

Charmed hadron signals of partonic medium

Olena Linnyk

Our goal – properties of partonic matter

Observables

HSD

- > □ J/Ψ anomalous suppression at SPS
- ▲ □ J/Ψ anomalous suppression at RHIC
 - □ J/Ψ rapidity distribution at RHIC
 - **Elliptic flow of D-mesons**
 - **Elliptic flow of** J/Ψ
 - **Quenching of charm at RHIC**

Basic concepts of Hadron-String Dynamics

for each particle species *i* (*i* = *N*, *R*, *Y*, π , ρ , K, ...) the phase-space density f_i follows the transport equations

$$\left(\frac{\partial}{\partial t} + \left(\nabla_{\vec{p}}H\right)\nabla_{\vec{r}} - \left(\nabla_{\vec{r}}H\right)\nabla_{\vec{p}}\right)f_{i}(\vec{r},\vec{p},t) = I_{coll}(f_{1},f_{2},...,f_{M})$$

with the collision terms I_{coll} describing:

- elastic and inelastic hadronic reactions BB <-> B'B', BB <-> B'B'm, mB <-> m'B', mB <-> B'
- **•** formation and decay of baryonic and mesonic resonances
- string formation and decay (for inclusive production: BB->X, mB->X, X =many particles)
- Implementation of detailed balance on the level of 1<->2 and 2<->2 reactions (+ 2<->n multi-meson fusion reactions)
- Off-shell dynamics for short living states
- No explicit quark and gluon degrees-of-freedom, partons only in the strings

Charmonium production in HSD

Charmonium interactions with the medium in HSD

Default comover absorption scenario:

- **Interactions with nucleons (normal nuclear absorption, as in pA)**
- **Absorption on formed mesons (comovers),** $J/\Psi+m->D+D$
- **□ Recombination** by D+Dbar annihilation, D+D–>J/Ψ+m

Modified comover, i.e. prehadron interaction scenario:

additionally, absorption and elastic scattering by prehadrons=mesons and baryons under formation time of τ~0.8 fm/c in their rest frame)

Observables

HSD

- > □ J/Ψ anomalous suppression at SPS
- ▲ □ J/Ψ anomalous suppression at RHIC
 - □ J/Ψ rapidity distribution at RHIC
 - **Elliptic flow of D-mesons**
 - **Elliptic flow of** J/Ψ
 - **Quenching of charm at RHIC**

Hadron abundances

very good description of particle production in pp, pA reactions with HSD

• unique description of nuclear dynamics from low (~100 MeV) to ultrarelativistic (~20 TeV) energies

J/Ψ anomalous suppression at SPS

Both J/Ψ and Ψ' suppression in Pb+Pb and In+In @ 160 A GeV are consistent with the comover absorption scenario.

[OL et al., NPA 786 (2007) 183]

J/Ψ anomalous suppression at RHIC comover scenario

But:

the suppression at mid-y is stronger than at forward y, unlike data! [OL et al., PRC 76 (2007) 041901; NPA 807 (2008) 79]

Prehadron interaction scenario

- 1. early interactions of charmonium (ccbar) and D-mesons with unformed (under formation time t = $\gamma \tau_F$, $\tau_F \sim 0.8$ fm/c) baryons and mesons = prehadrons
- **2.** comover absorption with recombination by D-Dbar annihilation

[For details see: OL et al., arXiv:0808.1504 Int J Mod Phys (2008)]

J/Ψ anomalous suppression at RHIC prehadronic interactions

In the prehadronic interaction scenario, the J/Ψ rapidity distribution has the right shape, reproduces the PHENIX data! => describes R_{AA} at mid- and forward-rapidity simultaneously. [OL et al., NPA 807 (2008) 79]

Elliptic flow of D-mesons

•Default hadron comover scenario underestimates the data;

 Pre-hadron interactions lead to an increase of the elliptic flow v₂ of D mesons;
The pre-hadronic scenario is ~consistent with the preliminary PHENIX data => strong initial flow of non-hadronic nature!

Elliptic flow of J/Ψ

Quenching of D mesons at RHIC

Evidence of additional high p_T suppression in the most central collisions.

Suppression of D mesons in peripheral collisions is consistent with a purely hadronic scenario.

Quenching of J/Ψ at RHIC

- Strong suppression at low p_T observed experimentally cannot be explained:
- by hadronic absorption of initially produced J/\U00c4s
- or by D+D recombination, since J/Ψs would follow R_{AA} pattern similar to D mesons.

Possible indication of J/Ψ formation by parton coalescence!

Conclusions

- In search for partonic phase signatures, an understanding of hadron (string) matter effects is necessary, and HSD is the tool to model it
- Charm absorption at SPS is consistent with the hadronic comover picture
- But hadron comover absorption fails to describe the rapidity distribution of J/\P mesons from Au+Au at s^{1/2}=200 GeV
- In the prehadronic interaction scenario, the data at s^{1/2}=200 GeV for Au+Au at mid and forward rapidities are simultaneously reproduced
- However, RHIC data on high p_T suppression and v₂ of D mesons are not reproduced in the (pre-)hadron-string picture

=> evidence for a plasma pressure ?!

E. Bratkovskaya, W. Cassing, H. Stöcker

Thank you!

Review for Int. J. Modern Phys. E (September, 2008) arXiv:0808.1504

Supression in pA at RHIC

J/Ψ and Ψ' from threshold melting scenario at SPS

J/Ψ suppression is qualitatively described, but QGP threshold melting scenario shows a too strong Ψ' absorption, which contradicts the NA50 data!

[OL et al., NPA 786 (2007) 183]

J/Ψ and Ψ' from threshold melting scenario at RHIC

QGP threshold melting scenario is ruled out by PHENIX data!

Comover absorption and threshold melting scenarios are ruled out by experimental data

evidence for non-hadronic interaction ?!

Bjorken energy density

[OL et al., NPA (2008) 807, 79]

Local energy density from HSD

At RHIC, energy-densities above the critical value (~2 GeV/fm³) exist in an extended space-time area

[OL et al., NPA 786 (2007) 183]

[OL et al., NPA (2008) 807, 79]

Comparison to statistical hadronization

[OL et al., NPA (2008) 807, 79]