (path=my_path)
24

25 # print out the summary

26 print (b2 .statistics)� �

56

Appendix

Listing 4.3: Phyton script for the simulation of the given events.� �
1 import basf2 as b2

2 import mdst as mdst

3 import simulation as si

4 import reconstruction as re

5 import modularAnalysis as ma

6

7 b2 .conditions .disable_globaltag_replay ()
8

9 # create path

10 my_path = b2 .create_path ()
11

12 # load input ROOT file

13 ma .inputMdst (environmentType=’default’ , filename=’’ , path=my_path)
14

15 # simulation

16 si .add_simulation (path=my_path)
17

18 # reconstruction

19 re .add_reconstruction (path=my_path)
20

21 # dump in MDST format

22 mdst .add_mdst_output (path=my_path , mc=True)
23

24 # Show progress of processing

25 progress = b2 .register_module (’ProgressBar’)
26 my_path .add_module (progress)
27

28 # Process the events

29 b2 .process (my_path)
30

31 # print out the summary

32 print (b2 .statistics)� �

57

Appendix

Listing 4.4: Phyton script for the reconstruction of the π0 → γγ decay for all 100 sim-
ulations.� �

1 from basf2 import *
2 from modularAnalysis import *
3 from stdV0s import stdKshorts

4 from variables import variables

5 import pdg

6 import os .path
7 import sys

8 from vertex import *
9 from reconstruction import *

10 from ROOT import Belle2

11 from glob import glob

12 from stdPi0s import *
13 from stdPhotons import *
14 from basf2 import use_central_database

15 import variables

16 from variables import variables as v

17 import basf2_mva

18 from reco_variables import *
19 import argparse

20 import numpy as np

21

22

23 parser = argparse .ArgumentParser ()
24 parser .add_argument ("inputfile" , help="Total path to input file." , type=str)
25 parser .add_argument ("ntuple" , help="Total path to output file." , type=str)
26

27 args = parser .parse_args ()
28

29 set_log_level (LogLevel .ERROR)
30

31 for i in np .arange (1 , 1 0 1 , 1) :
32 print (’\n’ , ’=’*30 , ’\n’ , ’RUN ’ , str (i) , ’\n’ , ’=’*30 , ’\n’ , sep=’’)
33

34 xxx = create_path ()
35

36 filename = args .inputfile + ’’ + str (i) + ’.root’

37

38 inputMdst ("default" , filename , path=xxx)
39

40 fillParticleLists ([(’gamma:all’ , ’’)] , path=xxx)
41

42 matchMCTruth (’gamma:all’ , path=xxx)
43

44 reconstructDecay (’pi0:pi0 -> gamma:all gamma:all’ , ’’ , path=xxx)
45 matchMCTruth (’pi0:pi0’ , path=xxx)
46

47 variablesToNtuple (’pi0:pi0’ , var_mother + var_pi0 + [’p’ , ’dM’ , ’isSignal’ , ’

58

Appendix

daughter(0, mdstSource)’ , ’daughter(1, mdstSource)’] , filename=args .ntuple + ’_’ +
str (i) + "_pi0.root" , path=xxx)

48

49 progress = register_module (’Progress’)
50 xxx .add_module (progress)
51

52 process (xxx)
53 print (statistics)� �

Listing 4.5: Phyton script to add aliases for the used variables and to define a list con-
taining all variables.� �

1 import variables

2

3 variables .variables .addAlias (’clusterAbsZernikeMoment40_1’ , ’daughter(0,

clusterAbsZernikeMoment40)’)
4 variables .variables .addAlias (’clusterAbsZernikeMoment40_2’ , ’daughter(1,

clusterAbsZernikeMoment40)’)
5

6 variables .variables .addAlias (’clusterAbsZernikeMoment51_1’ , ’daughter(0,

clusterAbsZernikeMoment51)’)
7 variables .variables .addAlias (’clusterAbsZernikeMoment51_2’ , ’daughter(1,

clusterAbsZernikeMoment51)’)
8

9

10 variables .variables .addAlias (’clusterTiming_1’ , ’daughter(0, clusterTiming)’)
11 variables .variables .addAlias (’clusterTiming_2’ , ’daughter(1, clusterTiming)’)
12

13 variables .variables .addAlias (’clusterErrorTiming_1’ , ’daughter(0, clusterErrorTiming)’)
14 variables .variables .addAlias (’clusterErrorTiming_2’ , ’daughter(1, clusterErrorTiming)’)
15

16 variables .variables .addAlias (’clusterLAT_1’ , ’daughter(0, clusterLAT)’)
17 variables .variables .addAlias (’clusterLAT_2’ , ’daughter(1, clusterLAT)’)
18

19 variables .variables .addAlias (’clusterZernikeMVA_1’ , ’daughter(0, clusterZernikeMVA)’)
20 variables .variables .addAlias (’clusterZernikeMVA_2’ , ’daughter(1, clusterZernikeMVA)’)
21

22

23 variables .variables .addAlias (’phi_1’ , ’daughter(0, phi)’)
24 variables .variables .addAlias (’phi_2’ , ’daughter(1, phi)’)
25

26 variables .variables .addAlias (’b2bPhi_1’ , ’daughter(0, b2bPhi)’)

59

Appendix

27 variables .variables .addAlias (’b2bPhi_2’ , ’daughter(1, b2bPhi)’)
28

29 variables .variables .addAlias (’pRecoilPhi_1’ , ’daughter(0, pRecoilPhi)’)
30 variables .variables .addAlias (’pRecoilPhi_2’ , ’daughter(1, pRecoilPhi)’)
31

32

33 variables .variables .addAlias (’cosAngleBetweenMomentumAndVertexVector_1’ , ’daughter(0,

cosAngleBetweenMomentumAndVertexVector)’)
34 variables .variables .addAlias (’cosAngleBetweenMomentumAndVertexVector_2’ , ’daughter(1,

cosAngleBetweenMomentumAndVertexVector)’)
35

36 variables .variables .addAlias (’cosAngleBetweenMomentumAndVertexVectorInXYPlane_1’ , ’

daughter(0, cosAngleBetweenMomentumAndVertexVectorInXYPlane)’)
37 variables .variables .addAlias (’cosAngleBetweenMomentumAndVertexVectorInXYPlane_2’ , ’

daughter(1, cosAngleBetweenMomentumAndVertexVectorInXYPlane)’)
38

39

40 variables .variables .addAlias (’pz_1’ , ’daughter(0, pz)’)
41 variables .variables .addAlias (’pz_2’ , ’daughter(1, pz)’)
42

43 variables .variables .addAlias (’pxErr_1’ , ’daughter(0, pxErr)’)
44 variables .variables .addAlias (’pxErr_2’ , ’daughter(1, pxErr)’)
45

46 variables .variables .addAlias (’pyErr_1’ , ’daughter(0, pyErr)’)
47 variables .variables .addAlias (’pyErr_2’ , ’daughter(1, pyErr)’)
48

49 variables .variables .addAlias (’pzErr_1’ , ’daughter(0, pzErr)’)
50 variables .variables .addAlias (’pzErr_2’ , ’daughter(1, pzErr)’)
51

52

53 variables .variables .addAlias (’minC2TDist_1’ , ’daughter(0, minC2TDist)’)
54 variables .variables .addAlias (’minC2TDist_2’ , ’daughter(1, minC2TDist)’)
55

56 # Create a list with all previously defined variables

57 var_pi0 = [’clusterAbsZernikeMoment40_1’ , ’clusterAbsZernikeMoment40_2’ , ’

clusterAbsZernikeMoment51_1’ , ’clusterAbsZernikeMoment51_2’ , ’clusterErrorTiming_1

’ , ’clusterErrorTiming_2’ , ’clusterLAT_1’ , ’clusterLAT_2’ , ’clusterTiming_1’ , ’

clusterTiming_2’ , ’clusterZernikeMVA_1’ , ’clusterZernikeMVA_2’ , ’phi_1’ , ’phi_2’ ,
’pz_1’ , ’pz_2’ , ’b2bPhi_1’ , ’b2bPhi_2’ , ’cosAngleBetweenMomentumAndVertexVector_1’

, ’cosAngleBetweenMomentumAndVertexVector_2’ , ’

cosAngleBetweenMomentumAndVertexVectorInXYPlane_1’ , ’

cosAngleBetweenMomentumAndVertexVectorInXYPlane_2’ , ’pRecoilPhi_1’ , ’pRecoilPhi_2’

, ’pxErr_1’ , ’pxErr_2’ , ’pyErr_1’ , ’pyErr_2’ , ’pzErr_1’ , ’pzErr_2’ , ’minC2TDist_1’

, ’minC2TDist_2’]
58

59 var_mother = [’genMotherPDG’ , ’genMotherPDG(1)’]� �

60

Appendix

Features

Table 4.2: List of kinematic variables used. The highlighted variables are the more im-
portant features.

Variable name Description
Importance

first γ second γ
pz momentum component z 0.032 0.032
pxErr error of momentum component x 0.027 0.029
pyErr error of momentum component y 0.025 0.027
pzErr error of momentum component z 0.038 0.026
phi momentum azimuthal angle in radians 0.020 0.021

b2bPhi
Azimuthal angle in the lab system that is
back-to-back to the particle in the CMS

0.021 0.021

pRecoilPhi
Azimutal angle of aparticle’s missing
momentum in the lab system

0.022 0.023

cosAngleBetweenMomen-
tumAndVertexVector

cosine of the angle between momentum
and vertex vector (vector connecting ip
and fitted vertex) of this particle

0.032 0.033

cosAngleBetweenMomen-
tumAndVertexVectorIn-
XYPlane

cosine of the angle between momentum
and vertex vector (vector connecting ip
and fitted vertex) of this particle in xy-plane

0.020 0.021

61

Appendix

Table 4.3: List of all used variables regarding the ECL cluster. The highlighted variables
are the more important features.

Variable name Description
Importance

first γ second γ

clusterTiming

Returns ECL cluster’s timing. Photon timing
is given by the fitted time of the recorded
waveform of the highest energetic crystal in
a cluster

0.061 0.074

clusterErrorTiming
Returns ECL cluster’s timing uncertainty
that contains 99% of true photons (dt99)

0.033 0.032

minC2TDist
Returns distance between ECL cluster and
nearest track hitting the ECL

0.048 0.055

clusterZernikeMVA

Returns output of a MVA using eleven
Zernike moments of the cluster. Zernike
moments are calculated per shower in a plane
perpendicular to the shower direction

0.045 0.058

clusterLAT
Returns lateral energy distribution
(shower variable)

0.020 0.020

clusterAbsZernike-
Moment40

Returns absolute value of Zernike moment 40 0.021 0.023

clusterAbsZernike-
Moment51

Returns absolute value of Zernike moment 51 0.021 0.022

62

Appendix

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0

5000

10000

15000

20000

25000

30000

35000

Ev
en

ts
clusterAbsZernikeMoment40_1

Background
Signal

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0

5000

10000

15000

20000

25000

30000

35000

Ev
en

ts

clusterAbsZernikeMoment40_2
Background
Signal

1 0 1 2
0

20000

40000

60000

80000

100000

Ev
en

ts

clusterAbsZernikeMoment51_1
Background
Signal

1 0 1 2
0

10000

20000

30000

40000

50000

60000

70000

80000

Ev
en

ts

clusterAbsZernikeMoment51_2
Background
Signal

0 2 4 6 8
0

20000

40000

60000

80000

100000

120000

Ev
en

ts

clusterErrorTiming_1
Background
Signal

0 2 4 6 8
0

20000

40000

60000

80000

100000

120000

140000

Ev
en

ts

clusterErrorTiming_2
Background
Signal

1 0 1 2 3 4 5
0

50000

100000

150000

200000

250000

300000

350000

Ev
en

ts

clusterLAT_1
Background
Signal

1 0 1 2 3 4
0

50000

100000

150000

200000

250000

300000

Ev
en

ts

clusterLAT_2
Background
Signal

Figure 4.2: Distribution of the used input variable. Hereby the first (..._ 1) and second
photons (..._ 2) are seperated.

63

Appendix

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0

50000

100000

150000

200000

250000

Ev
en

ts
clusterTiming_1

Background
Signal

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0

50000

100000

150000

200000

250000

Ev
en

ts

clusterTiming_2
Background
Signal

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0

10000

20000

30000

40000

50000

60000

70000

Ev
en

ts

clusterZernikeMVA_1
Background
Signal

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0

10000

20000

30000

40000

50000

60000

70000

Ev
en

ts

clusterZernikeMVA_2
Background
Signal

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

5000

10000

15000

20000

Ev
en

ts

phi_1
Background
Signal

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

5000

10000

15000

20000

Ev
en

ts

phi_2
Background
Signal

4 2 0 2 4
0

20000

40000

60000

80000

100000

Ev
en

ts

pz_1
Background
Signal

4 2 0 2 4
0

20000

40000

60000

80000

100000

Ev
en

ts

pz_2
Background
Signal

Figure 4.3: Distribution of the used input variable. Hereby the first (..._ 1) and second
photons (..._ 2) are seperated.

64

Appendix

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

2500
5000
7500

10000
12500
15000
17500
20000

Ev
en

ts
b2bPhi_1

Background
Signal

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

2500
5000
7500

10000
12500
15000
17500
20000

Ev
en

ts

b2bPhi_2
Background
Signal

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

5000

10000

15000

20000

25000

30000

Ev
en

ts

cosAngleBetweenMomentumAndVertexVector_1
Background
Signal

1 0 1 2 3
0

10000

20000

30000

40000

50000

60000

70000

Ev
en

ts

cosAngleBetweenMomentumAndVertexVector_2
Background
Signal

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

20000

40000

60000

80000

100000

120000

Ev
en

ts

cosAngleBetweenMomentumAndVertexVectorInXYPlane_1
Background
Signal

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

20000

40000

60000

80000

100000

120000

Ev
en

ts

cosAngleBetweenMomentumAndVertexVectorInXYPlane_2
Background
Signal

4 2 0 2 4
0

10000

20000

30000

40000

50000

60000

70000

Ev
en

ts

pRecoilPhi_1
Background
Signal

4 2 0 2 4
0

10000
20000
30000
40000
50000
60000
70000
80000

Ev
en

ts

pRecoilPhi_2
Background
Signal

Figure 4.4: Distribution of the used input variable. Hereby the first (..._ 1) and second
photons (..._ 2) are seperated.

65

Appendix

1 0 1 2 3 4 5 6
0

10000

20000

30000

40000

50000

60000

70000

Ev
en

ts
pxErr_1

Background
Signal

1 0 1 2 3 4 5 6
0

10000

20000

30000

40000

50000

60000

70000

80000

Ev
en

ts

pxErr_2
Background
Signal

1 0 1 2 3 4 5 6
0

10000

20000

30000

40000

50000

60000

70000

Ev
en

ts

pyErr_1
Background
Signal

1 0 1 2 3 4 5 6 7
0

10000

20000

30000

40000

50000

60000

70000

80000

Ev
en

ts

pyErr_2
Background
Signal

0 2 4 6 8
0

20000

40000

60000

80000

100000

120000

Ev
en

ts

pzErr_1
Background
Signal

1 0 1 2 3 4 5
0

10000

20000

30000

40000

50000

60000

Ev
en

ts

pzErr_2
Background
Signal

1 0 1 2 3 4
0

10000

20000

30000

40000

Ev
en

ts

minC2TDist_1
Background
Signal

1 0 1 2 3 4
0

10000

20000

30000

40000

50000

Ev
en

ts

minC2TDist_2
Background
Signal

Figure 4.5: Distribution of the used input variable. Hereby the first (..._ 1) and second
photons (..._ 2) are seperated.

66

Bibliography

[1] M. Tanabashi et al. “Review of Particle Physics”. In: Phys. Rev. D 98 (3 Aug.
2018), p. 030001. DOI: 10.1103/PhysRevD.98.030001. URL: https:
//link.aps.org/doi/10.1103/PhysRevD.98.030001.

[2] Kyohei Atarashi et al. “A Deep Neural Network for Pairwise Classification: En-
abling Feature Conjunctions and Ensuring Symmetry”. In: Apr. 2017, pp. 83–95.
ISBN: 978-3-319-57453-0. DOI: 10.1007/978-3-319-57454-7_7.

[3] Leonard Koch. “Search for Resonant X(3872) Formation in Electron Positron
Annihilations and the Development of a Prototype Data Acquisition for the Crys-
tal Zero Degree Detector at BESIII”. eng. PhD thesis. Otto-Behaghel-Str. 8, 35394
Gießen: Justus-Liebig-Universität, 2019. URL: http://geb.uni-giessen.
de/geb/volltexte/2019/14685.

[4] S.-K. Choi et al. “Observation of a Narrow Charmoniumlike State in Exclu-
sive B± → K± π± + π− J/Ψ Decays”. In: Physical Review Letters 91.26 (Dec.
2003). ISSN: 1079-7114. DOI: 10.1103/physrevlett.91.262001. URL:
http://dx.doi.org/10.1103/PhysRevLett.91.262001.

[5] J.C. MacKay David. “Information Theory, Inference, and Learning Algorithms”.
In: Cambridge University Press, 2003. URL: http://www.inference.
org.uk/itprnn/book.pdf.

[6] B. Mehlig. “Artificial Neural Networks”. In: CoRR abs/1901.05639 (2019). arXiv:
1901.05639. URL: http://arxiv.org/abs/1901.05639.

[7] John Bishop. “HISTORY AND PHILOSOPHY OF NEURAL NETWORKS”.
In: Jan. 2015, pp. 22–96. ISBN: 978-1780215204.

[8] Jörn Bleck-Neuhaus. Elementare Teilchen. 2nd ed. Springer Spektrum, 2013.
ISBN: 978-3-642-32578-6. DOI: 10.1007/978-3-642-32579-3.

67

https://doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://doi.org/10.1007/978-3-319-57454-7_7
http://geb.uni-giessen.de/geb/volltexte/2019/14685
http://geb.uni-giessen.de/geb/volltexte/2019/14685
https://doi.org/10.1103/physrevlett.91.262001
http://dx.doi.org/10.1103/PhysRevLett.91.262001
http://www.inference.org.uk/itprnn/book.pdf
http://www.inference.org.uk/itprnn/book.pdf
https://arxiv.org/abs/1901.05639
http://arxiv.org/abs/1901.05639
https://doi.org/10.1007/978-3-642-32579-3

Bibliography

[9] T. Abe et al. Belle II Technical Design Report. 2010. arXiv: 1011.0352.

[10] E Kou et al. “The Belle II Physics Book”. In: Progress of Theoretical and Experi-

mental Physics 2019.12 (Dec. 2019). ISSN: 2050-3911. DOI: 10.1093/ptep/
ptz106. URL: http://dx.doi.org/10.1093/ptep/ptz106.

[11] Christian Pulvermacher. “dE/dx particle identification and pixel detector data re-
duction for the Belle II experiment”. PhD thesis. Karlsruhe Institute of Technol-
ogy (KIT), 2012.

[12] Super KEKB and Belle II. Belle II. 2020. URL: https://www.belle2.
org/project/super_kekb_and_belle_ii (visited on 07/15/2020).

[13] Christian Pulvermacher. “Analysis Software and Full Event Interpretation for the
Belle II Experiment”. PhD thesis. 2015. DOI: 10.5445/IR/1000050704.

[14] Ilya Komorov. “Tutorial: Collaborative services 101 & introduction to basf2”.
2019 Belle II Summer School. 2019. URL: https://indico.bnl.gov/
event/5655/contributions/29864/attachments/23926/35034/

Introduction_to_basf2.pdf.

[15] T. Kuhr et al. “The Belle II Core Software”. In: Comput. Softw. Big Sci. 3.1
(2019), p. 1. DOI: 10.1007/s41781-018-0017-9. arXiv: 1809.04299
[physics.comp-ph].

[16] Peter Zhang. “Neural Networks for Classification: A Survey”. In: Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 30
(Dec. 2000), pp. 451–462. DOI: 10.1109/5326.897072.

[17] scikit-learn. 2020. URL: scikit-learn.org/ (visited on 08/22/2020).

[18] Tensorflow. Google. 2020. URL: https://www.tensorflow.org (visited
on 08/22/2020).

[19] Keras. 2020. URL: https://keras.io (visited on 08/22/2020).

[20] Jupyter. 2020. URL: https://jupyter.org (visited on 08/22/2020).

[21] Cyril Goutte and Eric Gaussier. “A Probabilistic Interpretation of Precision, Re-
call and F-Score, with Implication for Evaluation”. In: vol. 3408. Apr. 2005,
pp. 345–359. DOI: 10.1007/978-3-540-31865-1_25.

68

https://arxiv.org/abs/1011.0352
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptz106
http://dx.doi.org/10.1093/ptep/ptz106
https://www.belle2.org/project/super_kekb_and_belle_ii
https://www.belle2.org/project/super_kekb_and_belle_ii
https://doi.org/10.5445/IR/1000050704
https://indico.bnl.gov/event/5655/contributions/29864/attachments/23926/35034/Introduction_to_basf2.pdf
https://indico.bnl.gov/event/5655/contributions/29864/attachments/23926/35034/Introduction_to_basf2.pdf
https://indico.bnl.gov/event/5655/contributions/29864/attachments/23926/35034/Introduction_to_basf2.pdf
https://doi.org/10.1007/s41781-018-0017-9
https://arxiv.org/abs/1809.04299
https://arxiv.org/abs/1809.04299
https://doi.org/10.1109/5326.897072
scikit-learn.org/
https://www.tensorflow.org
https://keras.io
https://jupyter.org
https://doi.org/10.1007/978-3-540-31865-1_25

Bibliography

[22] Saito T and Rehmsmeier M. “The precision-recall plot is more informative than
the ROC plot when evaluating binary classifiers on imbalanced datasets”. In: Mar.
2015. ISBN: 978-3-319-57453-0. DOI: doi:10.1371/journal.pone.
0118432.

[23] Jesse Davis and Mark Goadrich. “The Relationship Between Precision-Recall
and ROC Curves”. In: vol. 06. June 2006. DOI: 10.1145/1143844.1143874.

[24] Sreerama K. Murthy. “Automatic construction of decision trees from data: a
multi-disciplinary survey”. In: Data Mining and Knowledge Discovery 41.2 (1998),
pp. 345–389. URL: https://hal.archives-ouvertes.fr/hal-
00442435.

[25] Jalil Kazemitabar et al. “Variable Importance Using Decision Trees”. In: Ad-

vances in Neural Information Processing Systems 30. Ed. by I. Guyon et al. Cur-
ran Associates, Inc., 2017, pp. 426–435. URL: http://papers.nips.cc/
paper/6646-variable-importance-using-decision-trees.

pdf.

[26] Decision Tree Hugging. towards data science. June 6, 2019. URL: https://
towardsdatascience.com/decision-tree-hugging-b8851f853486

(visited on 07/17/2020).

[27] Decision-Tree Learning. Techical University of Darmstadt. URL: https://
www.ke.tu-darmstadt.de/lehre/archiv/ws0809/mldm/dt.

pdf (visited on 07/18/2020).

[28] Misha Denil, David Matheson, and Nando Freitas. “Narrowing the Gap: Random
Forests In Theory and In Practice”. In: 31st International Conference on Machine

Learning, ICML 2014 2 (Oct. 2013).

[29] Leo Breiman. “Random Forests”. In: Machine Learning 45 (Oct. 2001). ISSN:
1573-0565. DOI: 10.1023/A:1010933404324. URL: https://doi.
org/10.1023/A:1010933404324.

[30] Shubair Abdulla and Ahmed Alashoor. “An Artificial Deep Neural Network for
the Binary Classification of Network Traffic”. In: International Journal of Ad-

vanced Computer Science and Applications 11 (Jan. 2020). DOI: 10.14569/
IJACSA.2020.0110150.

69

https://doi.org/doi:10.1371/journal.pone.0118432
https://doi.org/doi:10.1371/journal.pone.0118432
https://doi.org/10.1145/1143844.1143874
https://hal.archives-ouvertes.fr/hal-00442435
https://hal.archives-ouvertes.fr/hal-00442435
http://papers.nips.cc/paper/6646-variable-importance-using-decision-trees.pdf
http://papers.nips.cc/paper/6646-variable-importance-using-decision-trees.pdf
http://papers.nips.cc/paper/6646-variable-importance-using-decision-trees.pdf
https://towardsdatascience.com/decision-tree-hugging-b8851f853486
https://towardsdatascience.com/decision-tree-hugging-b8851f853486
https://www.ke.tu-darmstadt.de/lehre/archiv/ws0809/mldm/dt.pdf
https://www.ke.tu-darmstadt.de/lehre/archiv/ws0809/mldm/dt.pdf
https://www.ke.tu-darmstadt.de/lehre/archiv/ws0809/mldm/dt.pdf
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.14569/IJACSA.2020.0110150
https://doi.org/10.14569/IJACSA.2020.0110150

Bibliography

[31] Luca Bertinetto et al. “Fully-Convolutional Siamese Networks for Object Track-
ing”. In: CoRR abs/1606.09549 (2016). arXiv: 1606.09549. URL: http:
//arxiv.org/abs/1606.09549.

[32] Kyohei Atarashi et al. “A Deep Neural Network for Pairwise Classification: En-
abling Feature Conjunctions and Ensuring Symmetry”. In: Advances in Knowl-

edge Discovery and Data Mining. Ed. by Jinho Kim et al. Cham: Springer Inter-
national Publishing, 2017, pp. 83–95. ISBN: 978-3-319-57454-7.

[33] DorisYangsoo Kim. “The software library of the Belle II experiment”. In: Nu-

clear and Particle Physics Proceedings 273-275 (2016). 37th International Con-
ference on High Energy Physics (ICHEP), pp. 957–962. ISSN: 2405-6014. DOI:
https://doi.org/10.1016/j.nuclphysbps.2015.09.149.
URL: http://www.sciencedirect.com/science/article/pii/
S2405601415006380.

[34] David Lange and Anders Ryd. “EvtGen tutorial”. Decays. 2003. URL: https:
//indico.cern.ch/event/411269/contributions/1867718/

attachments/835829/1159322/tut-all.pdf.

[35] Faraway, Julian J. 2002. URL: https://cran.r-project.org/doc/
contrib/Faraway-PRA.pdf (visited on 07/18/2020).

[36] M. H. Kutner, C. J. Nachtsheim, and J. Neter. Applied Linear Regression Models.
4th ed. McGraw-Hill Irwin, 2004.

70

https://arxiv.org/abs/1606.09549
http://arxiv.org/abs/1606.09549
http://arxiv.org/abs/1606.09549
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2015.09.149
http://www.sciencedirect.com/science/article/pii/S2405601415006380
http://www.sciencedirect.com/science/article/pii/S2405601415006380
https://indico.cern.ch/event/411269/contributions/1867718/attachments/835829/1159322/tut-all.pdf
https://indico.cern.ch/event/411269/contributions/1867718/attachments/835829/1159322/tut-all.pdf
https://indico.cern.ch/event/411269/contributions/1867718/attachments/835829/1159322/tut-all.pdf
https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf
https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

Acknowledgments

I would like to thank apl. Prof. Dr. Jens Sören Lange for the opportunity to work
in his research group, and together with Klemens Lautenbach and Leonard Koch, for
introducing me into the topic, proving data and examples, proofreading my thesis, and
giving helpful feedback. The welcoming and supportive atmosphere helped me during
writing my thesis and made it very pleasant.

In addition, I would like to thank my family which supported me and helped me to focus
on my thesis. Furthermore, I would like to thank Irene Allmansberger. Your support and
patience helped me throughout my thesis.

71

Selbstständigkeitserklärung

(Statement of originality)

Hiermit versichere ich, die vorgelegte Thesis selbstständig und ohne unerlaubte fremde
Hilfe und nur mit den Hilfen angefertigt zu haben, die ich in der Thesis angegeben habe.
Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnom-
men sind, und alle Angaben die auf mündlichen Auskünften beruhen, sind als solche
kenntlich gemacht. Bei den von mir durchgeführten und in der Thesis erwähnten Un-
tersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der
’Satzung der Justus-Liebig-Universität zur Sicherung guter wissenschaftlicher Praxis’
niedergelegt sind, eingehalten. Gemäß §25 Abs. 6 der Allgemeinen Bestimmungen
für modularisierte Studiengänge dulde ich eine Überprüfung der Thesis mittels Anti-
Plagiatssoftware.

. .
Datum und Ort Unterschrift

	Introduction
	Theory
	Standard Model of particle physics
	Matter particles
	Carrier particles
	Limits of the standard model

	The Belle II experiment
	Overview
	Detectors
	The Belle II Analysis Software Framework (BASF2)

	Classification methods
	Measuring performance
	Precision Recall Curve
	Decision trees
	Random forest
	Neural network
	Siamese neural network

	Analysis
	Data generation
	Data preparation
	Data selection
	Data scaling

	Evaluation
	Random Forest
	Neural network
	Siamese neural network

	Discussion and Conclusion
	Discussion
	Conclusion

	Appendix
	Bibliography

