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Chapter 1

Nonrelativistic many-body dynamics
and transport

1.1 Introduction

In these notes the many-body problem will be addressed within different scenarios for non-
relativistic and relativistic systems in the limit of weak and strong coupling. In order to
maintain a common notation the non-relativistic two-body problem is rewritten in operator
form and convenient resummation schemes are identified. The many-body problem for N-
body Fermi systems is then described in terms of the density-matrix hierarchy and within
a suitable (nonperturbative) truncation scheme a generalized (on-shell) transport equation is
derived beyond the level of the Boltzmann equation. In Chapter 3 we will address strongly
interacting relativistic fields within the theory of Kadanoff and Baym and compare to the
corresponding relativistic on-shell Boltzmann limit while Chapter 4 presents the derivation
of off-shell transport equations in the Botermans-Malfliet scheme in first order gradients in
phase space. As an application for strongly interacting relativistic systems we will address
QCD in the partonic phase in Chapter 5 and provide suitable approximations to QCD in
thermal equilibrium within the Dynamical QuasiParticle Model (DQPM). The latter will be
also employed for the calculation of QCD transport coefficients like shear and bulk viscosities
or the electric conductivity and magnetic susceptibility. Some technical aspects and useful
relations are shifted to the Appendix1

1.2 The two-body problem

The stationary (two-body) Schrödinger equation for the energy E = h̄ω = ω (h̄ = 1) reads in
the cms (after separating the constant center of mass motion):

ω|Ψ〉 = (H0 + v)|Ψ〉, (1.1)

1Independent of these lecture notes the reader is referred to the book of M. Bonitz [1] for further applications
and explicit formulae.
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where H0 is the non-interacting Hamiltonian and the interaction is denoted by v. Alternatively,
one has to look for the ’zeros’ in ω of the equation

(ω − H0 − v)|Ψ〉 =: G−1(ω)|Ψ〉 = 0 , (1.2)

which in the non-relativistic case of two-body interactions v and H0 = T = p2/(2μ) in the cms
(with μ denoting the reduced mass) reads in four-momentum space

(ω − p2

2μ
− v)|Ψ〉 =: G−1(ω,p)|Ψ〉 = 0. (1.3)

In Hilbert space this defines the retarded operator (in the limit ε → 0+)

G+(ω + iε,p) =
1

ω − p2

2μ
− v + iε

=
1

(ω − p2

2μ
+ iε)[1 − v(ω − p2

2μ
+ iε)−1]

, (1.4)

which can be rewritten in the geometric expansion (assuming convergence) as

G+(ω + iε,p) =
1

ω − p2

2μ
+ iε

∞∑
n=0

⎛
⎝v

⎛
⎝ 1

ω − p2

2μ
+ iε

⎞
⎠
⎞
⎠n

(1.5)

=: G+
0 (ω + iε,p)

∞∑
n=0

(
vG+

0 (ω + iε,p)
)n

,

with the free retarded Green function (in the center-of-mass system)

G+
0 (ω + iε,p) =

1

ω − p2

2μ
+ iε

(1.6)

which is analytic in ω in the complex upper half-plane since the poles are in the lower half
plane due to the limit +iε in the denominator. Omitting the arguments we obtain the Dyson
equation

G+ = G+
0

∞∑
n=0

(
vG+

0

)n
= G+

0 + G+
0 vG+

0 + G+
0 vG+

0 vG+
0 + · · · = G+

0 + G+
0 vG+ (1.7)

= G+
0 (1 + vG+) = G+

0

1

(1 − vG+
0 )

=
1

(1 − G+
0 v)

G+
0 .

In momentum-space representation this Dyson equation reads as

G+(p′ − p) = 〈p′|G+(ω)|p〉 = 〈p′|G+
0 (ω)|p〉 + 〈p′|G+

0 (ω)vG+(ω)|p〉 (1.8)

=
δ3(p′ − p)

ω − p′2/2μ + iε
+
∫

d3p1
1

ω − p′2/2μ + iε
v(p′ − p1)G

+(p1 − p) .

By inversion we obtain alternatively (omitting the (+))

G−1 = G−1
0 (1 − vG0) = (1 − G0v)G−1

0 (1.9)
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or
G0G

−1 = 1 − v . (1.10)

Note that (1.10) is an equation for the two-body Green function which is of one-body type only
after separation of the cms motion!

The (two-body) Green function G+ in scattering theory - where we have the boundary condition
of an incoming undistorted wave |Φω〉 - generates the scattering state of energy ω:

|Ψ+
ω 〉 = |Φω〉 + G+

0 (ω)v|Ψ+
ω 〉 =

∞∑
n=0

(G+
0 (ω)v)n|Φω〉 =: Ω(ω)|Φω〉 (1.11)

with the unitary Moeller operator Ω(ω) which follows

Ω(ω) =
∞∑

n=0

(G+
0 (ω)v)n =

1

1 − G+
0 (ω)v

. (1.12)

Explicitly we obtain for the matrix elements

〈r|G(+)
0 |r′〉 =

∫ ∫
d3q d3q′ 〈r|q〉〈q|G(+)

0 |q′〉〈q′|r′〉 (1.13)

=
1

(2π)3

∫
d3q exp(iq · r) 1

E − q2

2μ
+ iε

exp(−iq · r′)

=
1

(2π)3
2μ

∫
d3q

exp(iq · (r − r′))
k2 − q2 + iε

= 2μ G
(+)
0 (r, r′);

i.e. the familiar Green function in coordinate-space representation. We have used furthermore

〈r|q〉 = 〈q|r〉∗ = (2π)−3/2 exp(iq · r). (1.14)

These operator equations allow to define a T -matrix via

T (ω)|Φω〉 = v|Ψ+
ω 〉 (1.15)

which follows the T -matrix (or Born) series

T (ω) = v + vG+(ω)T = v
∞∑

n=0

(G+
0 (ω)v)n = vΩ(ω). (1.16)

Here we only consider stationary systems without the presence of a third particle in the en-
vironment. The two-body density matrix in this case is a pure ensemble build up from the
scattering or bound state |Ψ+

ω 〉 by

ρ2 = |Ψ+
ω 〉〈Ψ+

ω | ρ20 = |Φω〉〈Φω|, (1.17)

i.e.
ρ2 = Ω(ω)ρ20Ω(ω)†. (1.18)
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The matrix elements in momentum space (omitting discrete quantum numbers) can be written
as

〈p1′p2′ |ρ2|p1p1〉 = δ3(p1 + p2 − p1′ − p2′)ρ2(q), (1.19)

where q = p1′ − p1 is the momentum transfer in the collision.
In order to address nonequilibrium and medium phenomena one may use a Schrödinger picture
(with time-dependent states) or a Heisenberg picture (with time-dependent operators). Also
one may start from a formally correct formulation and decrease information (top-down scenario)
or start from a perturbative formulation and increase the accuracy (bottom-up scenario). We
start with the nonrelativistic top-down scenario.

1.3 The n-body problem in the density–matrix formal-

ism

The starting point is the von-Neumann equation for the density operator ρN , that describes an
N -particle system in or out-off equilibrium,

i
∂

∂t
ρN (1, .., N ; 1′..N ′; t) = [HN , ρN ], (1.20)

with HN denoting the N -particle Hamiltonian for particles i = 1, .., N . In the approximation
of two-body interactions we have

HN =
N∑

i=1

h0(i) +
N−1∑
i〈j

v(ij), (1.21)

with
h0(i) = t(i) (1.22)

denoting the kinetic energy operator for particle i for convenience. External potentials that act
in the same way on all particles may be incorporated here without problems.
The next step is to introduce reduced density matrices ρn(1...n, 1′...n′; t) by taking the trace
over particles n + 1, .., N :

ρn =
1

(N − n)!
Trn+1,...,NρN =

1

n + 1
Trn+1{ρn+1}. (1.23)

One chooses the normalization of ρN to N ! such that the trace over the single-particle density
matrix ρ1 = ρ becomes,

Tr1=1′ρ(11′; t) =
∑

i

〈a†
iai〉 = N, (1.24)

with a†
i and ai denoting Fermi creation and annihilation operators in the single-particle state

i. The two-particle density matrix then is normalized as

Tr(1,2)ρ2 =
∑
i,j

〈a†
ia

†
jajai〉 = −∑

i,j

〈a†
ia

†
jaiaj〉 =

∑
i,j

{〈a†
iaia

†
jaj〉 − 〈a†

iaj〉δij} (1.25)
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= (N − 1)
∑
j

〈a†
jaj〉 = N(N − 1)

and so forth.

Taking corresponding traces (i.e. Tr(n+1,..,N)) of the von-Neumann equation (1.20) we obtain
the BBGKY-Hierarchy (Bogolyubov, Born, Green, Kirkwood und Yvon),

i
∂

∂t
ρn = [

n∑
i=1

h0(i), ρn] + [
n−1∑
1=i〈j

v(ij), ρn] +
n∑

i=1

Trn+1[v(i, n + 1), ρn+1] (1.26)

for 1 ≤ n ≤ N with ρN+1 = 0. This set of equations is equivalent to Eq. (1.20); approximations
or truncations of this set will reduce the information about the system in a top-down scenario.
The explicit equations for n = 1, n = 2 read:

i
∂

∂t
ρ1 = [h0(1), ρ1] + Tr2[v(12), ρ2], (1.27)

i
∂

∂t
ρ2 = [

2∑
i=1

h0(i), ρ2] + [v(12), ρ2] + Tr3[v(13) + v(23), ρ3], (1.28)

which are not closed since the equation for ρ2 requires information from ρ3. Its equation reads

i
∂

∂t
ρ3 = [

3∑
i=1

h0(i), ρ3] + [v(12) + v(13) + v(23), ρ3] + Tr4[v(14) + v(24) + v(34), ρ4]. (1.29)

We now consider explicitly fermions in this Section. The next step is to introduce a cluster
expansion as:

ρ1(11′) = ρ(11′), (1.30)

ρ2(12, 1′2′) = ρ(11′)ρ(22′) − ρ(12′)ρ(21′) + c2(12, 1′2′) = ρ20(12, 1′2′) + c2(12, 1′2′) (1.31)

= A12ρ(11′)ρ(22′) + c2(12, 1′2′),

with the two-body antisymmetrization operator Aij = 1−Pij . The expansion for the three-body
density matrix reads (with the help of the permutation operator Pij or Pi′j′)

ρ3(123, 1′2′3′) = ρ(11′)ρ(22′)ρ(33′) − ρ(12′)ρ(21′)ρ(33′) (1.32)

−ρ(13′)ρ(22′)ρ(31′) − ρ(11′)ρ(32′)ρ(23′) + ρ(13′)ρ(21′)ρ(32′) + ρ(12′)ρ(31′)ρ(23′)

+ρ(11′)c2(23, 2′3′) − ρ(12′)c2(23, 1′3′) − ρ(13′)c2(23, 2′1′) + ρ(22′)c2(13, 1′3′)

−ρ(21′)c2(13, 2′3′) − ρ(23′)c2(13, 1′2′) + ρ(33′)c2(12, 1′2′) − ρ(31′)c2(12, 3′2′)

−ρ(32′)c2(12, 1′3′) + c3(123, 1′2′3′).

By neglecting c2 in (1.31) we get the limit of independent particles which is also denoted as
Time-Dependent Hartree-Fock (TDHF). This implies that all effects from collisions or correla-
tions are incorporated in c2 and higher orders in c3 etc.
For fermions the exchange symmetries of the correlation matrix c2 read:

c2(12, 1′2′) = −c2(12, 2′1′) = −c2(21, 1′2′) = c∗2(1
′2′, 12) etc. (1.33)
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When discarding explicit three-body correlations c3 in (1.32) the remaining set of equations is
closed and after some tedious analytic work we obtain for the one-body density matrix

i
∂

∂t
ρ(11′; t) = [h0(1) − h0(1′)]ρ(11′; t) (1.34)

+Tr(2=2′)[v(12)A12 − v(1′2′)A1′2′ ]ρ(11′; t)ρ(22′; t) + Tr(2=2′)[v(12) − v(1′2′)]c2(12, 1′2′; t)

and for the two-body correlation matrix

i
∂

∂t
c2(12, 1′2′; t) = [h0(1) + h0(2) − h0(1′) − h0(2′)]c2(12, 1′2′; t) (1.35)

+Tr(3=3′)[v(13)A13 + v(23)A23 − v(1′3′)A1′3′ − v(2′3′)A2′3′ ]ρ(33′; t)c2(12, 1′2′; t)

+[v(12) − v(1′2′)]ρ20(12, 1′2′)

−Tr(3=3′){v(13)ρ(23′; t)ρ20(13, 1′2′; t) − v(1′3′)ρ(32′; t)ρ20(12, 1′3′; t)

+v(23)ρ(13′; t)ρ20(32, 1′2′; t) − v(2′3′)ρ(31′; t)ρ20(12, 3′2′; t)}

+[v(12) − v(1′2′)]c2(12, 1′2′; t)

−Tr(3=3′){v(13)ρ(23′; t)c2(13, 1′2′; t) − v(1′3′)ρ(32′; t)c2(12, 1′3′; t)

+v(23)ρ(13′; t)c2(32, 1′2′; t) − v(2′3′)ρ(31′; t)c2(12, 3′2′; t)}

+Tr(3=3′){[v(13)A13A1′2′ − v(1′3′)A1′3′A12] ρ(11′; t)c2(32, 3′2′; t)

+[v(23)A23A1′2′ − v(2′3′)A2′3′A12] ρ(22′; t)c2(13, 1′3′; t)}.
To reduce the complexity we introduce a one-body Hamiltonian by

h(i) = t(i) + Us(i) = t(i) + Tr(n=n′)v(in)Ainρ(nn′; t), (1.36)

h(i′) = t(i′) + Us(i′) = t(i′) + Tr(n=n′)v(i′n′)Ai′n′ρ(nn′; t)

that includes the interaction in the self-generated time-dependent mean field. A Pauli-blocking
operator is uniquely defined by

Q=
ij = 1 − Tr(n=n′)(Pin + Pjn)ρ(nn′; t); Q=

i′j′ = 1 − Tr(n=n′)(Pi′n′ + Pj′n′)ρ(nn′; t), (1.37)

and the effective interaction in the medium by

V =(ij) = Q=
ijv(ij); V =(i′j′) = Q=

i′j′v(i′j′), (1.38)

with all exchange operators acting to the right.
The equations for ρ and c2 achieve the compact form:

i
∂

∂t
ρ(11′; t) = [h(1) − h(1′)]ρ(11′; t) + Tr(2=2′)[v(12) − v(1′2′)]c2(12, 1′2′; t), (1.39)
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and

i
∂

∂t
c2(12, 1′2′; t) = [

2∑
i=1

h(i) −
2′∑

i′=1′
h(i′)]c2(12, 1′2′; t) (1.40)

+[V =(12) − V =(1′2′)]ρ20(12, 1′2′; t)

+[V =(12) − V =(1′2′)]c2(12, 1′2′; t)

+Tr(3=3′){[v(13)A13A1′2′ − v(1′3′)A1′3′A12] ρ(11′; t)c2(32, 3′2′; t)

+[v(23)A23A1′2′ − v(2′3′)A2′3′A12] ρ(22′; t)c2(13, 1′3′; t)}.
Equation (1.39) describes the propagation of a particle in the self-generated mean field U s(i)
with additional two-body correlations that are further specified in (1.40). In Eq. (1.40) the first
line describes the propagation of two particles in the mean field U s, the second line incorporates
off-shell collisions in the Born approximation while the third line incorporates a resummation
of the in-medium interaction in the sense of a G-matrix ladder resummation

v(ij) → G(ij) = v + vg+
20(ω)Q=G = v

∞∑
n=0

(g+
20(ω)Q=v)n = v

1

1 − g+
20(ω)Q=v

(1.41)

in analogy to the T -matrix in (1.16) but with an intermediate Pauli-blocking operator Q=

(1.37). Since there is no longer a common center-of-mass system for all particle pairs the bare
retarded propagator now includes the mean-fields Us and reads (more generally)

G+
0 (ω) → g+

20(ω) =
1

ω − h(1) − h(2) + iε
(1.42)

instead of G+
0 (1.6). These relations are readily derived in the limit i∂/∂t → ω̃ ≡ ω − ω′ (see

below). The last two lines in (1.40) describe additional particle - hole interactions that are
important for groundstate correlations (vacuum correlations) and the damping of low energy
modes but might be neglected for configurations at high temperatures where also the Pauli-
blocking operator plays a minor role.
We mention that for the special limit considered here one can alternatively rewrite the cluster
expansion for the three-body density matrix as

ρ3(123, 1′2′3′) = ρ(11′)ρ2(23, 2′3′) − ρ(12′)ρ2(23, 1′3′) (1.43)

−ρ(13′)ρ2(23, 2′1′) + ρ(22′)ρ2(13, 1′3′)

−ρ(21′)ρ2(13, 2′3′) − ρ(23′)ρ2(13, 1′2′) + ρ(33′)ρ2(12, 1′2′) − ρ(31′)ρ2(12, 3′2′)

−ρ(32′)ρ2(12, 1′3′) + c3(123, 1′2′3′)

= (1 − P1′2′ − P1′3′) [ρ(11′)ρ2(23, 2′3′) + ρ(22′)ρ2(13, 1′3′) + ρ(33′)ρ2(12, 1′2′)] + c3(123, 1′2′3′)

and neglect the 3-body correlations c3. This expansion also closes the equations (1.27) and
(1.28). By insertion of (1.43) in (1.28) we get

i
∂

∂t
ρ2(12, 1′2′; t) − [

2∑
i=1

h(i) −
2′∑

i′=1′
h(i′)] ρ2(12, 1′2′; t) (1.44)
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= [V =(12) − V =(1′2′)]ρ2(12, 1′2′; t)

+Tr(3=3′){[v(13)A13A1′2′ − v(1′3′)A1′3′A12] ρ(11′; t)ρ2(32, 3′2′; t)

+[v(23)A23A1′2′ − v(2′3′)A2′3′A12] ρ(22′; t)ρ2(13, 1′3′; t)}.
The last lines describe particle-hole interactions. When discarding again the particle-hole in-
teraction terms we end up with the compact form

i
∂

∂t
ρ2(12, 1′2′; t) − [

2∑
i=1

h(i) −
2′∑

i′=1′
h(i′)]ρ2(12, 1′2′; t) (1.45)

= [V =(12) − V =(1′2′)] ρ2(12, 1′2′; t).

Performing a Fourier transformation in time to the variable ω̃ and rewriting ω̃ = ω − ω′ Eq.
(1.45) is rewritten as:

(ω − h(1) − h(2) − V =(12) + iε) ρ2(12, 1′2′; ω) (1.46)

= ρ2(12, 1′2′; ω′) (ω′ − h(1′) − h(2′) − V =(1′2′) − iε)

where we have tacitely added/subtracted a ±iε term. In this form Eq. (1.41) becomes imme-
diately transparent using V = = Q=v.

1.3.1 Definition of selfenergies

Coming back to the identity (1.18) in the free case and in view of Eq. (1.46) we may define an
interacting two-body density operator ρ2 in ladder resummation by

ρ2 = Ω̃(ω)ρ20Ω̃(ω)† (1.47)

with

Ω̃(ω) =
∞∑

n=0

(g+
20(ω)Q=v)n =

1

1 − g+
20(ω)Q=v

, (1.48)

i.e. the resummed complex interaction reads

G(ω) = vΩ̃(ω). (1.49)

This leads to the identities (Q=† = Q=)

Ω̃(ω) = 1 + g+
20(ω)Q=vΩ̃(ω) = 1 + g+

20(ω)Q=G(ω) (1.50)

Ω̃(ω)† = 1 + G(ω)†Q=g−
20(ω)

which will be exploited in different versions (using e.g. �(GG†) = 0). Having established this
specific (nonperturbative) limit of the many-body problem we may rewrite the matrix elements

Tr2=2′〈1′2′|[v, ρ2]|12〉 = Tr2=2′〈1′2′|(vρ2 − ρ2v)|12〉 (1.51)

= Tr2=2′〈1′2′|(G(ω)ρ20Ω̃(ω)† − Ω̃(ω)ρ20G(ω)†)|12〉
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and (using (1.50))

Tr2=2′〈1′2′|[v, ρ2]|12〉 = Tr2=2′〈1′2′|(G(ω)ρ20 − ρ20G(ω)†)|12〉 (1.52)

+Tr2=2′〈1′2′|(G(ω)ρ20G(ω)†Q=g−
20(ω) − g+

20(ω)Q=G(ω)ρ20G(ω)†)|12〉.
This allows to define the real part of the selfenergy �(Σ) as:

〈1′|[�(Σ), ρ]|1〉 = Tr2=2′〈1′2′|[�(G), ρ20]|12〉 (1.53)

or
〈1′|�(Σ)|1〉 = Tr2=2′〈1′2′|�(G)Aρ|12〉. (1.54)

The imaginary part of the selfenergy follows accordingly from the imaginary part of G as:

〈1′|[�(Σ), ρ]|1〉 = Tr2=2′〈1′2′|[�(G), ρ20]|12〉 (1.55)

or
〈1′|�(Σ)|1〉 = Tr2=2′〈1′2′|�(G)Aρ|12〉 (1.56)

which will turn out to give the loss part in the collision term (see below). In lowest order in the
interaction v we regain the selfconsistent Hartree-Fock potential U s in (1.36) while the series
in (1.41) provides a controlled higher order expansion for �(Σ).

We now separate the real and imaginary parts of the commutator (1.51) employing additionally
the identity

�(G) = G†Q=G�(g+
20) (1.57)

since G†Q=G, Q= and v are hermitian operators.
For the remaining parts of the commutator we have

Tr2=2′〈1′2′|(�(G(ω))ρ20 − ρ20�(G(ω)†))|12〉) (1.58)

+Tr2=2′〈1′2′|(G(ω)ρ20G(ω)†Q=g−
20(ω) − g+

20(ω)Q=G(ω)ρ20G(ω)†)|12〉
since ρ20 is hermitian. One can now show that (1.58) is identical to an Uehling-Uhlenbeck
on-shell collision term for fermions where the imaginary part of g+

20 gives an energy conserving
δ-function, the matrix-element squared is given by GG†A and Q= introduces the Pauli-blocking
factors. This is most easily seen in the infinite nuclear matter limit where the one-body density
matrix in momentum space and Q= become diagonal, i.e.

〈p′|ρ|p〉 = (2π)3δ3(p′ − p)f(p) (1.59)

〈p′
1p

′
2|Q=|p1p2〉 = (2π)6δ3(p′

1 − p1)δ
3(p′

2 − p2) (1 − f(p′
1) − f(p′

2))

〈p′
1p

′
2|G|p1p2〉 = (2π)3δ3(p1 + p2 − p′

1 − p′
2)G(p2 − p′

2).

Here we have dropped the discrete quantum numbers in the matrix elements (spin, isospin
etc.). Note that

〈p′
1p

′
2|�(g+

20(ω))|p1p2〉 = (2π)6δ3(p′
1 − p1)δ

3(p′
2 − p2)

−iε

(ω − h(p1) − h(p2))2 + ε2
(1.60)
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= −π(2π)6δ3(p′
1 − p1)δ

3(p′
1 − p1)δ(ω − h(p1) − h(p2)

In lowest order we regain the Born transition matrix element squared vv†A in the collision term
where the antisymmetrization A only works for the interaction of fermions with the same spin
and isospin. The relation to the differential cross section dσ/dΩ for nonidentical particles is
given by

dσ

dΩ
=

μ2

4π2
G(q)G†(q) (1.61)

where q is the momentum transfer in the elastic scattering event. The nonrelativistic (and
nonperturbative) transport equation for Fermions finally reads with the single-particle hamil-
tonian

heff(r,p; t) =
p2

2M
+ �(Σ)(r,p; t) (1.62)(

∂

∂t
+ ∇pheff (r,p; t) · ∇r −∇rheff(r,p; t) · ∇p

)
f(r,p; t) = (1.63)

∫
d3p2

(2π)3

∫
d3p′1
(2π)3

∫
d3p′2
(2π)3

|GG†A|2((p1 + p2),p
′
2 − p2) (1.64)

×δ(h(p1) + h(p2) − h(p′
1) − h(p′

2))

× (f(r,p′
1; t)f(r,p′

2; t)(1 − f(r,p; t))(1 − f(r,p2; t))

−f(r,p; t)f(r,p2; t)(1 − f(r,p′
1; t))(1 − f(r,p′

2; t))

Where (1.63) represents the selfconsistent Vlasov term while (1.64) describes the on-shell col-
lision term with a non-perturbative transition probability.

1.3.2 Analyticity

Since the propagator g20(ω) in (1.42) is analytic in the complex upper half plane (by virtue of
the iε in the denominator) the real and imaginary part of G and also the selfenergy Σ follow
the Kramers–Kronig relation (see Appendix)

�(Σ(ω)) =
2

π
P

∞∫
0

ω′�(Σ(ω′))
ω′2 − ω2

dω′ (1.65)

if �(Σ(ω′)) is vanishing rapidly enough for ω′ → ∞. A similar relation also holds for the
retarded propagator G+(ω) in (1.4).

1.3.3 Effective parametrizations

In practice the real part of the G-matrix in the nuclear physics context is parametrized by some
functional in the nuclear density ρ which – in the infinite nuclear matter limit – is taken as a
constant, e.g.

�(G(r1 − r2) ≈ −Aδ(r1 − r2) + Bδ(r1 − r2)ρ((r1 + r2)/2))γ (1.66)

13



where A and B denote the strength of the attractive and repulsive interaction and 0.3 ≤ γ ≤ 1
some density dependence of the repulsive interaction. Spin- and isospin dependencies have
been discarded as well as finite range (Yukawa) interactions. A non-relativistic mean field (or
selfenergy) is obtained by

ΣHF (ρ) = UHF (ρ) =
3

4

(
−Aρ +

B

1 + γ
ρ1+γ

)
, (1.67)

where the prefactor 3/4 stems from subtracting the Fock part of the interaction from the direct
Hartree part in case of two spin and isospin degrees-of-freedom. The potential energy density
V is obtained by integration over ρ:

V(ρ) =
3

4

(
−A

2
ρ2 +

B

(1 + γ)(2 + γ)
ρ2+γ

)
. (1.68)

Alternatively, having fixed the potential energy density V e.g. by some effective Lagrangian
or method, the selfenergy is obtained by a (functional) derivative with respect to the density
and the ’local’ effective interaction by another (functional) derivative. In the ’top-down’ sce-
nario one first defines a specific truncation scheme of the many-body hierarchy, defines some
non-perturbative (or perturbative) interaction like G and obtains a selfenergy by functional in-
tegration. Note that in non-relativistic formulations the selfenergy has the dimension [energy]
whereas in relativistic formulations the selfenergy has dimension [energy2].

14



Chapter 2

Relativistic dynamics and transport

2.1 Relativistic formulations

Relativistic formulations of the many-body problem are essentially described within covariant
field theory. Since the fields themselves are distributions in space-time x = (t,x) one changes
from the Schrödinger picture discussed before to the Heisenberg picture. Furthermore, the
field theoretical problem in principle encounters infinitely many particles in a wavefunction
such that a ’top-down’ scenario is no longer appropriate. Nevertheless, we will encounter
very similar structures to the BBGKY hierarchy in the Martin-Schwinger hierarchy. In the
Heisenberg picture the time evolutions of the system is described by time-dependent operators
that are evolved with the help of the time-evolution operator Û(t, t′) which follows

i
∂Û (t, t′)

∂t
= Ĥ(t)Û(t, t′) , (2.1)

with Ĥ denoting the Hamilton operator of the system. Eq. (2.1) is formally solved by

Û(t, t′) = T (exp[−i
∫ t

t′
dz Ĥ(z)]) =

∞∑
n=0

T[−i
∫ t
t′ dz Ĥ(z)]n

n!
, (2.2)

where T denotes the time-ordering operator, which is also denoted as Dyson series. Let’s
assume that the initial state is given by some density matrix ρ̂, which may be a pure or mixed
state, then the time evolution of any operator Ô in the Heisenberg picture from time t0=0 to t
is given by

O(t) = 〈ÔH(t)〉 = Tr
(
ρ̂ ÔH(t)

)
= Tr

(
ρ̂ Û(0, t)Ô Û(t, 0)

)
= Tr

(
ρ̂ Û†(t, 0)Ô Û(t, 0)

)
. (2.3)

This implies that first the system is evolved from t0 = 0 to t and then backward from t to
t0 = 0. This may be expressed as a time integral along the (Keldysh-)Contour shown in Fig.
2.1.

2.1.1 Two-point functions on the CTP

Now Green functions on the contour may have time arguments on the same branch of the
contour or on opposite branches. This gives four possibilities for the Green functions defined –
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Two-point functions F on the closed-time-path (CTP) generally can be expressed by retarded
and advanced components as

F R(x, y) = F c(x, y) − F <(x, y) = F >(x, y) − F a(x, y) , (2.12)

F A(x, y) = F c(x, y) − F >(x, y) = F <(x, y) − F a(x, y) (2.13)

giving in particular
F R(x, y) − F A(x, y) = F >(x, y) − F <(x, y). (2.14)

Note that the advanced and retarded components of the Green functions only contain spectral
and no statistical information,

F R/A(x, y) = F0 δ(t1 − t2) ± Θ(±(t1 − t2)) [F >(x, y) − F <(x, y)]. (2.15)

2.1.2 The Dyson-Schwinger equation on the CTP

The Dyson-Schwinger equation (2.9) on the closed-time-path reads in matrix form:(
Gc(x, y) G<(x, y)
G>(x, y) Ga(x, y)

)
=

(
Gc

0(x, y) G<
0 (x, y)

G>
0 (x, y) Ga

0(x, y)

)
+ (2.16)

(
Gc

0(x, x′) G<
0 (x, x′)

G>
0 (x, x′) Ga

0(x, x′)

)
�
(

Σc(x′, y′) −Σ<(x′, y′)
−Σ>(x′, y′) Σa(x′, y′)

)
�
(

Gc(y′, y) G<(y′, y)
G>(y′, y) Ga(y′, y)

)
,

(2.17)
where the symbol � stands for an intermediate integration over space-time, i.e. x′ or y′. The
selfenergy Σ on the CPT is defined along (2.13) and incorporates interactions of higher order.
In lowest order Σ/2M is given by the Hartree or Hartree-Fock mean field but it follows a
nonperturbative expansion in analogy to (1.53).
An example for this formal procedure may be given by the scalar φ4-theory which is a laboratory
for testing theoretical approximations. Its Lagrangian reads

L(x) =
1

2
∂x

μφ(x)∂μ
xφ(x) − 1

2
m2φ(x)2 − λ

4!
φ4(x) (2.18)

In this (Bose) case the free propagator is defined via the negative inverse Klein-Gordon operator
in space-time representation

Ĝ−1
0x = −(∂x

μ∂μ
x + m2), (2.19)

which is a solution of the Klein-Gordon equation in the following sense:

Ĝ−1
0x

(
Gc

0(x, y) G<
0 (x, y)

G>
0 (x, y) Ga

0(x, y)

)
= δ(x− y)

(
δ(x0 − y0) 0

0 −δ(x0 − y0)

)
= δ(x− y)δp(x0 − y0) ,

(2.20)

Ĝ−1
0x G

R/A
0 (x, y) = δ(x − y) ,

with δp is the δ-function on the CTP.
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2.1.3 Kadanoff-Baym equations

To derive the Kadanoff-Baym equations one multiplies (2.17) with G−1
0x (2.19). This gives

four equations which can be cast into the form:

−(∂x
μ∂μ

x + m2)GR/A(x, y) = δ(x − y) + ΣR/A(x, x′) � GA/R(x′, y) , (2.21)

−(∂x
μ∂μ

x + m2)G<(x, y) = ΣR(x, x′) � G<(x′, y) + Σ<(x, x′) � GA(x′, y) , (2.22)

−(∂x
μ∂μ

x + m2)G>(x, y) = ΣR(x, x′) � G>(x′, y) + Σ>(x, x′) � GA(x′, y) , (2.23)

The propagation of the Green functions in the variable y is defined by the adjoint equations:

−(∂y
μ∂μ

y + m2)GR/A(x, y) = δ(x − y) + GR/A(x, x′) � ΣR/A(x′, y) , (2.24)

−(∂y
μ∂μ

y + m2)G<(x, y) = GR(x, x′) � Σ<(x′, y) + G<(x, x′) � ΣA(x′, y) , (2.25)

−(∂y
μ∂μ

y + m2)G>(x, y) = GR(x, x′) � Σ>(x′, y) + G>(x, x′) � ΣA(x′, y) . (2.26)

Note again that the evolution of the retarded/advanced Green functions only depends on re-
tarded/advanced quantities.

2.1.4 Definition of selfenergies

For the solution of the KB equations the computation /fixing of the selfenergies Σ is mandatory.
In the context of field theory the latter is extracted from the effective action

Γ[G] = Γ0[G0] +
i

2
[ln(1 −�pG0 �p Σ) + �pG �p Σ] + Φ[G] (2.27)

assuming a vanishing vacuum expectation value 〈0|φ(x)|0〉. Here Γ0[G0] only depends on the
free Green function and can be considered as constant in the following. In Φ[G] all closed
two-particle irreducible (2PI) diagrams are included in lowest (nontrivial) order. 2PI diagrams
are those that cannot be separated in two disjunct diagrams by cutting two propagator lines;
formally this implies that after second order differentiation with respect to G no separate
diagrams survive. The functional Φ[G] plays a similar role as the potential energy density V(ρ)
(1.68) in the non-relativistic case where the (non-relativistic) selfenergy results from functional
derivation of V with respect to ρ, i.e. Σ = δV/δρ.
For the derivation of selfenergies one now considers the variation of the action Γ[G] with respect
to G requiring δΓ = 0,

δΓ = 0 =
i

2
Σ δG − i

2

G0

1 − G0 Σ
δΣ +

i

2
G δΣ + δΦ (2.28)

=
i

2
Σ δG − i

2

1

G−1
0 − Σ︸ ︷︷ ︸

=G

δΣ +
i

2
G δΣ + δΦ =

i

2
Σ δG + δΦ .

⇒ Σ = 2i
δΦ

δG
= 2

δΦ

δ(−iG)
. (2.29)

18



Figure 2.2: Contributions to the Φ-functional for the Kadanoff-Baym equation: two-loop con-
tribution (l.h.s.) giving the tadpole self-energy and three-loop contribution (r.h.s.) generating
the sunset self-energy. The Φ-functional is built-up by full Green functions (double lines) while
open dots symbolize the integration over the inner coordinates.

Note that −iG< plays the role of the one-body density matrix in non-relativistic formulations.
The selfenergies thus are obtained by opening of a propagator-line in the irreducible diagrams Φ.
Note that this definition of the selfenergy preserves all conservation laws of the theory (as well
as causality) and does not introduce further conserved currents. In principle the Φ-functional
includes irreducible diagrams up to infinite order, but here we will consider only the contribu-
tions up to second order in the coupling (2PI). For our present purpose this approximation is
sufficient since we include the leading mean-field effects as well as the leading order scattering
processes that pave the way to thermalization.

2.1.5 Application to the scalar φ4-theory

The contributions up to the 3-loop order for the Φ-functional (cf. Fig. 2.2) read explicitly for
the φ4-theory

iΦ =
iλ

8

∫
C
dd+1x G(x, x)2 − λ2

48

∫
C
dd+1x

∫
C
dd+1y G(x, y)4, (2.30)

where d denotes the spatial dimension of the problem.

Figure 2.3: Self-energies of the Kadanoff-Baym equation: tadpole self-energy (l.h.s.) and sunset
self-energy (r.h.s.) for the φ4-theory. Since the lines represent full Green functions the self-
energies are self-consistent (see text) with the external coordinates indicated by full dots.
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Σ(x, y) = 2i
δΦ

δG(y, x)
= −iλ

2
G(x, x) − λ2

6
G(x, y)G(x, y)G(y, x) (2.31)

= −λ

2
iG(x, x) − λ2

6
[G(x, y)]3

= Σδ
pδ(x0 − y0) + θp(x0 − y0)Σ

>(x, y) + θp(y0 − x0)Σ
<(x, y),

with δp defined in (2.20) while θp is the Heavyside function on the CTP (taking care about the
sign on the upper (+) or lower (-) branch).
Within the 3-loop approximation for the 2PI effective action (i.e. the Φ-functional (2.30)) we get
two different self-energies: In leading order of the coupling constant only the tadpole diagram
(l.h.s. of Fig. 2.3) contributes and leads to the generation of an effective mass (squared) for
the field quanta. This self-energy (in coordinate space) is given by

Σδ(x) =
λ

2
i G<(x, x) , (2.32)

and is local in space and time. In next order in the coupling constant (i.e. λ2) the non-local
sunset self-energy (r.h.s. of Fig. 2.3) enters the time evolution as

Σ><(x, y) = −λ2

6
G><(x, y) G><(x, y) G<>(y, x) (2.33)

−→ Σ><(x, y) = −λ2

6

[
G><(x, y)

]3
. (2.34)

Thus the Kadanoff-Baym equation (2.22) in our case includes the influence of a mean-field on
the particle propagation – generated by the tadpole diagram – as well as scattering processes
as inherent in the sunset diagram.

The Kadanoff-Baym equation describes the full quantum nonequilibrium time evolution on the
two-point level for a system prepared at an initial time t0, i.e. when higher order correlations
are discarded. The causal structure of this initial value problem is obvious since the time inte-
grations are performed over the past up to the actual time x0 (or y0, respectively) and do not
extend to the future.

2.1.6 Homogeneous systems in space

In the following we will consider homogeneous systems in space. To obtain a numerical solution
the Kadanoff-Baym equation (2.22) is transformed to momentum space in case of the φ4-theory:

∂2
t1

G<(p, t1, t2) = −[p 2 + m2 + Σ̄δ(t1) ] G<(p, t1, t2) (2.35)

−
∫ t1

t0
dt′ [ Σ>(p, t1, t

′) − Σ<(p, t1, t
′) ] G<(p, t′, t2)
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+
∫ t2

t0
dt′ Σ<(p, t1, t

′) [G>(p, t′, t2) − G<(p, t′, t2) ]

= −[p 2 + m2 + Σ̄δ(t1) ] G<(p, t1, t2) + I<
1 (p, t1, t2)

where both memory integrals are summarized in the function I<
1 . The equation of motion

in the second time direction t2 is given analogously. In two-time, momentum space (p, t, t′)
representation the selfenergies read

Σ̄δ(t) =
λ

2

∫
ddp

(2π)d
i G<(p, t, t) , (2.36)

Σ><(p, t, t′) = −λ2

6

∫
ddq

(2π)d

∫
ddr

(2π)d
G><(q, t, t′) G><(r, t, t′) G<>(q+r−p, t′, t) .

= −λ2

6

∫ ddq

(2π)d

∫ ddr

(2π)d
G><(q, t, t′) G><(r, t, t′) G><(p−q−r, t, t′) .

By insertion of (2.36) in Eq. (2.35) we get for the collision term:

I<
1 (p, t1, t2) = (2.37)

+
∫ t1

t0
dt′

λ2

6

∫
ddq

(2π)d

∫
ddr

(2π)d
G>(q, t1, t

′) G>(r, t1, t
′) G<(q+r−p, t′, t1) G<(p, t′, t2)

−
∫ t2

t0
dt′

λ2

6

∫ ddq

(2π)d

∫ ddr

(2π)d
G<(q, t1, t

′) G<(r, t1, t
′) G>(q+r−p, t′, t1) G>(p, t′, t2)

+
∫ t2

t0
dt′

λ2

6

∫
ddq

(2π)d

∫
ddr

(2π)d
G<(q, t1, t

′) G<(r, t1, t
′) G>(q+r−p, t′, t1) G<(p, t′, t2)

−
∫ t1

t0
dt′

λ2

6

∫
ddq

(2π)d

∫
ddr

(2π)d
G<(q, t1, t

′) G<(r, t1, t
′) G>(q+r−p, t′, t1) G<(p, t′, t2)

which apart from ’2 ↔ 2’ processes also involves ’1 ↔ 3’ processes which are not allowed by
energy conservation in an on-shell collision term for massive particles!

For the solution of the Kadanoff-Baym equations (2.35) a flexible and accurate algorithm has
been developed: Instead of solving the second order differential equation (2.35) one can generate
a set of first order differential equations for the Green functions in the Heisenberg picture,

i G<
φφ(x1, x2) = 〈φ(x2) φ(x1)〉 = i G<(x1, x2) , (2.38)

i G<
πφ(x1, x2) = 〈φ(x2) π(x1)〉 = ∂t1 i G<

φφ(x1, x2) ,

i G<
φπ(x1, x2) = 〈π(x2) φ(x1)〉 = ∂t2 i G<

φφ(x1, x2) ,

i G<
ππ(x1, x2) = 〈π(x2) π(x1)〉 = ∂t1 ∂t2 i G<

φφ(x1, x2) ,

with the canonical field momentum π(x) = ∂x0φ(x). The first index π or φ is always related to
the first space-time argument. Exploiting the time-reflection symmetry of the Green functions
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some of the differential equations are redundant. The required equations of motion are given
as

∂t1 G<
φφ(p, t1, t2) = G<

πφ(p, t1, t2) , (2.39)

∂t̄ G<
φφ(p, t̄, t̄) = 2 i �{G<

πφ(p, t̄, t̄) } ,

∂t1 G<
πφ(p, t1, t2) = −Ω2(t1) G<

φφ(p, t1, t2) + I<
1 (p, t1, t2) ,

∂t2 G<
πφ(p, t1, t2) = G<

ππ(p, t1, t2) ,

∂t̄ G<
πφ(p, t̄, t̄) = −Ω2(t̄) G<

φφ(p, t̄, t̄) + G<
ππ(p, t̄, t̄) + I<

1 (p, t̄, t̄) ,

∂t1 G<
ππ(p, t1, t2) = −Ω2(t1) G<

φπ(p, t1, t2) + I<
1,2(p, t1, t2) ,

∂t̄ G<
ππ(p, t̄, t̄) = −Ω2(t̄) 2 i �{G<

πφ(p, t̄, t̄) } + 2 i �{ I<
1,2(p, t̄, t̄) } ,

where t̄ = (t1 + t2)/2 is the mean time variable. Thus one explicitly considers the propagation
in the time diagonal. In the equations of motion (2.39) the current (renormalized) effective
energy including the time dependent tadpole contribution enters,

Ω2(t) = p 2 + m2 + δm2
tad + δm2

sun + Σ̄δ(t), (2.40)

with δm2
tad and δm2

sun specified in Ref. [2]. The evolution in the t2 direction has not to
be taken into account for G<

φφ and G<
ππ since the Green functions beyond the time diagonal

(t2 > t1) are determined via the time reflection symmetry G<
·· (p, t1, t2) = −[ G<

·· (p, t2, t1) ]∗ from
the known values for the lower time triangle in both cases. Since there is no time reflection
symmetry for the Gπφ functions, they have to be calculated (and stored) in the whole t1,
t2 range. However, we can ignore the evolution of Gφπ since it is obtained by the relation
G<

φπ(p, t1, t2) = −[ G<
πφ(p, t2, t1) ]∗. The correlation integrals in (2.39) are given by

I<
1 (p, t1, t2) = −

∫ t1

0
dt′ [ Σ>(p, t1, t

′) − Σ<(p, t1, t
′) ] G<

φφ(p, t′, t2) (2.41)

+
∫ t2

0
dt′ Σ<(p, t1, t

′)
[
G<

φφ(−p, t2, t
′) − G<

φφ(p, t′, t2)
]

,

I<
1,2(p, t1, t2) ≡ ∂t2I

<
1 (p, t1, t2) (2.42)

= −
∫ t1

0
dt′ [ Σ>(p, t1, t

′) − Σ<(p, t1, t
′) ] G<

φπ(p, t′, t2)

+
∫ t2

0
dt′ Σ<(p, t1, t

′)
[
G<

πφ(−p, t2, t
′) − G<

φπ(p, t′, t2)
]

.

In (2.39) and (2.42) one can replace G<
φπ(p, t1, t2) = −[ G<

πφ(p, t2, t1) ]∗ such that the set of
equations is closed in the Green functions G<

φφ, G<
πφ and G<

ππ.
The disadvantage, to integrate more Green functions in time in this first-order scheme, is
compensated by its good accuracy. As mentioned before, we especially take into account the
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propagation along the time diagonal which leads to an improved numerical precision. The set
of differential equations (2.39) is solved by means of a 4th order Runge-Kutta algorithm. For
the calculation of the self energies a Fast Fourier transformation method is applied. The self
energies (2.36), furthermore, are calculated in coordinate space – where they are products of
coordinate-space Green functions (that are available by Fourier transformation) – and finally
transformed to momentum space.

In order to obtain a solution of the KB equations some initial conditions for iG<(p, t = 0, t = 0)
have to be specified. The corresponding initial distribution functions in the occupation density
n(p, t = 0), related to iG<(p, t = 0, t = 0) by

2ωpiG<(p, t = 0, t = 0) = 2n(p, t = 0) + 1 (2.43)

follow immediately. For explicit examples and results of calculations the reader is referred to
Ref. [2].

2.1.7 The spectral function

The spectral function of the fields φ is of particular interest since it follows from the field
commutator at unequal times and reflects the quantization of the theory. For scalar, symmetric
fields φ it is given by

A(x, y) = 〈 [φ(x), φ(y)]− 〉 = i[G>(x, y) − G<(x, y)] = i[GR(x, y) − GA(x, y)] (2.44)

or in momentum-time representation as

A(p, t1, t2) = i[G<(p, t2, t1) − G<(p, t1, t2)] = i [−[G<(p, t1, t2)]
∗ − G<(p, t1, t2)] (2.45)

= −2i� (G<(p, t1, t2)) .

The quantity (2.45) is displayed in Fig. 2.4 as a function of Δt = t1 − t2 and t = (t1 + t2)/2
for low lying momentum modes in case of the φ4-theory for strong coupling λ. We observe a
damped oscillation in Δt in all cases with characteristic time scale 1/γ which practically does
not depend on the average time t.

The spectral function in energy-momentum representation is obtained by Fourier transforma-
tion with respect to the time difference Δt = (t1 − t2) for each average time t:

Ā(p, p0, t) =
∫ ∞

−∞
dΔt exp(iΔt p0)A(p, t1 = t + Δt/2, t2 = t − Δt/2) , (2.46)

where Ā stands for the full spectral function. Since the spectral function essentially shows a
damped oscillation (cf. Fig. 2.4) this implies that the Fourier transform (2.46) is of relativistic
Breit-Wigner shape with a width γ (see below).
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Figure 2.4: The imaginary part of the retarted Green function as a function of t1 − t2 and the
average time (t1 + t2)/2. for φ4 -theory in strong coupling as emerging from the Kadanoff-Baym
approach.

2.1.8 Results in first order gradient expansion

In first order in the gradient expansion the retarded and advanced Green functions can be
written as

ḠR/A = �
(
ḠR

)
± i�

(
ḠR

)
= �

(
ḠR

)
∓ i Ā/2 , (2.47)

Σ̄R/A = �
(
Σ̄R

)
± i�

(
Σ̄R

)
= �

(
Σ̄R

)
∓ i Γ̄/2 .

Rewriting the imaginary part of the selfenergy we get

Ā(p, p0, t) =
Γ̄

(p2
0 − ω2

0)
2
+ Γ̄2/4

, (2.48)

Γ̄ = −2 Im
(
Σ̄R

)
= 4p0γ ,

ω2
0 = p2 + m2 − Σ̄δ + Re

(
Σ̄R

)
,

which is of relativistic Breit-Wigner form. Its normalization is given by∫ ∞

−∞
dp0

2π
p0Ā(p, p0, t) = 1 (2.49)

and reflects the quantization condition for the interacting field φ.
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2.1.9 The equilibrium distribution

Now we introduce the energy and momentum dependent distribution function N(p, p0, t̄) at
any system time t̄ by the definition

i G<(p, p0, t̄) = A(p, p0, t̄) N(p, p0, t̄) ,

i G>(p, p0, t̄) = A(p, p0, t̄) [ N(p, p0, t̄) + 1 ] , (2.50)

since G<(p, p0, t̄) and G>(p, p0, t̄) are known from the integration of the Kadanoff-Baym equa-
tions as well as A(p, p0, t̄). In equilibrium (at temperature T ) the Green functions obey the
Kubo-Martin-Schwinger relation (KMS) for all momenta p,

G>
eq(p, p0) = ep0/T G<

eq(p, p0) ∀ p . (2.51)

If there exists a conserved quantum number in the theory we have, furthermore, a contribution
of the corresponding chemical potential in the exponential function which leads to a shift of
arguments: p0/T → (p0 − μ)/T . In the present case, however, there is no conserved quantum
number and thus the equilibrium state has μ = 0.
From the KMS condition of the Green functions (2.51) we obtain the equilibrium form of the
distribution function (2.50) at temperature T as

Neq(p, p0) = Neq(p0) =
1

ep0/T − 1
= Nbose(p0/T ) , (2.52)

from
G<

G>
= e−p0/T =

Neq

Neq + 1

which is the well-known Bose distribution. As is obvious from (2.52) the equilibrium distribution
can only be a function of energy and not of the momentum variable p in addition.

2.2 Full versus approximate dynamics

The Kadanoff-Baym equations studied in the previous Sections represent the full quantum-
field theoretical equations on the single-particle level. However, its numerical solution is quite
involved and it is of strong interest to investigate, in how far approximate schemes deviate
from the full calculation. Nowadays, transport models are widely used in the description of
quantum systems out of equilibrium. Most of these models work in the ’quasi-particle’ picture,
where all particles obey a fixed energy-momentum relation and the energy is no independent
degree of freedom anymore; it is determined by the momentum and the (effective) mass of the
particle (cf. Chapter 1). Accordingly, these particles are treated with their δ-function spectral
shape as infinitely long living, i.e. stable objects. This assumption is very questionable e.g. for
high-energy heavy-ion reactions, where the particles achieve a large width due to the frequent
collisions with other particles in the high-density and/or high-energy regime. Furthermore, this
is doubtful for particles that are unstable even in the vacuum. The question, in how far the
quasiparticle approximation influences the dynamics in comparison to the full Kadanoff-Baym
calculation, is of widespread interest.
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2.2.1 Derivation of the Boltzmann approximation

In the following we will present a short derivation of the Boltzmann equation starting directly
from the Kadanoff-Baym dynamics in the two-time and momentum-space representation. This
derivation is briefly reviewed since we want i) to emphasize the link of the full Kadanoff-
Baym equation with its approximated version and ii) to clarify the assumptions that enter the
Boltzmann equation.
Since the Boltzmann equation describes the time evolution of distribution functions for quasi-
particles we first consider the quasi-particle Green functions in two-time representation for
homogeneous systems

(2.53)G><
φφ,qp(p, t, t′) =

−i

2ωp
{ Nqp(∓p) e±iωp(t−t′) + [ Nqp(±p)+1 ] e∓iωp(t−t′) }

G><
φπ,qp(p, t, t′) =

1

2
{ ∓Nqp(∓p) e±iωp(t−t′) ± [ Nqp(±p)+1 ] e∓iωp(t−t′) }

G><
πφ,qp(p, t, t′) =

1

2
{ ±Nqp(∓p) e±iωp(t−t′) ∓ [ Nqp(±p)+1 ] e∓iωp(t−t′) }

G><
ππ,qp(p, t, t′) =

−i ωp

2
{ Nqp(∓p) e±iωp(t−t′) + [ Nqp(±p)+1 ] e∓iωp(t−t′) } ,

where for each momentum p the Green functions are freely oscillating in relative time t − t′

with the on-shell energy ωp. The time-dependent quasi-particle distribution functions are given
with the energy variable fixed to the on-shell energy as Nqp(p, t̄) ≡ N(p, p0 = ωp, t̄), where the
on-shell energies ωp might depend on time as well. Such a time variation e.g. might be due
to an effective mass as generated by the time-dependent tadpole self-energy. In this case the
on-shell energy reads

ωp(t̄) =
√

p 2 + m2 + Σ̄δ
ren(t̄). (2.54)

Vice versa we can define the quasi-particle distribution function by means of the quasi-particle
Green functions at equal times t̄ as

Nqp(p, t̄) =

[
ωp(t̄)

2
i G<

φφ,qp(p, t̄, t̄) +
1

2ωp(t̄)
i G<

ππ,qp(p, t̄, t̄)

]
(2.55)

− 1

2

[
G<

πφ,qp(p, t̄, t̄) − G<
φπ,qp(p, t̄, t̄)

]
.

Using the equations of motions for the Green functions in diagonal time direction (2.39) (ex-
ploiting G<

φπ(p, t̄, t̄) = −[ G<
πφ(p, t̄, t̄) ]∗) the time evolution of the distribution function is given

by

∂t̄ Nqp(p, t̄) = −Re
{

I<
1 ; qp(p, t̄, t̄)

}
− 1

ωp(t̄)
Im

{
I<
1,2 ; qp(p, t̄, t̄)

}
. (2.56)

The time derivatives of the on-shell energies cancel out since the quasiparticle Green functions
obey

G<
ππ(p, t̄, t̄) = ω2

p(t̄) G<
φφ(p, t̄, t̄) (2.57)
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as seen from (2.53). Furthermore, it is remarkable that contributions containing the energy
ω2

p - as present in the equation of motion for the Green functions (2.39) - no longer show up.
The time evolution of the distribution function is entirely determined by (equal-time) collision
integrals containing (time derivatives of the) Green functions and self-energies.

I<
1;qp(p, t̄, t̄) =

∫ t̄

t0
dt′

(
Σ<

qp(p, t̄, t′) G>
φφ,qp(p, t′, t̄) − Σ>

qp(p, t̄, t′) G<
φφ,qp(p, t′, t̄)

)
, (2.58)

I<
1,2;qp(p, t̄, t̄) =

∫ t̄

t0
dt′

(
Σ<

qp(p, t̄, t′) G>
φπ,qp(p, t′, t̄) − Σ>

qp(p, t̄, t′) G<
φπ,qp(p, t′, t̄)

)
.

Since we are dealing with a system of on-shell quasi-particles within the Boltzmann approxi-
mation, the Green functions in the collision integrals (2.58) are given by the respective quasi-
particle quantities of (2.53). Moreover, the collisional self-energies (2.36) are obtained in accor-
dance with the quasi-particle approximation as

Σ><
qp(p, t, t′) = −i

λ2

6

∫
ddq

(2π)d

∫
ddr

(2π)d

∫
dds

(2π)d
(2π)d δ(d)(p−q−r−s)

1

2ωq 2ωr 2ωs

(2.59)

{
Nqp(∓q) Nqp(∓r) Nqp(∓s) e+i [ t−t′ ] [±ωq±ωr±ωs ]

+ 3 Nqp(∓q) Nqp(∓r) [ Nqp(±s)+1 ] e+i [ t−t′ ] [±ωq±ωr∓ωs ]

+ 3 Nqp(∓q) [ Nqp(±r)+1 ] [ Nqp(±s)+1 ] e+i [ t−t′ ] [±ωq∓ωr∓ωs ]

+ [ Nqp(±q)+1 ] [ Nqp(±r)+1 ] [ Nqp(±s)+1 ] e+i [ t−t′ ] [∓ωq∓ωr∓ωs ]
}

.

For a free theory the distribution functions Nqp(p) are obviously constant in time which, of
course, is no longer valid for an interacting system out of equilibrium. Thus one has to specify
the above expressions for the quasi-particle Green functions (2.53) to account for the time de-
pendence of the distribution functions.

The actual Boltzmann approximation is defined in the limit, that the distribution functions have
to be taken always at the latest time argument of the two-time Green function. Accordingly,
for the general non-equilibrium case, we introduce the ansatz for the Green functions in the
collision term

G><
φφ,qp(p, t, t′) =

−i

2ωp

{ Nqp(∓p, tmax) e±iωp(t−t′) + [ Nqp(±p, tmax)+1 ] e∓iωp(t−t′) } (2.60)

G><
φπ,qp(p, t, t′) =

1

2
{ ∓Nqp(∓p, tmax) e±iωp(t−t′) ± [ Nqp(±p, tmax)+1 ] e∓iωp(t−t′) } ,

with the maximum time tmax = max(t, t′). The same ansatz is employed for the time dependent
on-shell energies which enter the representation of the quasi-particle two-time Green functions
(2.60) with their value at tmax, i.e. ωp = ωp(tmax = max(t, t′)).
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The collision term contains a time integration which extends from an initial time t0 to the
current time t̄. All two-time Green functions and self-energies depend on the current time t̄ as
well as on the integration time t′ ≤ t̄. Thus only distribution functions at the current time,
i.e. the maximum time of all appearing two-time functions, enter the collision integrals and the
evolution equation for the distribution function becomes local in time. Since the distribution
functions are given at fixed time t̄, they can be taken out of the time integral. When inserting the
expressions for the self-energies and the Green functions in the collision integrals the evolution
equation for the quasi-particle distribution function reads

∂t̄ Nqp(p, t̄) =
λ2

3

∫ ddq

(2π)d

∫ ddr

(2π)d

∫ dds

(2π)d
(2π)d δ(d)(p−q−r−s)

1

2ωp 2ωq 2ωr 2ωs
(2.61)

{
[ N̄p,t̄ N̄−q,t̄ N̄−r,t̄ N̄−s,t̄ − Np,t̄ N−q,t̄ N−r,t̄ N−s,t̄ ]

∫ t̄

t0
dt′ cos([ t̄−t′ ] [ ωp+ωq+ωr+ωs ])

+3 [ N̄p,t̄ N̄−q,t̄ N̄−r,t̄ Ns,t̄ − Np,t̄ N−q,t̄ N−r,t̄ N̄s,t̄ ]
∫ t̄

t0
dt′ cos([ t̄−t′ ] [ ωp+ωq+ωr−ωs ])

+3 [ N̄p,t̄ N̄−q,t̄ Nr,t̄ Ns,t̄ − Np,t̄ N−q,t̄ N̄r,t̄ N̄s,t̄ ]
∫ t̄

t0
dt′ cos([ t̄−t′ ] [ ωp+ωq−ωr−ωs ])

+ [ N̄p,t̄ Nq,t̄ Nr,t̄ Ns,t̄ − Np,t̄ N̄q,t̄ N̄r,t̄ N̄s,t̄ ]
∫ t̄

t0
dt′ cos([ t̄−t′ ] [ ωp−ωq−ωr−ωs ])

}
,

where we have introduced the abbreviation Np,t̄ = Nqp(p, t̄) for the distribution function at
current time t̄ and N̄p,t̄ = Nqp(p, t̄) + 1 for the according Bose factor. Furthermore, a possible
time dependence of the on-shell energies is suppressed in the above notation.

The contributions in the collision term (2.61) for particles of momentum p are ordered as
they describe different types of scattering processes where, however, we always find the typical
gain and loss structure. The first line in (2.61) corresponds to the production and annihilation
of four on-shell particles (0 → 4, 4 → 0), where a particle of momentum p is produced or
destroyed simultaneous with three other particles with momenta q, r, s. The second line and
the forth line describe (1 → 3) and (3 → 1) processes where the quasi-particle with momentum
p is the single one or appears with two other particles. The relevant contribution in the
Boltzmann limit is the third line which respresents (2 → 2) scattering processes; quasi-particles
with momentum p can be scattered out of their momentum cell by collisions with particles
of momenta q (second term) or can be produced within a reaction of on-shell particles with
momenta r, s (first term).

The time evolution of the quasi-particle distribution is given as an initial value problem
for the function Nqp(p) prepared at initial time t0. For large system times t̄ (compared to the
initial time) the time integration over the trigonometric function results in an energy conserving
δ-function:

lim
t̄−t0→∞

∫ t̄

t0
dt′ cos((t̄ − t′) ω̂) = lim

t̄−t0→∞
1

ω̂
sin((t̄ − t0) ω̂) = π δ(ω̂) . (2.62)

Here ω̂ = ωp±ωq±ωr±ωs represents the energy sum which is conserved in the limit t̄−t0 → ∞
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where the initial time t0 is considered as fixed. In this limit the time evolution of the distribution
function amounts to

∂t̄ Nqp(p, t̄) =
λ2

6

∫ ddq

(2π)d

∫ ddr

(2π)d

∫ dds

(2π)d
(2π)d+1 1

2ωp 2ωq 2ωr 2ωs
(2.63)

{
[ N̄p,t̄ N̄q,t̄ N̄r,t̄ N̄s,t̄ − Np,t̄ Nq,t̄ Nr,t̄ Ns,t̄ ] δ(d)(p+q+r+s) δ(ωp+ωq+ωr+ωs)

+3 [ N̄p,t̄ N̄q,t̄ N̄r,t̄ Ns,t̄ − Np,t̄ Nq,t̄ Nr,t̄ N̄s,t̄ ] δ(d)(p+q+r−s) δ(ωp+ωq+ωr−ωs)

+3 [ N̄p,t̄ N̄q,t̄ Nr,t̄ Ns,t̄ − Np,t̄ Nq,t̄ N̄r,t̄ N̄s,t̄ ] δ(d)(p+q−r−s) δ(ωp+ωq−ωr−ωs)

+ [ N̄p,t̄ Nq,t̄ Nr,t̄ Ns,t̄ − Np,t̄ N̄q,t̄ N̄r,t̄ N̄s,t̄ ] δ(d)(p−q−r−s) δ(ωp−ωq−ωr−ωs)
}

.

In the energy conserving long-time limit (2.62) only the 2 → 2 scattering processes are non-
vanishing, because all other terms do not contribute since the energy δ-functions can not be
fulfilled for massive on-shell quasi-particles. Furthermore, the system evolution is explicitly
local in time because it depends only on the current configuration; there are no memory effects
from the integration over past times as present in the full Kadanoff-Baym equation.

In the following we will solve the energy conserving Boltzmann equation for on-shell particles:

∂t̄ Nqp(p, t̄) =
λ2

2

∫
ddq

(2π)d

∫
ddr

(2π)d

∫
dds

(2π)d
(2π)d+1 1

2ωp 2ωq 2ωr 2ωs
(2.64)

[ N̄p,t̄ N̄q,t̄ Nr,t̄ Ns,t̄ − Np,t̄ Nq,t̄ N̄r,t̄ N̄s,t̄ ] δ(d)(p+q−r−s) δ(ωp+ωq−ωr−ωs) .

The numerical algorithm employed for the solution of (2.64) is basically the same as for the
solution of the Kadanoff-Baym equation (cf. Section 2.1.6). We explicitly calculate the time
integral in (2.61). Energy conservation can be assured by a precalculation including a shift
of the lower boundary t0 to earlier times. We note, that in contrast to the Kadanoff-Baym
equation no correlation energy is generated in the Boltzmann limit!
In addition to the procedure presented above we calculate the actual momentum-dependent
on-shell energy for every momentum mode by a solution of the dispersion relation including
contributions from the tadpole and the real part of the (retarded) sunset self energy. In this
way one can guarantee that at every time t the particles are treated as quasi-particles with the
correct energy-momentum relation.
Before presenting the actual numerical results we comment on the derivation of the Boltzmann
equation within the conventional scheme that is different from the one presented above. Here,
at first the Kadanoff-Baym equation (in coordinate space) is transformed to the Wigner rep-
resentation by Fourier transformation with respect to the relative coordinates in space and
time. The problem then is formulated in terms of energy and momentum variables together
with a single system time. For non-homogeneous systems a mean spatial coordinate is nec-
essary as well. As a next step the ’semiclassical approximation’ is introduced, which consists
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Figure 2.5: Evolution of the Green function in momentum space. The equal time Green function
is displayed for various times t · m = 0, 15, 30, 45, 75, 150. Starting from an initially non-
isotropic shape it develops towards a rotational symmetric distribution in momentum space.
This figure is taken from Ref. [2].

of a gradient expansion of the convolution integrals in coordinate space within the Wigner
transformation. For the time evolution only contributions up to first order in the gradients
are kept. Finally, the quasi-particle assumption is introduced as follows: The Green functions
appearing in the transport equation – explicitly or implicitly via the self-energies – are written
in Wigner representation as a product of a distribution function N and the spectral function
A. The quasi-particle assumption is then realized by employing a δ-like form for the spectral
function which connects the energy variable to the momentum. By integrating the first order
transport equation over all (positive) energies, furthermore, the Boltzmann equation for the
time evolution of the on-shell distribution function (2.64) is obtained.
Inspite of the fact, that the Bolzmann equation (2.64) can be obtained in different subsequent
approximation schemes, it is of basic interest, how its actual solutions compare to those from
the full Kadanoff-Baym dynamics.

2.2.2 Boltzmann vs. Kadanoff-Baym dynamics

In the following we will compare the solutions of the Boltzmann equation with the solution
of the Kadanoff-Baym theory in two spatial dimensions. We start with a presentation of the
non-equilibrium time evolution of two colliding particle accumulations (tsunamis) within the
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full Kadanoff-Baym calculation (see Figure 2.5 taken from Ref. [2]).
During the time evolution the bumps at finite momenta (in px direction) slowly disappear,
while the one close to zero momentum – which initially stems from the vacuum contribution
to the Green function – is decreased as seen for different snapshots at times t · m = 0, 15, 30,
45, 75, 150 in Fig. 2.5. The system with initially apparent collision axis slowly merges – as
expected – into an isotropic final distribution in momentum space.
For the comparison between the full Kadanoff-Baym dynamics and the Boltzmann approxima-
tion we concentrate on equilibration times. To this aim we define a ’quadrupole’ moment for a
given momentum distribution n(p) at time t̄ as

Q(t̄) =

∫
ddp

(2π)d
(p2

x − p2
y) N(p, t̄)

∫
ddp

(2π)d
N(p, t̄)

, (2.65)

which vanishes for the equilibrium state. For the Kadanoff-Baym case we employ the actual
distribution function by the relation

n(p, t̄) =
√

G<
φφ(p, t̄, t̄) G<

ππ(p, t̄, t̄) − 1

2
. (2.66)

Note that when constructing the distribution function by means of equal-time Green func-
tions the energy variable has been effectively integrated out. This has the advantage that the
distribution function is given independently of the actual on-shell energies.
The relaxation of the quadrupole moment (2.66) has been studied for two different initial
distributions (cf. Ref. [2] for details): The evolution of distribution d2 is displayed in Fig.
2.5 while for distribution d1 the position and the width of the two particle bumps have been
modified. The calculated quadrupole moment (2.66) shows a nearly exponential decrease with
time (cf. Fig. 2.6) and one can extract a relaxation rate ΓQ via the relation

Q(t̄) ∼ exp (−ΓQt̄) . (2.67)

Fig. ?? shows for both initializations that the relaxation in the full quantum calculation occurs
faster for large coupling constants than in the quasi-classical approximation, whereas for small
couplings the equilibration times of the full and the approximate evolutions are comparable.
We find that the scaled relaxation rate ΓQ/λ2 is nearly constant in the Boltzmann case, but
increases with the coupling strength in the Kadanoff-Baym calculation (especially for initial
distribution d2).
These findings are readily explained: Since the free Green function – as used in the Boltzmann
calculation – has only support on the mass shell, only (2 ↔ 2) scattering processes are described
in the Boltzmann limit. All other processes with a different number of incoming and outgoing
particles vanish (as noted before). Within the full Kadanoff-Baym calculation this is different,
since here the spectral function – determined from the self-consistent Green function – aquires
a finite width. Thus the Green function has support at all energies although it drops fast
far off the mass shell. Especially for large coupling constants, where the spectral function
is sufficiently broad, the three particle production process gives a significant contribution to
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Figure 2.6: (l.h.s.) Decrease of the quadrupole moment in time for different coupling constants
λ/m = 8 (2) 16 for the full Kadanoff-Baym calculation and the Boltzmann approximation. This
figure is taken from Ref. [2]. (r.h.s.) Relaxation rate (divided by the coupling λ squared) for
Kadanoff-Baym and Boltzmann calculations as a function of the interaction strength. For the
two different initial configurations the full Kadanoff-Baym evolution leads to a faster equilibra-
tion. This figure is taken from Ref. [2].

the collision integral. Since the width of the spectral function increases with the interaction
strength, such processes become more important in the high coupling regime. As a consequence
the difference between both approaches is larger for stronger interactions as observed in Fig. ??.
For small couplings λ/m in both approaches basically the usual 2 ↔ 2 scattering contributes
and the results for the thermalization rate ΓQ are quite similar.
In summarizing this Section we point out that the full solution of the Kadanoff-Baym equations
does include 1 ↔ 3 and 2 ↔ 2 off-shell collision processes which – in comparison to the
Boltzmann on-shell 2 ↔ 2 collision limit – become important when the spectral width of the
particles reaches ∼ 1/3 of the particle mass. On the other hand, the simple Boltzmann limit
works surprisingly well for smaller couplings and those cases, where the spectral function is
sufficiently narrow.
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Chapter 3

Derivation of off-shell relativistic
transport theory

Formal derivations of off-shell transport equations have been presented about 40 years ago
by Kadanoff and Baym [3] but actual solutions have barely been addressed. This Chapter is
devoted to a transparent derivation of generalized transport equations in first order gradient
expansion including a generalized testparticle-ansatz for the solution of the off-shell transport
equation.
The derivation of generalized transport equations starts by rewriting the Kadanoff-Baym equa-
tion for the Wightman functions in coordinate space (x1 =(t1,x1), x2 =(t2,x2)) (2.35) as

[ ∂μ
x1

∂x1
μ + m2 + Σδ(x1) ] iG><(x1, x2) = i I><

1 (x1, x2) . (3.1)

The collision terms on the r.h.s. of (3.1) are given in D = d + 1 space-time dimensions by
convolution integrals over coordinate space self-energies and Green functions:

I><
1 (x1, x2) = −

∫ t1

t0
dDz [ Σ>(x1, z) − Σ<(x1, z) ] G><(z, x2) (3.2)

+
∫ t2

t0
dDz Σ><(x1, z) [G>(z, x2) − G<(z, x2) ] .

In the general case of an arbitrary (scalar) quantum field theory Σδ is the local (non-dissipative)

part of the path self-energy while Σ>< resemble the non-local collisional self-energy contribu-
tions. In the representation (3.2) the integration boundaries are exclusively given for the time
coordinates, while the integration over the spatial coordinates extends over the whole spatial
volume from −∞ to +∞ in d dimensions.
Since transport theories are formulated in phase-space one changes to the Wigner representation
via Fourier transformation with respect to the rapidly varying (’intrinsic’) relative coordinate
Δx = x1 − x2 and treats the system evolution in terms of the (’macroscopic’) mean space-time
coordinate x = (x1 +x2)/2 and the four-momentum p = (p0,p). The functions in Wigner space
are obtained as

F̄ (p, x) =
∫ ∞

−∞
dDΔx e+i Δxμ pμ

F (x1 = x + Δx/2, x2 = x − Δx/2) . (3.3)
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For the formulation of transport theory in the Wigner representation we have to focus not only
on the transformation properties of ordinary two-point functions as given in (3.3), but also of
convolution integrals as appearing in Eq. (3.2). A convolution integral in D dimensions (for
arbitrary functions F, G),

H(x1, x2) =
∫ ∞

−∞
dDz F (x1, z) G(z, x2) (3.4)

transforms as

H̄(p, x) =
∫ ∞

−∞
dDΔx e+i Δxμ pμ

H(x1, x2) (3.5)

=
∫ ∞

−∞
dDΔx e+i Δxμ pμ

∫ ∞

−∞
dDz F (x1, z) G(z, x2)

= e
+i 1

2
(∂μ

p
· ∂x′

μ − ∂μ

x
· ∂p′

μ )
[

F̄ (p, x) Ḡ(p′, x′)
]∣∣∣∣

x′=x, p′=p
.

In accordance with the standard assumption of transport theory we assume that all functions
only smoothly evolve in the mean space-time coordinates and thus restrict to first order deriva-
tives. All terms proportional to second or higher order derivatives in the mean space-time
coordinates (also mixed ones) will be dropped. Thus the Wigner transformed convolution
integrals (3.4) are given in first order gradient approximation by,

H̄(p, x) = F̄ (p, x) Ḡ(p, x) + i
1

2
{ F̄ (p, x) , Ḡ(p, x) } + O(∂2

x) , (3.6)

using the relativistic generalization of the Poisson bracket

{ F̄ (p, x) , Ḡ(p, x) } = ∂p
μ F̄ (p, x) · ∂μ

x Ḡ(p, x) − ∂μ
x F̄ (p, x) · ∂p

μ Ḡ(p, x) . (3.7)

In order to obtain the dynamics for the spectral functions within the approximate scheme we
start with the Dyson-Schwinger equations for the retarded and advanced Green functions in
coordinate space (2.21). – Note that the convolution integrals in (2.21) extend over the whole
space and time range in contrast to the equations of motion for the Wightman functions given
in (2.22) and (2.23)! – The further procedure consists in the following steps: First we

i) transform the above equations into the Wigner representation and apply the first order
gradient approximation. In this limit the convolution integrals yield the product terms and
the general Poisson bracket of the self-energies and the Green functions {ΣR/A, GR/A }. We,
further on, represent both equations in terms of real quantities by the decomposition of the
retarded and advanced Green functions and self-energies as

ḠR/A = Re ḠR ± i Im ḠR = Re ḠR ∓ i Ā/2 , Ā = ∓ 2 Im ḠR/A ,

Σ̄R/A = Re Σ̄R ± i Im Σ̄R = Re Σ̄R ∓ i Γ̄/2 , Γ̄ = ∓ 2 Im Σ̄R/A .

(3.8)

We find that in Wigner space the real parts of the retarded and advanced Green functions and
self-energies are equal, while the imaginary parts have opposite sign and are proportional to
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the spectral function Ā and the width Γ̄, respectively. The next step consists in

ii) the separation of the real part and the imaginary part of the two equations for the re-
tarded and advanced Green functions, that have to be fulfilled independently. Thus we obtain
four real-valued equations for the self-consistent retarded and advanced Green functions. In
the last step

iii) we get simple relations by linear combination of these equations, i.e. by adding/subtracting
the relevant equations.
This finally leads to two algebraic relations for the spectral function Ā and the real part of
the retarded Green function Re ḠR in terms of the width Γ̄ and the real part of the retarded
self-energy Re Σ̄R as [2, 4]:

[ p2
0 − p 2 − m2 − Σ̄δ + Re Σ̄R ] Re ḠR = 1 +

1

4
Γ̄ Ā , (3.9)

[ p2
0 − p 2 − m2 − Σ̄δ + Re Σ̄R ] Ā = Γ̄ Re ḠR . (3.10)

Note that all terms with first order gradients have disappeared in (3.9) and (3.10). A first
consequence of (3.10) is a direct relation between the real and the imaginary parts of the
retarded/advanced Green function, which reads (for Γ̄ �= 0):

Re ḠR =
p2

0 − p 2 − m2 − Σ̄δ − Re Σ̄R

Γ̄
Ā . (3.11)

Inserting (3.11) in (3.9) we end up with the following result for the spectral function and the
real part of the retarded Green function

Ā =
Γ̄

[ p2
0 − p 2 − m2 − Σ̄δ − Re Σ̄R ]2 + Γ̄2/4

=
Γ̄

M̄2 + Γ̄2/4
, (3.12)

Re ḠR =
[ p2

0 − p 2 − m2 − Σ̄δ − Re Σ̄R ]

[ p2
0 − p 2 − m2 − Σ̄δ − Re Σ̄R ]2 + Γ̄2/4

=
M̄

M̄2 + Γ̄2/4
, (3.13)

where we have introduced the mass-function M̄(p, x) in Wigner space:

M̄(p, x) = p2
0 − p 2 − m2 − Σ̄δ(x) − Re Σ̄R(p, x) . (3.14)

The spectral function (3.12) shows a typical Breit-Wigner shape with energy- and momentum-
dependent self-energy terms. Although the above equations are purely algebraic solutions and
contain no derivative terms, they are valid up to the first order in the gradients!
In addition, subtraction of the real parts and adding up the imaginary parts lead to the time
evolution equations

pμ ∂x
μ Ā =

1

2
{ Σ̄δ + Re Σ̄R , Ā } +

1

2
{ Γ̄ , Re ḠR } , (3.15)

pμ ∂x
μ Re ḠR =

1

2
{ Σ̄δ + Re Σ̄R , Re ḠR } − 1

8
{ Γ̄ , Ā } . (3.16)
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The Poisson bracket containing the mass-function M̄ leads to the well-known drift operator
pμ ∂x

μ F̄ (for an arbitrary function F̄ ), i.e.

{ M̄ , F̄ } = { p2
0 − p 2 − m2 − Σ̄δ − Re Σ̄R , F̄ } (3.17)

= 2 pμ ∂x
μ F̄ − { Σ̄δ + Re Σ̄R , F̄ } , (3.18)

such that the first order equations (3.15) and (3.16) can be written in a more comprehensive
form as

{ M̄ , Ā } = { Γ̄ , Re ḠR } , (3.19)

{ M̄ , Re ḠR } = − 1

4
{ Γ̄ , Ā } . (3.20)

When inserting (3.12) and (3.13) we find that these first order time evolution equations are
solved by the algebraic expressions. In this case the following relations hold:

{ M̄ , Ā } = { Γ̄ , Re ḠR } = { M̄ , Γ̄ } M̄2 − Γ̄2/4

[ M̄2 + Γ̄2/4 ]2
, (3.21)

{ M̄ , Re ḠR } = − 1

4
{ Γ̄ , Ā } = { M̄ , Γ̄ } M̄ Γ̄/2

[ M̄2 + Γ̄2/4 ]2
. (3.22)

Thus we have derived the proper structure of the spectral function (3.12) within the first-order
gradient (or semiclassical) approximation. Together with the explicit form for the real part of
the retarded Green function (3.13) we now have fixed the dynamics of the spectral properties,
which is consistent up to first order in the gradients.

3.1 Kadanoff-Baym transport

As a next step we rewrite the memory terms in the collision integrals such that the time
integrations extend from −∞ to +∞. In this respect we consider the initial time t0 = −∞
whereas the upper time boundaries t1, t2 are taken into account by Θ-functions, i.e.

I><
1 (x1, x2) = −

∫ ∞

−∞
dDx′ Θ(t1 − t′) [ Σ>(x1, x

′) − Σ<(x1, x
′) ] G><(x′, x2)

+
∫ ∞

−∞
dDx′ Σ><(x1, x

′) Θ(t2 − t′) [ G>(x′, x2) − G<(x′, x2) ]

= −
∫ ∞

−∞
dDx′ ΣR(x1, x

′) G><(x′, x2) + Σ><(x1, x
′) GA(x′, x2) . (3.23)

We now perform the analogous steps as invoked before for the retarded and advanced Dyson-
Schwinger equations. We start with a first order gradient expansion of the Wigner transformed
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Kadanoff-Baym equation using (3.23) for the memory integrals. Again we separate the real
and the imaginary parts in the resulting equation, which have to be satisfied independently. At
the end of this procedure we obtain a generalized transport equation:

2 pμ ∂x
μ iḠ>< − { Σ̄δ+Re Σ̄R, iḠ>< }︸ ︷︷ ︸ −{ iΣ̄>< , Re ḠR } = iΣ̄< iḠ> − iΣ̄> iḠ<

{ M̄ , iḠ>< } − { iΣ̄>< , Re ḠR } = iΣ̄< iḠ> − iΣ̄> iḠ< (3.24)

as well as a generalized mass-shell equation

[ p2 − m2 − Σ̄δ − Re Σ̄R ]︸ ︷︷ ︸
M̄

iḠ>< = iΣ̄>< Re ḠR +
1

4
{ iΣ̄>, iḠ< } − 1

4
{ iΣ̄<, iḠ> } (3.25)

with the mass-function M̄ specified in (3.14). Since the Green function G><(x1, x2) consists of an
antisymmetric real part and a symmetric imaginary part with respect to the relative coordinate
x1 − x2, the Wigner transform of this function is purely imaginary. It is thus convenient to

represent the Wightman functions in Wigner space by the real-valued quantities iḠ><(p, x).
Since the collisional self-energies obey the same symmetry relations in coordinate space and in

phase-space, they will be kept also as iΣ̄><(p, x) further on.

In the transport equation (3.24) one recognizes on the l.h.s. the drift term pμ ∂x
μ iḠ><, as well

as the Vlasov term with the local self-energy Σ̄δ and the real part of the retarded self-energy
Re Σ̄R. On the other hand the r.h.s. represents the collision term with its typical ‘gain and
loss’ structure. The loss term iΣ̄> iḠ< (proportional to the Green function itself) describes the
scattering out of a respective phase-space cell whereas the gain term iΣ̄< iḠ> takes into account

scatterings into the actual cell. The last term on the l.h.s. { iΣ̄><, Re ḠR } is very peculiar since
it does not contain directly the distribution function iḠ<. This second Poisson bracket vanishes
in the quasiparticle approximation and thus does not appear in the on-shell Boltzmann limit.

As demonstrated in detail in Refs. [2, 3] the second Poisson bracket { iΣ̄><, Re ḠR } governs
the evolution of the off-shell dynamics for nonequilibrium systems.
Although the generalized transport equation (3.24) and the generalized mass-shell equation
(3.25) have been derived from the same Kadanoff-Baym equation in a first order gradient ex-
pansion, both equations are not exactly equivalent [5, 2]. Instead, they deviate from each other

by contributions of second gradient order, which are hidden in the term { iΣ̄><, Re ḠR }. This
raises the question: which one of these two equations has to be considered of higher priority?
The question is answered in practical applications by the prescription of solving the generalized
transport equation (3.24) for iḠ< in order to study the dynamics of the nonequilibrium system
in phase-space. Since the dynamical evolution of the spectral properties is taken into account
by the equations derived in first order gradient expansion from the retarded and advanced
Dyson-Schwinger equations, one can neglect the generalized mass-shell equation (3.25). Thus
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for our actual numerical studies in Section 2.2 we will use the generalized transport equation
(3.24) supported by the algebraic relations (3.12) and (3.13).

3.2 Transport in the Botermans-Malfliet scheme

Furthermore, one recognizes by subtraction of the iḠ> and iḠ< mass-shell and transport equa-
tions, that the dynamics of the spectral function Ā = iḠ> − iḠ< is determined in the same
way as derived from the retarded and advanced Dyson-Schwinger equations (3.12) and (3.19).
The inconsistency between the two equations (3.24) and (3.25) vanishes since the differences
are contained in the collisional contributions on the r.h.s. of (3.24).
In order to evaluate the { iΣ̄<, Re ḠR }-term on the l.h.s. of (3.24) and to explore the differences
between the KB- and BM-form of the transport equations (see below) it is useful to introduce
distribution functions for the Green functions and self-energies as

iḠ<(p, x) = N̄(p, x) Ā(p, x) , iḠ>(p, x) = [ 1 + N̄(p, x) ] Ā(p, x) , (3.26)

iΣ̄<(p, x) = N̄Σ(p, x) Γ̄(p, x) , iΣ̄>(p, x) = [ 1 + N̄Σ(p, x) ] Γ̄(p, x) . (3.27)

In equilibrium the distribution function with respect to the Green functions N̄ and the self-
energies N̄Σ are given as Bose functions in the energy p0 at given temperature; they thus are
equal in equilibrium but in general might differ out-of-equilibrium. Following the argumenta-
tion of Botermans and Malfliet [5] the distribution functions N̄ and N̄Σ in (3.26) should be
identical within the second term of the l.h.s. of (3.24) in order to obtain a consistent first order
gradient expansion (without hidden higher order gradient terms). In order to demonstrate their
argument we write

iΣ̄< = Γ̄ N̄Σ = Γ̄ N̄ + K̄ . (3.28)

The ‘correction’ term

K̄ = Γ̄ ( N̄Σ − N̄ ) = ( iΣ̄< iḠ> − iΣ̄> iḠ< ) Ā−1 , (3.29)

is proportional to the collision term of the generalized transport equation (3.24), which itself
is already of first order in the gradients. Thus, whenever a distribution function N̄Σ appears
within a Poisson bracket, the difference term (N̄Σ−N̄) becomes of second order in the gradients
and should be omitted for consistency. As a consequence N̄Σ can be replaced by N̄ and thus
the self-energy Σ̄< by Ḡ< · Γ̄/Ā in the Poisson bracket term {Σ̄<, Re ḠR}. The generalized
transport equation (3.24) then can be written in short-hand notation

1

2
Ā Γ̄

[
{ M̄ , iḠ< } − 1

Γ̄
{ Γ̄ , M̄ · iḠ< }

]
= iΣ̄< iḠ> − iΣ̄> iḠ< (3.30)

with the mass-function M̄ (3.14). The transport equation (3.30) within the Botermans-Malfliet
(BM) form resolves the discrepancy between the generalized mass-shell equation (3.25) and the
generalized transport equation in its original Kadanoff-Baym (KB) form (3.24).
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3.3 Testparticle representation

The generalized transport equation (3.30) allows to extend the traditional on-shell transport
approaches for which efficient numerical recepies have been set up. In order to obtain a practical
solution to the transport equation (3.30) we use a testparticle ansatz for the Green function
G<, more specifically for the real and positive semi-definite quantity

FXP = i G<(X, P ) ∼
N∑

i=1

δ(3)(X − Xi(t)) δ(3)(P − Pi(t)) δ(P0 − εi(t)) . (3.31)

In the most general case (where the self energies depend on four-momentum P , time t and the
spatial coordinates X) the equations of motion for the testparticles read

d �Xi

dt
=

1

1 − C(i)

1

2εi

⎡
⎣ 2 �Pi + �∇Pi

ReΣret
(i) +

ε2
i − �P 2

i − M2
0 − ReΣret

(i)

Γ(i)

�∇Pi
Γ(i)

⎤
⎦ , (3.32)

d�Pi

dt
= − 1

1 − C(i)

1

2εi

⎡
⎣�∇Xi

ReΣret
i +

ε2
i − �P 2

i − M2
0 − ReΣret

(i)

Γ(i)

�∇Xi
Γ(i)

⎤
⎦ , (3.33)

dεi

dt
=

1

1 − C(i)

1

2εi

⎡
⎣∂ReΣret

(i)

∂t
+

ε2
i − �P 2

i − M2
0 − ReΣret

(i)

Γ(i)

∂Γ(i)

∂t

⎤
⎦ , (3.34)

where the notation F(i) implies that the function is taken at the coordinates of the testparticle,
i.e. F(i) ≡ F (t,Xi(t),Pi(t), εi(t)).
In (3.32-3.34) a common multiplication factor (1 − C(i))

−1 appears, which contains the energy
derivatives of the retarded self energy

C(i) =
1

2εi

⎡
⎣ ∂

∂εi
ReΣret

(i) +
ε2
i − �P 2

i − M2
0 − ReΣret

(i)

Γ(i)

∂

∂εi
Γ(i)

⎤
⎦ . (3.35)

It yields a shift of the system time t to the ’eigentime’ of particle i defined by t̃i = t/(1−C(i)).
As the reader immediately verifies, the derivatives with respect to the ’eigentime’, i.e. dXi/dt̃i,
dPi/dt̃i and dεi/dt̃i then emerge without this renormalization factor for each testparticle i when
neglecting higher order time derivatives in line with the semiclassical approximation scheme.
Some limiting cases should be mentioned explicitly: In case of a momentum-independent ’width’
Γ(X) we take M2 = P 2 − ReΣret as an independent variable instead of P0, which then fixes
the energy (for given P and M2) to

P 2
0 = P2 + M2 + ReΣret

XPM2 . (3.36)

Eq. (3.34) then turns to (ΔM2
i = M2

i − M2
0 )

dΔM2
i

dt
=

ΔM2
i

Γ(i)

dΓ(i)

dt
↔ d

dt
ln

(
ΔM2

i

Γ(i)

)
= 0 (3.37)

for the time evolution of the test-particle i in the invariant mass squared. In case of Γ = const.
the familiar equations of motion for testparticles in on-shell transport approaches are regained.
We mention in passing that in the Parton-Hadron-String Dynamics (PHSD) transport approach
the width of partonic degrees of freedom is taken as momentum independent such that the
simple limit (3.37) applies.
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Chapter 4

Thermodynamics and transport
properties of QCD*

Early concepts of the Quark-Gluon-Plasma (QGP) were guided by the idea of a weakly inter-
acting system of massless partons which might be described by perturbative QCD (pQCD).
However, experimental observations at RHIC indicated that the new medium created in ultra-
relativistic Au+Au collisions is interacting more strongly than hadronic matter. It is presently
widely accepted that this medium is an almost perfect liquid of partons as extracted experimen-
tally from the strong radial expansion and the scaling of the elliptic flow v2(pT ) of mesons and
baryons with the number of constituent quarks and antiquarks. At vanishing quark chemical
potential the QCD problem can be addressed at zero and finite temperature by lattice QCD
calculations on a 3+1 dimensional torus with a suitable discretization of the QCD action on the
lattice. These calculations so far have provided valuable information on the QCD equation of
state, chiral symmetry restoration and various correlators that can be attributed to transport
coefficients. Due to the Fermion ’sign’-problem lQCD calculations at finite μq are presently not
robust and one has to rely on nonperturbative - but effective - models to obtain information in
the (T , μq) plane or for systems out-off equilibrium.

4.1 Quasiparticle properties and thermodynamics within

the DQPM

A consistent dynamical approach for the description of strongly interacting systems - also out-of
equilibrium - can be formulated on the basis of Kadanoff-Baym (KB) equations (cf. Chapter
2) or off-shell transport equations in phase-space representation (cf. Chapter 3), respectively.
In the KB theory the field quanta are described in terms of dressed propagators with complex
selfenergies. Whereas the real part of the selfenergies can be related to mean-field potentials
(of Lorentz scalar, vector or tensor type), the imaginary parts provide information about the
lifetime and/or reaction rates of time-like ’particles’. Once the proper (complex) selfenergies of
the degrees of freedom are known, the time evolution of the system is fully governed by off-shell
transport equations (cf. Chapter 3). The determination/extraction of complex selfenergies for
the partonic degrees of freedom can be performed within the Dynamical QuasiParticle Model
(DQPM) by fitting lattice QCD (lQCD) ’data’ in thermal equilibrium. In fact, the DQPM
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allows for a simple and transparent interpretation of lattice QCD results for thermodynamic
quantities as well as correlators and leads to effective strongly interacting partonic quasiparticles
with broad spectral functions. We stress that mean-field potentials for the ’quarks’ and ’gluons’
as well as effective interactions can be extracted from lQCD within the DQPM as well (see
below). Furthermore, the DQPM can be extended to finite quark chemical potential μq.
In the scope of the DQPM the running coupling constant (squared) is approximated by

g2(T/Tc) =
48π2

(11Nc − 2Nf) ln[λ2(T/Tc − Ts/Tc)2]
, (4.1)

where the parameters λ ≈ 2.42 and Ts/Tc ≈ 0.56 have to be extracted from a fit to the lattice
data. In (4.1), Nc = 3 stands for the number of colors, Tc is the critical temperature (≈ 158
MeV), while Nf(= 3) denotes the number of flavors. The parameter Ts is essentially important
for the infrared enhancement of the coupling at low temperature T . As demonstrated in Fig.
4.1 this functional form for the strong coupling αs = g2/(4π) is in accordance with the lQCD
calculations of the Bielefeld group for the long range part of the q − q̄ potential. Furthermore,
it matches the hard-thermal-loop (HTL) limit for high temperatures T .
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Figure 4.1: The coupling αs(T ) = g2(T )/(4π) (solid red line) as a function of T/Tc in comparison
to the long range part of the strong coupling as extracted from the Bielefeld group from the
free energy of a quark-antiquark pair in quenched lQCD (for Nτ = 8).

The dynamical quasiparticle mass (for gluons and quarks) is assumed to be given by the (HTL)
thermal mass in the asymptotic high-momentum regime, i.e. for gluons

M2
g (T ) =

g2

6

((
Nc +

1

2
Nf

)
T 2 +

Nc

2

∑
q

μ2
q

π2

)
, (4.2)

and for quarks (antiquarks)

M2
q(q̄)(T ) =

N2
c − 1

8Nc

g2

(
T 2 +

μ2
q

π2

)
, (4.3)
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but with the coupling given in (4.1). The effective quarks, antiquarks and gluons in the DQPM
have finite widths, which for μq = 0 are adopted in the form

Γg(T ) =
1

3
Nc

g2T

8π
ln

(
2c

g2
+ 1

)
, (4.4)

Γq(q̄)(T ) =
1

3

N2
c − 1

2Nc

g2T

8π
ln

(
2c

g2
+ 1

)
, (4.5)

where c = 14.4 is related to a magnetic cut-off, which is one of the few parameters of the
DQPM.
The physical processes contributing to the width Γg are both gg ↔ gg, gq ↔ gq scattering
as well as splitting and fusion reactions gg ↔ g, gg ↔ ggg, ggg ↔ gggg or g ↔ qq̄ etc. On
the fermion side elastic fermion-fermion scattering pp ↔ pp, where p stands for a quark q or
antiquark q̄, fermion-gluon scattering pg ↔ pg, gluon bremsstrahlung pp ↔ pp + g or quark-
antiquark fusion qq̄ ↔ g etc. emerge. Note, however, that the explicit form of (4.4) is derived
for hard two-body scatterings only. It is worth to point out that the ratio of the masses to
their widths ∼ g ln(2c/g2 + 1) approaches zero only asymptotically for T → ∞ such that the
width of the quasiparticles is comparable to the pole mass slightly above Tc up to all terrestrial
energy scales.

4.1.1 Spectral functions

The parton spectral functions are no longer δ-functions in the invariant mass squared but taken
as (cf. Chapter 3)

ρj(ω,p) =
Γj

Ej

(
1

(ω − Ej)2 + Γ2
j

− 1

(ω + Ej)2 + Γ2
j

)
(4.6)

separately for quarks, antiquarks and gluons (j = q, q̄, g). Here E2
j (p

2) = p2 + M2
j − Γ2

j , where
the parameters Γj , Mj from the DQPM have been described above. The spectral function (4.6)
is antisymmetric in ω and normalized as

∞∫
−∞

dω

2π
ωρj(ω,p) =

∞∫
0

dω

2π
2ωρj(ω,p) = 1 (4.7)

as mandatory for quantum-field theory.

The actual gluon mass Mg and width Γg – employed as input in the further calculations – as
well as the quark mass Mq and width Γq are depicted in Fig. 4.2 (l.h.s.) as a function of T/Tc.
Note that for μq = 0 the DQPM gives

Mq =
2

3
Mg, Γq =

4

9
Γg . (4.8)

These variations of the masses with the temperature T – that appear drastic in Fig. 4.2 (l.h.s.)
– become, however, rather smooth if viewed as a function of the scalar parton density ρs defined
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Figure 4.2: (l.h.s.) The effective gluon mass Mg and witdh Γg as function of the scaled tempera-
ture T/Tc (red lines). The blue lines show the corresponding quantities for quarks. (r.h.s.) The
effective gluon mass Mg and width Γg as function of the scalar density ρs within the DQPM.
The corresponding mass and width for quarks (for μq = 0) is obtained from Eq. (4.8). Note
the logarithmic scale in ρs.

(in thermal equilibrium) by

ρs(
T

Tc
) = dg

∫ ∞

0

dω

2π

∫ d3p

(2π)3
2
√

p2 ρg(ω,p) nB(ω/T ) Θ(p2) (4.9)

+dq

∫ ∞

0

dω

2π

∫
d3p

(2π)3
2
√

p2 ρq(ω,p) nF ((ω − μq)/T ) Θ(p2)

+dq̄

∫ ∞

0

dω

2π

∫
d3p

(2π)3
2
√

p2 ρq̄(ω,p) nF ((ω + μq)/T ) Θ(p2) ,

where nB and nF denote the Bose and Fermi functions, respectively, while μq stands for the
quark chemical potential. The number of transverse gluonic degrees of freedom is dg = 16
while the fermion degrees of freedom amount to dq = dq̄ = 2NcNf = 18 in case of three fla-
vors (Nf=3). The function Θ(p2) (with p2 = ω2 − p2) projects on time-like four-momenta
since only this fraction of the four-momentum distribution can be propagated within the light
cone. The dependence of the gluon mass Mg and width Γg as a function of ρs (within the
DQPM) is displayed in Fig. 4.2 (r.h.s.) and demonstrates that the explicit variation with
ρs is rather moderate in view of the logarithmic scale in ρs. Note that in transport theory
the scalar forces on a ’particle’ are given by the ratio of the particle mass over its energy
times the gradient of the scalar mean-field Us(x). The latter gradient is conventionally written
as ∇Us(x) = dUs/dρs∇ρs(x) which demonstrates the separation of geometry - expressed by
∇ρs(x) - from the strength of the force determined by dUs/dρs (see below).
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4.1.2 Thermodynamics of QCD∗

With the quasiparticle properties (or propagators) fixed (cf. Fig. 4.2 ) one can evaluate the
entropy density s(T ), the pressure P (T ) and energy density ε(T ) in a straight forward manner
(for μq=0) by starting with the entropy density in the quasiparticle limit from Baym,

sdqp = −dg

∫
dω

2π

d3p

(2π)3

∂nB

∂T

(
� ln(−Δ−1) + �Π�Δ

)
(4.10)

−dq

∫ dω

2π

d3p

(2π)3

∂nF ((ω − μq)/T )

∂T

(
� ln(−S−1

q ) + �Σq �Sq

)
,

−dq̄

∫
dω

2π

d3p

(2π)3

∂nF ((ω + μq)/T )

∂T

(
� ln(−S−1

q̄ ) + �Σq̄ �Sq̄

)
,

where nB(ω/T ) = (exp(ω/T )−1)−1 and nF ((ω−μq)/T ) = (exp((ω−μq)/T )+1)−1 denote the
Bose and Fermi distribution functions, respectively, while Δ = (P 2 − Π)−1, Sq = (P 2 − Σq)

−1

and Sq̄ = (P 2 − Σq̄)
−1 stand for the full (scalar) quasiparticle propagators of gluons g, quarks

q and antiquarks q̄. In Eq. (4.10) Π and Σ = Σq ≈ Σq̄ denote the (retarded) quasiparticle
selfenergies. In principle, Π as well as Δ are Lorentz tensors and should be evaluated in a
nonperturbative framework. The DQPM treats these degrees of freedom as independent scalar
fields with scalar selfenergies which are assumed to be identical for quarks and antiquarks. Note
that one has to treat quarks and antiquarks separately in (4.10) as their abundance differs at
finite quark chemical potential μq.

Since the nonperturbative evaluation of the propagators and selfenergies in QCD is a formidable
task [and addressed in Dyson-Schwinger (DS) Bethe-Salpeter (BS) approaches] an alterna-
tive and practical procedure is to use physically motivated Ansätze with Lorentzian spectral
functions for quarks1 and gluons as in (4.6). With this choice the complex selfenergies read
Π = M2

g −2iωΓg and Σq(q) = M2
q(q) −2iΓq(q) are fully defined via (4.2), (4.3), (4.4), (4.5). Note

that the retarded propagator defined by

G−1 = ω2 − p2 − M2 + 2iΓω (4.11)

corresponds to the propagator of a damped harmonic oscillator (with an additional p2) and
preserves microcausality. Although the ’Ansatz’ for the parton propagators is not QCD we will
demonstrate that a variety of QCD observables on the lattice are compatible with this choice.
Since within the DQPM the real and imaginary parts of the propagators Δ and S now are
fixed analytically the entropy density (4.10) can be evaluated numerically. As we deal with a
grandcanonical ensemble the Maxwell relations give (at μq = 0),

s =
∂P

∂T
, (4.12)

such that the pressure can be obtained by integration of the entropy density s over T , where one
tacitly identifies the ’full’ entropy density s with the quasiparticle entropy density sdqp (4.10).
The starting point for the integration in T is chosen between 100 MeV < T < 120 MeV where

1In the following the abbreviation is used that ’quarks’ denote quarks and antiquarks if not specified explicitly.
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Figure 4.3: (l.h.s.) The scaled entropy density s(T )/T 3 (blue line) and scaled energy density
ε(T )/T 4 (red line) from the DQPM in comparison to the lQCD results from the BMW group
(full dots and triangles). (r.h.s.) The dimensionless ’interaction measure’ (ε − 3P )/T 4 within
the DQPM in comparison to the lQCD results from the BMW group.

the entropy density is approximated by that of a noninteracting pion, η and kaon gas.

The energy density ε then follows from the thermodynamical relation

ε = Ts − P (4.13)

(for μq = 0) and thus is also fixed by the entropy s(T ) as well as the interaction measure

W (T ) := ε(T ) − 3P (T ) = Ts − 4P (4.14)

that vanishes for massless and noninteracting degrees of freedom.

A direct comparison of the resulting entropy density s(T ) and energy density ε(T ) from the
DQPM with lQCD results from the BMW group is presented in Fig. 4.3 (l.h.s.). Both results
have been divided by T 3 and T 4, respectively, to demonstrate the scaling with temperature.
We briefly note that the agreement is sufficiently good. This also holds for the dimensionless
’interaction measure’, i.e. (ε − 3P )/T 4 as demonstrated in Fig. 4.3 (r.h.s.).
The DQPM uniquely defines a potential energy density

Vp(T, μq) = T 00
g−(T, μq) + T 00

q−(T, μq) + T 00
q̄−(T, μq) (4.15)

where the different contributions T 00
j− correspond to the space-like part of the energy-momentum

tensor component T 00
j of parton j = g, q, q̄. It is found that this quantity is practically inde-

pendent on the quark chemical potential (for moderate μq) when displayed as a function of the
scalar density ρs instead of T and μq separately. Note that the field quanta involved in (4.15)
are virtual and thus correspond to partons exchanged in interaction diagrams.
A scalar mean-field Us(ρs) for quarks and antiquarks can be defined by the derivative /cf.
(1.68),

Us(ρs) =
dVp(ρs)

dρs
, (4.16)
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Figure 4.4: The scalar mean field (4.16) for quarks and antiquarks from the DQPM as a function
of the scalar parton density ρs for μq = 0.

which is evaluated numerically within the DQPM. The result is displayed in Fig. 4.4 as a
function of the parton scalar density ρs ([?]) and shows that the scalar mean field is in the
order of a few GeV for ρs > 10 fm−3. This mean-field (4.16) is employed in the Parton-Hadron-
String Dynamics (PHSD) transport calculations and determines the force on a quasiparticle j,
i.e. ∼ Mj/Ej∇Us(x) = Mj/Ej dUs/dρs ∇ρs(x) where the scalar density ρs(x) is determined
numerically on a space-time grid (see below).
Since the coupling (squared) in DQPM is a function of T/Tc and in HTL approximation depends
on

T ∗ (T, μq) =
√

T 2μ2
q/π

2, (4.17)

a straight forward extension of the DQPM to finite μq is to consider the coupling as a function
of T ∗/Tc(μq) with a μq-dependent critical temperature,

Tc(μq)

Tc(μq = 0)
=
√

1 − α μ2
q ≈ 1 − α/2 μ2

q + · · · (4.18)

with α ≈ 8.79 GeV−2. The expression of Tc(μq) in (4.18) is obtained by requiring a constant
energy density ε for the system at T = Tc(μq) where ε at Tc(μq = 0) ≈ 0.158 GeV is fixed by
a lattice QCD calculation at μq = 0. The coefficient in front of the μ2

q-dependent part can be
compared to recent lQCD calculations at finite (but small) μB which gives (arXiv:1410.5758)

Tc(μB)

Tc

= 1 − κ
(

μB

Tc

)2

+ · · · (4.19)

with κ = 0.013(2). Rewriting (4.18) in the form (4.19) and using μB ≈ 3μq we get κDQPM ≈
0.0122 which compares very well with the lQCD result. Consequently one has to expect an
approximate scaling of the DQPM results if the partonic width is assumed to have the form,

Γg(T, μq) =
1

3
Nc

g2(T ∗/Tc(μq))

8π
T ln

(
2c

g2(T ∗/Tc(μq))
+ 1

)
,

Γq(T, μq) =
1

3

N2
c − 1

2Nc

g2(T ∗/Tc(μq))

8π
T ln

(
2c

g2(T ∗/Tc(μq))
+ 1

)
, (4.20)

This choice leads to an approximate independence of the potential energies per degree of free-
dom as a function of μq. Nevertheless, the conjecture (4.20) should be explicitly controlled by
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Figure 4.5: (color online) The correlation functions 〈πxy(0)πxy(t)〉, which are normalized by
〈πxy(0)2〉, as a function of time obtained by the PHSD simulations in the box (open symbols)
for systems at different energy densities and corresponding exponential fits (dashed lines) with
extracted relaxation times.

future lQCD studies for Nf=3 at finite quark chemical potential. Unfortunately, this task is
presently out of reach and one has to live with the uncertainty in (4.20) which is assumed in
the following investigations.

We point out, furthermore, that in general the quasiparticle masses Mj as well as the widths Γj

should depend also on the four-momentum q relative to the medium at rest and approach the
perturbative values at high q2. So far, the momentum-dependence of the complex selfenergy
cannot reliably be extracted from the lQCD results in thermodynamic equilibrium which are
essentially sensitive to momenta in the order of a few times the temperature. This is presently
an open issue and will have to be re-addressed in future.

On the basis of the DQPM for the partonic phase a relativistic off-shell transport approach has
been developed in the past decade that gives approximately the same dynamics as the DQPM
for partonic systems in equilibrium but also contains interacting hadrons and a dynamical
transition between hadronic and partonic degrees of freedom. This approach that can also be
employed for systems out-off equilibrium – such as heavy-ion collisions – is denoted by Parton-
Hadron-String Dynamics (PHSD). The detailed set up of PHSD as well as its comparison to
heavy-ion data from low SPS to LHC energies is described elsewhere.

4.2 Transport coefficients of the QGP

4.2.1 Shear viscosity coefficient: the Kubo formalism

In this Section we concentrate on the extraction of the shear viscosity from the ’infinite’ parton-
hadron matter employing the Kubo formalism. Using the PHSD model we simulate the ‘infinite’
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matter within a cubic box with periodic boundary conditions at various values for the quark
density (or chemical potential) and energy density. The size of the box is fixed to 93 fm3. The
initialization is done by populating the box with light (u, d) and strange (s) quarks, antiquarks
and gluons for temperatures above Tc and by a hadron gas for temperatures below Tc. The
system is initialized slightly out of equilibrium and approaches kinetic and chemical equilibrium
during it’s evolution by PHSD.
The Kubo formalism relates linear transport coefficients such as heat conductivity, shear and
bulk viscosities to non-equilibrium correlations of the corresponding dissipative fluxes, and
treats dissipative fluxes as perturbations to local thermal equilibrium. The Green-Kubo formula
for the shear viscosity η is as follows:

η =
1

T

∫
d3r

∞∫
0

dt〈πxy(0, 0)πxy(r, t)〉, (4.21)

where T is the temperature of the system, t refers to a time after the system equilibrates, which
is set at t = 0; 〈...〉 denotes the ensemble average in thermal equilibrium, and πxy is the shear
component (traceless part) of the energy momentum tensor πμν :

πxy(x, t) ≡ T xy(x, t) =
∫

d3p

(2π)3

pxpy

E
f(x,p; t), (4.22)

where the mean-field Us enters in the energy E =
√

p2 + Us + M2
0 .

In our numerical simulation the volume averaged shear component of the energy momentum
tensor can be written as

πxy(t) =
1

V

N∑
i=1

px
i p

y
i

Ei
, (4.23)

where V is the volume of the system and the sum runs over all particles in the box at time
t. Taking into account that point particles are uniformly distributed in our box (implying
πxy(r, t) = πxy(t)), we can simplify the Kubo formula for the shear viscosity to

η =
V

T

∞∫
0

dt〈πxy(0)πxy(t)〉. (4.24)

The correlation functions 〈πxy(0)πxy(t)〉 are empirically found to decay exponentially in time

〈πxy(0)πxy(t)〉 = 〈πxy(0)πxy(0)〉 e−t/τ (4.25)

as shown in Fig. 4.5, where τ is the so-called relaxation time. Finally, we end up with the
Green-Kubo formula for the shear viscosity

η =
V

T
〈πxy(0)2〉τ, (4.26)

which we use to extract the shear viscosity from the PHSD simulations in the box.
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Figure 4.6: The shear viscosity to entropy density ratio η/s as a function of temperature of
the system obtained by the PHSD simulations using different methods: the relaxation time
approximation (red line+diamonds) and the Kubo formalism (blue line+dots). The others
symbols denote lattice QCD data for pure SUc(3) gauge theory from different sources. The
orange dashed line demonstrates the Kovtun-Son-Starinets bound (η/s)KSS = 1/(4π). For
comparison, the results in the virial expansion approach (green line) are shown as a function
of temperature, too.

4.2.2 Shear and bulk viscosities in the RTA

The starting hypothesis of the relaxation time approximation (RTA) is that the collision integral
can be approximated (linearized) by

C[f ] = −f − f eq

τ
= − : Γ(f − f eq) (4.27)

where τ is the relaxation time and f eq the equilibrium distribution. In this approach it has
been shown that the shear and bulk viscosities (without mean-field or potential effects) can be
written as (e.g. by J. Kapusta):

η =
1

15T

∑
a

∫
d3p

(2π)3

|p|4
E2

a

τa(Ea)f
eq
a (Ea/T ), (4.28)

ζ =
1

9T

∑
a

∫
d3p

(2π)3

τa(Ea)

E2
a

[(1 − 3v2
s)E

2
a − M2

a ]f eq
a (Ea/T ), (4.29)

where the sum is over particles of different type a (in our case, a = q, q̄, g). In the PHSD
transport approach the relaxation time can be expressed in the following way:

τa = Γ−1
a , (4.30)
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Figure 4.7: (l.h.s.) The bulk viscosity to entropy density ratio ζ/s as a function of tempera-
ture of the system extracted from the PHSD simulations in the box using the relaxation time
approximation including mean-field effects (red line+diamonds) and without potential effects
(blue line+open triangles). The other symbols show the available lattice QCD data from dif-
ferent sources (r.h.s.). The bulk to shear viscosity ratio as a function of temperature of the
system obtained by the PHSD simulations in the box employing the relaxation time approx-
imation including mean-field effects (red line+diamonds) and without potential effects (blue
line+circles).

where Γa is the width of particles of type a = q, q̄, g, which defined by (4.4, 4.5). In our numerical
simulation the volume averaged shear and bulk viscosities assume the following expressions:

η =
1

15TV

N∑
i=1

|pi|4
E2

i

Γ−1
i , (4.31)

ζ =
1

9TV

N∑
i=1

Γ−1
i

E2
i

[(1 − 3v2
s)E

2
i − M2

i ]2, (4.32)

where the speed of sound vs = vs(T ) is taken from the DQPM using

v2
s =

∂P

∂ε
. (4.33)

In Fig. 4.6 we present the shear viscosity to entropy density ratio η/s as a function of the
temperature of the system extracted from the PHSD simulations in the box employing different
methods: the relaxation time approximation (red line+diamonds) and the Kubo formalism
(blue line+dots). For comparison, the results from the virial expansion approach (green line)
and lattice QCD data for pure SUc(3) gauge theory are shown as a function of temperature,
too.

Mean-field or potential effects

In the absence of the chemical potential there should be no consideration of vector or tensor
fields, only scalar fields. This affects the bulk viscosity, but not the shear viscosity. The
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expression for bulk viscosity with potential effects is

ζ =
1

T

∑
a

∫
d3p

(2π)3

τa(Ea)

E2
a

f eq
a (Ea/T )

×
[(1

3
− v2

s

)
|p|2 − v2

s

(
M2

a − T 2d(M2
a )

d(T 2)

)]2
. (4.34)

In the numerical simulation the volume averaged bulk viscosity with mean-field effects is used

ζ =
1

TV

N∑
i=1

Γ−1
i

E2
i

[(1

3
− v2

s

)
|p|2 − v2

s

(
M2

i − T 2d(M2
i )

d(T 2)

)]2
. (4.35)

Using the DQPM expressions for masses of quarks and gluons (for μq = 0)

M2
q =

1

3
g2T 2, M2

g =
3

4
g2T 2

we can calculate the derivative d(M2)/d(T 2) as well as v2
s (4.33).

In Fig. 4.7 (l.h.s.) we show the bulk viscosity to entropy density ratio as a function of tem-
perature of the system obtained by the PHSD simulations in the box employing the relaxation
time approximation including mean-field (or potential) effects (red line+diamonds) and with-
out potential effects (blue line+open triangles) as well as the available lattice QCD data from
different sources.
Finally, in Fig. 4.7 (r.h.s.), we show the bulk to shear viscosity ratio as a function of tem-
perature of the system extracted from the PHSD simulations in the box using the relaxation
time approximation including mean-field (or potential) effects (red line+diamonds) and without
potential effects (blue line+circles).

4.2.3 Electric conductivity

Whereas shear and bulk viscosities of hot QCD matter at finite temperature T presently are
roughly known, the electric conductivity σ0 is a further macroscopic quantity of interest since
it controls the electromagnetic emissivity of the plasma. First results from lattice calculations
on the electromagnetic correlator have provided results that varied by more than an order of
magnitude. Furthermore, the conductivity dependence on the temperature T (at T >Tc) is
widely unknown, too. The electric conductivity σ0 is also important for the creation of electro-
magnetic fields in ultra-relativistic nucleus-nucleus collisions from partonic degrees of freedom,
since σ0 specifies the imaginary part of the electromagnetic (retarded) propagator and leads to
an exponential decay of the propagator in time ∼exp(−σ0(t − t′)/(h̄c)).

In order to include the effects from an external electric field E or magnetic field B, the prop-
agation of each charged test-particle j is performed with the additional Lorentz force in the
equation of motion:

d

dt
pj = qje(E +

pj

Ej
× B), (4.36)

where qj denotes the fractional charge of the test-particle (±1/3,±2/3) and Ej its energy. We
recall that the external electric field will lead to an acceleration of positively and negatively
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charged particles in opposite directions while the particle scatterings/interactions will damp this
acceleration and eventually lead to an equilibrium current if the external field is of moderate
strength. The electric current density jz(t) (for an external electric field in z-direction) is
calculated by

jz(t) =
1

V N

N∑
k=1

Nk(t)∑
j=1

eqj
pj

z(t)

Mj(t)
, (4.37)

where Mj(t) is the mass of the test-particle j at time t. The summation in (4.37) is carried
out over N ensemble members k = 1 . . .N while Nk(t) denotes the time-dependent number of
’physical’ (u, d, s) quarks and antiquarks that varies with time t due to the processes q + q̄ ↔
g ↔ q′ + q̄′ in a single member of the ensemble (run). The number of runs N is typically
taken as a few hundred which gives a current jz(t) practically independent on the number
of ensemble members N . We recall that (without external fields) each run of the ensemble
is a micro-canonical simulation of the dynamics as inherent in the PHSD transport approach
which strictly conserves the total four-momentum as well as all discrete conservation laws (e.g.
net fermion number for each flavor etc.). A note of caution has to be given, since due to an
external field we deal with an open system with increasing energy density (temperature) in
time. Therefore we employ sufficiently small external fields eEz, such that the energy increase
during the computation time (in each run) stays below 2% and the increase in temperature
below 1 MeV.

Constant electric fields

We find that for constant electric fields up to eEz = 50 MeV/fm a stable electric current jeq

emerges that is ∼ Ez (cf. Fig. 4.8 (l.h.s.). Accordingly, we obtain the conductivity σ0(T, μq)
from the ratio of the stationary current density jeq and the electric field strength as

σ0(T, μq)

T
=

jeq(T, μq)

EzT
. (4.38)

The results for the dimensionless ratio (4.38) at μq = 0 are displayed in Fig. 4.8 (r.h.s.) as a
function of the scaled temperature T/Tc in comparison to more recent lattice QCD results and
suggest a minimum in the ratio σ0(T, μq = 0)/T close to the critical temperature Tc followed
by an approximate linear rise up to 2 Tc. The most recent lQCD results are roughly compatible
with the PHSD predictions.

We now focus on the explicit dependence of σ0(T, μq)/T as a function of the chemical
potential μq which is shown in Fig. 4.9 (l.h.s.) for a fixed temperature T=200 MeV. The
numerical result can be fitted with a quadratic correction (solid line in Fig. 4.9)

σ0(T, μq)

T
=

σ0(T, μq = 0)

T

(
1 + a(T )μ2

q

)
. (4.39)

with a(T ) ≈ 11.6 GeV−2 for T = 0.2 GeV. This result comes about as follows: We recall that
the electric conductivity of gases, liquids and solid states is described in the relaxation time
approach by the Drude formula

σ0 =
e2neτ

m∗
e

, (4.40)
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Figure 4.8: (l.h.s.) The electric conductivity over temperature at T = 190 MeV as a function
of the external electric field eEz. (r.h.s.) The dimensionless ratio of electric conductivity over
temperature σ0/T (4.38) as a function of the scaled temperature T/Tc for μq = 0 in comparison
to recent lattice QCD results. (r.h.s.)

where ne denotes the density of non-localized charges, τ is the relaxation time of the charge
carriers in the medium and m∗

e their effective mass. This expression can be directly computed
for partonic degrees-of-freedom within the DQPM, which matches the quasiparticles properties
to lattice QCD results in equilibrium. In the DQPM, the relaxation time for quarks/antiquarks
is given by τ = 1/Γq(T, μq), where Γq(T, μq) is the width of the quasiparticle spectral function
(4.4), (4.5). Furthermore, the spectral distribution for the mass of the quasiparticle has a finite
pole mass Mq(T, μq) that is also fixed in the DQPM (4.3) as well as the density of (u, ū, d, d̄, s, s̄)
quarks/antiquarks as a function of temperature T and chemical potential μq. The latter is given
by an expression similar to the scalar density ρs in (4.9) but

√
p2 replaced by ω. Thus, we obtain

for the dimensionless ratio (4.38) the expression

σ0(T, μq)

T
≈ 2

9

e2nq+q̄(T, μq)

Mq(T, μq)Γq(T, μq)T
, (4.41)

where nq+q̄(T, μq) denotes the total density of quarks and antiquarks and the prefactor 2/9
reflects the flavor averaged fractional quark charge squared (

∑
f q2

f )/3. The DQPM results
match well with the explicit PHSD calculations in the box for μq=0 since PHSD in equilibrium
is a suitable transport realization of the DQPM.
In the DQPM we have Γq(T, μq) ≈ Γq(T, μq = 0) and Mq(T, μq) ≈ Mq(T, μq = 0) for μq ≤ 100
MeV, however,

nq+q̄(T, μq) ≈ nq+q̄(T, μq = 0)
(
1 + a(T )μ2

q

)
(4.42)

with the same coefficient a(T ) as in Eq. (4.39). This is demonstrated explicitly in Fig. 4.9
(r.h.s.) where the actual DQPM results for the quark+antiquark density (full dots) are com-
pared to the fit (4.42) (solid line).
The temperature dependence of the expansion coefficient a(T ) is found to be ∼ 1/T 2 such that
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Figure 4.9: (l.h.s.) The electric conductivity over temperature σ0/T as a function of the
chemical potential μq for T= 200 MeV from the PHSD calculations (full dots). The error
bars indicate the statistical uncertainty for the ratio (4.38) when performing calculations for
different external field strength eEz up to 50 MeV/fm. (r.h.s.) Quark+antiquark density from
the DQPM (full dots) as a function of the quark chemical potential μq for T = 200 MeV. The
solid (red) line displays the fit (4.42) to the DQPM results.

the ratio σ0/T can be approximated by

σ0(T, μq)

T
≈ σ0(T, μq = 0)

T

(
1 + cσ0

μ2
q

T 2

)
. (4.43)

In Fig. 4.10 (l.h.s.) we display the coefficient cσ0 in the temperature range 170 MeV≤ T ≤
250 MeV giving cσ0 ≈ 0.46 as a best fit. This completes our study on the stationary electric
conductivity σ0 which can be well understood in its variation with T and μq within the DQPM.

Periodic electric fields

We now extent our study to external periodic fields of frequency Ω,

Ez(t) = E0
z sin(Ωt). (4.44)

In this case the electric current density jz(t) for the charged particles in the box does not achieve
a constant equilibrium value and also oscillates with the frequency Ω. Fig. 4.10 (r.h.s) shows
the time-dependence of the current jz(t) from PHSD for different frequencies as a function of
Ωt with their amplitudes normalized to one in comparison to the external electric field Ez(t)
(dotted red line). The current jz(t) is seen to be shifted in phase compared to the electric field;
the phase shift δ increases with the frequency Ω up to π/2. The currents in Fig. 4.10 (r.h.s)
can be well described by

jz(t) = A(Ω)jeq sin(Ωt − δ(Ω)). (4.45)

We find that the amplitude A(Ω) decreases with the frequency Ω since the current has less
time to build up and to follow the external field. This behavior is in line with the complex
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Figure 4.10: (l.h.s.) The expansion factor cσ0 in (4.43) as a function of the temperature T
for μq ≤ 100 MeV. The solid line shows the average value in the interval 170 MeV < T <
250 MeV. (r.h.s.) The time-dependent electric current density jz(t) for Ω=0.32 c/fm (solid
black) and Ω= 0.94 c/fm (dash dotted blue) normalized to the equilibrium amplitude for
temperature T = 190 MeV and eE0

z =0.005 GeV2 ≈ 25 MeV/fm. The dotted red line shows
the time-dependence of the external electric field Ez(t).

conductivity σ(Ω) for oscillating fields,

σ(Ω) =
σ0

1 − iΩ/Γq
=

σ0

1 + Ω2/Γ2
q

+ i
σ0Ω/Γq

1 + Ω2/Γ2
q

, (4.46)

where Γq is the quasi-particle width of the charged particles (quarks and antiquarks). We have
computed the current jz(t) for T = 190 MeV and eE0

z=0.005 GeV2 ≈ 25 MeV/fm in the
frequency range 0.02 c/fm< Ω <25 c/fm. Fig. 4.11 shows the phase shift δ = arctan(Ω/Γq)

(l.h.s.) and the amplitude A(Ω) = 1/
√

1 + Ω2/Γ2
q (full dots; r.h.s.). The PHSD results can be

easily followed up within the DQPM results (shown by the red lines) which provide again a
good description of the microscopic calculations. Since the complex conductivity σ(Ω) depends
only on the width Γq and the stationary conductivity σ0 in (4.46) its actual values for different
temperatures T and finite chemical potential μq follow directly from our previous results in this
Section.

Note that for actual electric fields in peripheral Au+Au collisions at the top RHIC energy
we have Ω ≈ 22 c/fm such that the electric conductivity σ(Ω) is suppressed relative to its
equilibrium value by more than a factor of 100.

4.2.4 Magnetic response

In order to explore the magnetic response of the partonic system within PHSD we will assume
the magnetic field to be sufficiently small such that terms ∼ B2 can be neglected (see below).
Note that this limit does not hold for the strong fields eB(∼ 0.1-1 GeV2 ≈ 0.5-5 GeV/fm) in
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Figure 4.11: (l.h.s.) The phase shift δ over π as a function of the frequency Ω from the PHSD
calculations (full dots) for T = 190 MeV. The red line shows the phase shift as expected from
the DQPM using (4.46). (r.h.s.) The amplitude A(Ω) as a function of the frequency Ω from
the PHSD calculations (full dots) for T = 190 MeV. The red line shows the expected amplitude
within the DQPM.

actual lattice QCD studies. Using

(�σD)2 = D2 − qe�σ · B, D2 = (p− qeA)2 = p2 − qeL · B (4.47)

with the Pauli matrices �σ, the kinetic momentum p and the angular momentum L the Dirac
equation can be rewritten for 2-component quark and antiquark spinors leading to the Hamil-
tonian

HDirac =
√

p2 + m2 − qe(L + �σ) · B (4.48)

≈ E − qe

2E
(L + �σ) · B = E − qe

2E
(L + 2S) · B

with E =
√

p2 + m2. In case of small energies E → p2/2m + m this leads to the well known
expression for the non-relativistic Pauli equation:

HPauli =
p2

2m
− qe

2m
(L + �σ) · B. (4.49)

The change of the energy of the system in the presence of an external magnetic field B is
determined by the magnetic moment �μ:

�μ = �μL + �μS =
qe

2E
(L + 2S), (4.50)

which has a contribution from the angular momentum L of a particle and from the spin S = �σ/2.
In the following we will investigate both terms separately since they provide contributions to
the magnetic moment of opposite sign. In analogy to the previous section we are dealing with
an open system but the increase in the total energy stays below 1%.
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4.2.5 Diamagnetic contribution

The induced angular momentum L emerges from the Lorentz force (4.36) on a charged particle
due to an external field B,

FL =
qe

E
(p× B), (4.51)

and induces a magnetic moment opposite to the direction of the B-field since the charged
particle spirals around the magnetic field with frequency

ω =
qeB

E
=

p⊥
ER

, where p⊥ is the momentum component of the particle perpendicular to the direction of the
magnetic field and R is the radius of the spiral2. We obtain alternatively for the angular
momentum

L =
Rqe

|FL|E (p(p · B) −Bp2), (4.52)

where p(p · B) is the projection of the momentum on the direction of the magnetic field eB.
Inserting the expression for the radius R we get

L =
−p3

⊥
|FL|Esign(q)eB . (4.53)

Assuming the magnetic field to be oriented in y-direction and employing the Lorentz force
|FL| = |qeB|

E
p⊥ we end up with

Ly =
−p2

⊥
qeB

. (4.54)

This gives the induced magnetic moment

μL =
−p2

⊥
2BE

. (4.55)

Since the Lorentz force changes only the direction of p and not its magnitude |p| the particle
energy E is conserved, too. As a consequence the energy contribution in the Hamiltonian (4.48)
is independent from the magnetic field strength in the limit of low B:

ΔEmag,L = −μLB = −−p2
⊥

2BE
B =

p2
⊥

2E
. (4.56)

We note that the diamagnetic contribution can not be seen in approaches that calculate the
magnetization by differentiation of the thermodynamic potential (e.g. free energy F ) with
respect to the magnetic field B. In principle, the angular momentum L has to be quantized.
However, the actual values for L (in units of h̄) are � 1 for ’small’ field strength since |L| ∼
1/(eB) such that quantum corrections are subleading in our case.
In order to explore the range of external magnetic fields eB we can handle reliably within the
PHSD calculations for partonic systems we show in Fig. 4.12 the energy contribution to the
magnetic field (4.56) as a function of eB for a temperature T=190 MeV. In fact, the calculations

2Note that in case of charged but spinless particles this diamagnetic response is the only response.
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for the energy shift due to the magnetic field eB give constant results for eB < 50 MeV/fm
while for stronger fields more significant deviations emerge up to ∼ 10% for eB 200 MeV/fm.
Accordingly, we will restrict to eB ≤ 50 MeV/fm (≈ 0.01 GeV2) in the following.
The temperature dependence of ΔEmag,L from the PHSD calculation is shown in Fig. 4.12
(r.h.s.) by full dots and can be well fitted in the interval 170 MeV ≤ T ≤ 250 MeV by

ΔEmag,L(T ) = 0.3 · (T − 96)2.82 [MeV ] (4.57)

where the temperature T is given in units of MeV. The diamagnetic contribution to the mag-
netization from the Lorentz force on the quarks and antiquarks then can be readily extracted
by dividing ΔEmag,L(T ) by the strength of the magnetic field.

Figure 4.12: (l.h.s.) The energy shift due to the magnetic field ΔEmag,L = −μLB in the PHSD
calculation (full dots) as a function of the field strength eB for a temperature of T = 190 MeV
at μq=0. The solid line reflects a constant for small/moderate field strength. (r.h.s.) The
energy shift due to be magnetic field ΔEmag,L = −μLB in the PHSD calculation as a function
of the temperature T for μq = 0. The numerical uncertainties are smaller than the size of the
dots. The solid line shows the fit (4.57).

4.2.6 Paramagnetic contribution

In QCD the quark and antiquark spins provide a paramagnetic contribution since the spin
precession around the direction of the magnetic field B in thermal equilibrium gives a positive
magnetic moment μS since the energy becomes reduced according to Eq. (4.48). The spin
degree-of-freedom is introduced in PHSD in line with the generalized test-particle ansatz (3.31)
for the Wightman function

iG<(X, P, S) =
1

N

N∑
k=1

Nk(t)∑
i=1

δ(3)(X −Xi(t)) (4.58)

×δ(3)(P− Pi(t))δ(P0 − εi(t))δ
(2)(S− Si(t))
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where X and P stand for space-time and four-momentum coordinates, respectively, while S
denotes the spin degree-of-freedom. In (4.58) the number of ensemble members (runs) is denoted
by N whereas Nk is the number of partons in the run k = 1 . . .N that describe the ’physical’
particles in each micro-canonical simulation. The spin degree-of-freedom has to be treated in
line with quantum mechanics according to the interaction Hamiltonian (4.48), i.e.

ĤS = − qe

2E
�σ · B. (4.59)

The spin-wavefunction for a spin 1/2 fermion is taken as a 2-component spinor with spin-up and
spin-down elementary basis states. The time evolution of the spin operator can be evaluated
in a straight forward manner with the help of the time evolution operator exp(−iĤs(t − t0)).
The resulting equations of motion lead to a precession of the spin of a quark/antiquark with
frequency ω = qeB/E which changes only if the energy of the particle E changes in a collision
or in the inelastic reaction q + q̄ → g → q′ + q̄′.
In order to describe an equilibration of the spin degree-of-freedom we introduce a spin flip in
1/3 of the elastic collisions with the constraint (in equilibrium):

n↑P↑,↓ = n↓P↓,↑ ⇐⇒ P↑,↓
P↓,↑

(4.60)

=
n↓
n↑

= exp (−(E↓ − E↑)/T ) = exp
(
−qeB

ET

)
.

In (4.60) P denotes the probability for a spin flip and n the occupation probability for given
spin orientation. The probabilities P are taken as

P↓,↑ = 1, P↑,↓ = exp
(
−qeB

ET

)
(4.61)

and lead to the proper equilibrium distribution when neglecting the q + q̄ ↔ g channels.

The magnetization M is defined by the spin density of the system as

M =
< μS >

V
≈ χSe2B, (4.62)

which in case of small magnetic fields eB - as in our present study - is proportional to the
strength of the B-field thus defining a magnetic susceptibility χS by

χS =
< μS >

e2BV
. (4.63)

As a next step we compute the magnetic susceptibility χS in the PHSD calculations according
to Eq. (4.63) for different field strength eB at μq = 0. The results for the susceptibility χS are
displayed in Fig. 4.13 (l.h.s.) for T= 190 MeV and (within numerical accuracy) show a constant
value even up to eB= 200 MeV/fm. In this case the numerical accuracy increases with the
field strength since the spin-flip probabilities in Eq. (4.61) differ more significantly for larger
magnetic fields. Nevertheless, we have a stable numerical ’window’ eB from 25-50 MeV/fm
where the diamagnetic and parametic contributions to the magnetic moment can be calculated
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Figure 4.13: (l.h.s.) Magnetic susceptibility χS (4.63) from PHSD as a function of the external
magnetic field eB for a temperature T=190 MeV at vanishing quark chemical potential μq =0.
(r.h.s.) Temperature dependence of the magnetic susceptibility χS(T )T from PHSD (full dots)
in comparison to the fit (4.65) for μq=0. The numerical uncertainties are indicated by the
errorbars.

with sufficient accuracy. Note that the energy shift due to the paramagnetic contribution is
given by

ΔEmag,S = −χSV (eB)2 (4.64)

and decreases quadratically with the field strength.
The temperature dependence of the magnetic susceptibility χS(T ) from PHSD is displayed in
Fig. 4.13 (r.h.s.) by the full dots and can be fitted as

χS(T ) = 0.017 − 2.39

T
(4.65)

with T given in MeV (in the interval 170 MeV ≤ T ≤ 250 MeV).
The total energy shift due to the both interactions with the magnetic field is given by

ΔE(T, B) = ΔEmag,L(T ) − χS(T )V (eB)2 (4.66)

and decreases with B2 at constant temperature T . At a ’critical’ field Bc(T ) the energy shift
changes sign, i.e. for

Bc(T ) =

√
ΔEmag,L

e2χSV
(4.67)

the magnetization changes from diamagnetic to paramagnetic with increasing magnitude of the
field B.
This quantity has a minimum (within PHSD) close to the critical temperature Tc ≈ 158 MeV
(cf. Fig. 4.14) with a minimum eBc,min ≈0.4 GeV2 (thick solid black line - extrapolated by the
dashed line according to the fits performed). For comparison we also show the limiting results
when assuming all quark/antiquark spins to be oriented in B direction. In the QGP phase
the ’critical’ field Bc rises with temperature and separates the diamagnetic (below) from the
paramagnetic response (above) of the QGP. Note that the maximal field strength in peripheral
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Figure 4.14: The ’critical’ magnetic field (4.67) as a function of the temperature T for μq =0
from the PHSD calculations (thick solid black line). The dashed extensions are based on the
extrapolated fits and not explicitly controlled by PHSD calculations. The (lower) thin solid
blue line results when assuming all quark/antiquark spins to be oriented in B direction. The
constant lower line displays the maximum value for the magnetic field strength at the top RHIC
energy of

√
sNN = 200 GeV.

Au + Au collisions at the top RHIC energy
√

sNN = 200 GeV was found to be ∼ 0.09 GeV2

(constant solid line) - during the passage time of the nuclei - which is significantly lower than
the ’critical’ field in Fig. 4.14. Accordingly, the response of the QGP in actual heavy-ion
experiments should be diamagnetic. However, for the much higher field strength explored in
lattice QCD calculations for temperatures close to Tc the response should be paramagnetic.

4.2.7 Finite quark chemical potential

As in case of the electric conductivity σ0(T, μq) we can also compute the magnetic response at
finite quark chemical potential μq in PHSD. In analogy to Fig. ?? we find essentially a quadratic
dependence on μq for ΔEmag,L(μq) at T = 200 MeV. This dependence is also obtained for the
magnetic susceptibility χS(T, μq) although with larger numerical errorbars. Again we find the
temperature dependence of the coefficient to be ∼ 1/T 2 such that we get the approximations

ΔEmag,L(T, μq) ≈ ΔEmag,L(T, μq = 0)(1 + cL

μ2
q

T 2
), (4.68)

χS(T, μq) ≈ χS(T, μq = 0)(1 + cS

μ2
q

T 2
) .

The scaling (4.68) can be traced back again to the scaling of the quark+antiquark density
nq+q̄(T, μq) in the DQPM.
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Chapter 5

Appendix

5.1 Kramers-Kronig relation

The Kramers–Kronig relations are bidirectional mathematical relations, connecting the real
and imaginary parts of any complex function that is analytic in the upper half-plane. These
relations are often used to calculate the real part from the imaginary part (or vice versa) of
response functions or retarded propagators in physical systems, because for stable systems
causality implies the analyticity condition, and conversely, analyticity implies causality of the
corresponding stable physical system. The relation is named according to Ralph Kronig and
Hendrik Anthony Kramers.
Let χ(ω) = χ1(ω) + iχ2(ω) be a complex function of the complex variable ω , where χ1(ω) and
χ2(ω) are real. Assume this function to be analytic in the closed upper half-plane of ω and
to vanish like 1/|ω| or faster as |ω| → ∞. Slightly weaker conditions are also possible. The
Kramers-Kronig relations are given by

χ1(ω) =
1

π
P

∫ ∞

−∞
χ2(ω

′)
ω′ − ω

dω′ (5.1)

and

χ2(ω) = −1

π
P

∫ ∞

−∞
χ1(ω

′)
ω′ − ω

dω′, (5.2)

where P denotes the Cauchy principal value (see below). So the real and imaginary parts of
such a function are not independent, and the full function can be reconstructed given just one
of its parts.
The proof begins with an application of Cauchy’s residue theorem for complex integration.
Given any analytic function χ in the closed upper half plane, the function ω′ → χ(ω′)/(ω′ −ω)
where ω is real will also be analytic in the upper half of the plane. The residue theorem
consequently states that ∮

χ(ω′)
ω′ − ω

dω′ = 0 (5.3)

for any contour within this region. We choose the contour to trace the real axis, a hump over the
pole at ω = ω′ in the upper half plane, and close with a large semicircle in the upper half plane
(cf. Fig. 5.1). We then decompose the integral into its contributions along each of these three
contour segments and pass them to limits. The length of the semicircular segment increases
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Figure 5.1: The contour in the complex ω-plane employed for the proof of (5.5).

proportionally to |ω|, but the integral over it vanishes in the limit because χ(ω) vanishes faster
than 1/|ω|. We are left with the segments along the real axis and the half-circle around the
pole. We pass the size of the half-circle to zero and obtain

0 =
∮

χ(ω′)
ω′ − ω

dω′ = P
∫ ∞

−∞
χ(ω′)
ω′ − ω

dω′ − iπχ(ω). (5.4)

The second term in the last expression is obtained using the theory of residues. Rearranging,
we arrive at the compact form of the Kramers–Kronig relations,

χ(ω) =
1

iπ
P

∫ ∞

−∞
χ(ω′)
ω′ − ω

dω′. (5.5)

The single i in the denominator will effectuate the connection between the real and imaginary
components. Finally, split χ(ω) and the equation into their real and imaginary parts to obtain
the forms quoted above in Eqs. (5.1) and (5.2).
Applications: We can apply the Kramers–Kronig formalism to response functions. The imag-
inary part of a response function describes how a system dissipates energy, since it is out of
phase with the driving force. The Kramers–Kronig relations imply that observing the dissipa-
tive response of a system is sufficient to determine its in-phase (reactive) response, and vice
versa.
The integrals run from −∞ to ∞, implying we know the response at negative frequencies. For-
tunately, in most systems, the positive frequency-response determines the negative-frequency
response because χ(ω) is the Fourier transform of a real quantity χ(t− t′), so χ(−ω) = χ∗(ω).
This means χ1(ω) is an even function of frequency and χ2(ω) is odd.
Using these properties, we can collapse the integration ranges to [0,∞). Consider the first
relation, which gives the real part χ1(ω). We transform the integral into one of definite parity

63



by multiplying the numerator and denominator of the integrand by ω′ + ω and separating:

χ1(ω) =
1

π
P

∞∫
−∞

ω′χ2(ω
′)

ω′2 − ω2
dω′ +

ω

π
P

∞∫
−∞

χ2(ω
′)

ω′2 − ω2
dω′. (5.6)

Since χ2(ω) is odd, the second integral vanishes, and we are left with

χ1(ω) =
2

π
P

∞∫
0

ω′χ2(ω
′)

ω′2 − ω2
dω′. (5.7)

The same derivation for the imaginary part gives

χ2(ω) = −2

π
P

∞∫
0

ωχ1(ω
′)

ω′2 − ω2
dω′ = −2ω

π
P

∞∫
0

χ1(ω
′)

ω′2 − ω2
dω′. (5.8)

These are the Kramers–Kronig relations in a form that is useful for physically realistic response
functions and also retarded propagators or selfenergies.

5.2 Cauchy’s principal value

Depending on the type of singularity in the integrand f(x), the Cauchy principal value is defined
as one of the following: the finite number

limε→0+

[∫ b−ε

a
f(x) dx +

∫ c

b+ε
f(x) dx

]
(5.9)

where b is a point at which the behavior of the function f is such that

∫ b

a
f(x) dx = ±∞ (5.10)

for any a < b and ∫ c

b
f(x) dx = ∓∞ (5.11)

for any c > b (one sign is ”+” and the other is ”-”; see plus or minus for precise usage of
notations ±); or the finite number

lima→∞
∫ a

−a
f(x) dx (5.12)

where ∫ 0

−∞
f(x) dx = ±∞ (5.13)

and ∫ ∞

0
f(x) dx = ∓∞ (5.14)
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In some cases it is necessary to deal simultaneously with singularities both at a finite number
b and at infinity. This is usually done by a limit of the form

limε→0+

[∫ b−ε

b− 1
ε

f(x) dx +
∫ b+ 1

ε

b+ε
f(x) dx

]
. (5.15)

or in terms of contour integrals of a complex-valued function f(z); z = x + iy, with a pole on
the contour. The pole is enclosed with a circle of radius ε and the portion of the path outside
this circle is denoted L(ε). Provided the function f(z) is integrable over L(ε) no matter how
small ε becomes, then the Cauchy principal value is the limit:

P
∫

L
f(z) dz =

∫ ∗

L
f(z) dz = lim

ε→0

∫
L(ε)

f(z) dz, (5.16)

where two of the common notations for the Cauchy principal value appear on the left of this
equation. In the case of Lebesgue-integrable functions, that is, functions which are integrable
in absolute value, these definitions coincide with the standard definition of the integral.
Examples the Cauchy principal value:
Consider the difference in values of two limits:

lima→0+

(∫ −a

−1

dx

x
+
∫ 1

a

dx

x

)
= 0, (5.17)

lima→0+

(∫ −2a

−1

dx

x
+
∫ 1

a

dx

x

)
= ln 2. (5.18)

The former is the Cauchy principal value of the otherwise ill–defined expression

∫ 1

−1

dx

x
(which gives −∞ + ∞) . (5.19)

Similarly, we have

lima→∞
∫ a

−a

2x dx

x2 + 1
= 0, (5.20)

but

lima→∞
∫ a

−2a

2x dx

x2 + 1
= − ln 4. (5.21)

The former is the principal value of the otherwise ill-defined expression

∫ ∞

−∞
2x dx

x2 + 1
(which gives −∞ + ∞) . (5.22)
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