Poster Session I

The complete list of authors can be taken from the submitted abstract.

Tuesday, September 13

P1.1	Recombination of Correlated Electron-Hole Pairs with Account of Hot Capture with Emission of Optical Phonons <u>Vitaly Mikhailin</u>
P1.2	Scintillation Decay Time of Ce ³⁺ , Pr ³⁺ and Nd ³⁺ Takayuki Yanagida
P1.3	Essential Improvement of Scintillation Parameters in Composites from Nanocrystalline Dielectrics and Organic Phosphors N. Klassen
P1.4	Differential Registration of Various Radiation Flows by means of Nanocrystalline Scintillators and Sapphire Fibers N. Klassen
P1.5	Nonproportionality Studies through the Application of High Isostatic Pressure Martín Gascón
P1.6	Effect of Aspect Ratio, Surface State and Optical Coupling on the Light Output of Scintillators K. Pauwels
P1.7	Meta-Materials with Intrinsic Optical Gain: A New Possibility to Achieve Single Photon Counting with ps Time Resolution? K. Attenkofer
P1.8	Instrumentation for X-Ray Excited and Laser Induced Fluorescence Lifetime Spectroscopy – Time Resolved Decay Spectra for Characterization of Fluorescence Materials Using Two-Dimensional Photon counting NP. Pook, CJ. Fruhner
P1.9	Light Yield as a Function of Amplifier Shaping Time and its Relation to Scintillation Decay Curves Petr Prusa
P1.10	Ce and Eu Activated ⁶ LiF-Sr _x Ca _{1-x} F ₂ Eutectic Scintillator for Neutron Detection <u>Takayuki Yanagida</u>

P1.11	Lithium Aluminate Crystals as Scintillator for Thermal Neutron Detection Yutaka Fujimoto
P1.12	Performance Test of PIN Photodiode Line Scanner for Thermal Neutron D. Totsuka
P1.13	Temperature Dependence of LiCaAlF ₆ and LiYF ₄ Neutron Scintillators <u>Hiromitsu Takahashi</u>
P1.14	Measurements of Dose Rates on Board a Stratospheric Balloon Using a Phoswich Detector <u>Esther M. Dönsdorf</u>
P1.15	Quantitative Scintillation Screen Studies and Related Model Calculations E. Gütlich
P1.16	Luminescence and Scintillation Properties of Doped Porous Sol-Gel Matrices A. Masalov
P1.17	Rare Earth Activated Oxyfluoride Glasses and Glass-Ceramics for Scintillation Applications <u>U. Rogulis</u>
P1.18	Radiation Defect in Oxyfluoride Glass Ceramics: EPR Hyperfine Structure Dzintars Berzins
P1.19	LPE Growth and Scintillation Properties of (Zn,Mg)O Single Crystalline Film <u>Akira Yoshikawa</u>
P1.20	Indium-Doped ZnO Scintillator with 3-ps Response Time for Accurate Synchronization of Optical and X-Ray Free Electron Laser Pulses Kohei Yamanoi
P1.21	Luminescence of Cerium Doped Zirconia Nanocrystals Donats Millers
P1.22	Efficient X-Ray Phosphors Based on Non-Stoichiometric MeZrO ₃ (Me = Ca, Sr, Ba) P. Bohacek
P1.23	Impurity Mapping on ZnO Crystals by Fluorescence Imaging Masataka Kano
P1.24	Potential High-Spatial Resolution In-Situ Imaging of Soft X-Ray Laser Pulses with ZnO Crystal T. Nakazato

P1.25	Novel Scintillating Material- ZnO transparent ceramics I.V. Khoduk
P1.26	Redox Reactions Role in Formation of CaS-Based Luminophors Mikhail Danilkin
P1.27	Photoluminescence of Isovalently Doped ZnSe Crystals J. Mickevičius