Description of fully differential Drell-Yan pair production

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

International Workshop on "In-Medium Effects in Hadronic and Partonic Systems" JUSTUS-LIEBIG Obergurgl, February 2011

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

GIESSEN

Summary

Christmas party 2004

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel Description of fully differential Drell-Yan pair production Institut für Theoretische Physik Justus-Liebig-Universität Gießen

Summary

There is no free lunch (beer)

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel Description of fully differential Drell-Yan pair production Institut für Theoretische Physik Justus-Liebig-Universität Gießen

First try: Diploma thesis

Munich

Gießen

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

If at first you don't succeed: PhD work

Gießen (old)

Gießen (new)

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

Motivation

- Semi-Exclusive Drell-Yan observables give important insights into nucleon structure
 Problems:
 - Standard pQCD parton model description needs "K-factor" to reproduce data
 - PANDA @ FAIR will allow measurements of the Drell-Yan Process down to small energies ⇒ non-perturbative effects become important
- Account for these shortcomings by improving standard parton model description

The Drell-Yan Process $(pp \rightarrow l^+ l^- X)$

- Parton model:
 - "Infinite momentum frame"
 - \Rightarrow partons collinear

carrying momentum fraction x

- Factorisation: $d\sigma = \int \sum_{i} e_{q_i}^2 f_i(x_1) \overline{f}_i(x_2) d\hat{\sigma}(x_1, x_2)$ hard subprocess $(d\hat{\sigma})$ parton distribution functions (f_i)
- Accessible: $d^2\sigma/(dMdx_F)$
- Not accessible:
 p_T spectrum of DY-pair

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Invariant mass distribution

K-factor necessary to reproduce absolute values

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

Quark transverse momentum

- Parton model: Neglect initial k_T of quarks ⇒ p_T spectrum of DY-pairs inaccessible in LO calculation!
- Initial k_T -approach: $d\sigma = \int \sum_i e_{q_i}^2 f_i(x_1) \overline{f}_i(x_2) \cdot g((\vec{k}_t)_1) \cdot g((\vec{k}_t)_2) \cdot d\hat{\sigma}(x_1, x_2)$
- Shape of p_T spectrum reproduced, still K-factor needed to yield absolute values
- First improvement:

Include initial transverse momentum with full kinematics: $d\hat{\sigma}(x_1, x_2, (\vec{k}_t)_1, (\vec{k}_t)_2)$

However: Effect is small

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Comparison: Simple vs. Full kinematics

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

Next to Leading Order processes

- Bremsstrahlung,
 Gluon-Compton-Scattering
 + corrections
- However: Dynamically generated p_T spectrum is divergent for p_T → 0 in NLO
- Reason: Massless exchange quark becomes onshell
- Exchange quark propagator: $D(k) \sim \frac{1}{u} \sim \frac{1}{p_{\tau}^2}$

Transverse momentum (p_T) spectrum

E866, pp, S=1500 GeV²

Offshell quarks

- Distribute mass: $\frac{1}{\mu} \rightarrow \frac{1}{\mu m^2} \cdot A(m, \Gamma)$
- Spectral function A(m, Γ), e.g. relativistic
 Breit-Wigner (one parameter: width Γ)
- Motivation: interacting many-body system, compare to nucleons in nuclei
- Divergence for $p_T \rightarrow 0$ smeared out
- Effectively cutoff low p_T

0.5

0

Gluon Compton scattering: p_T spectrum

1.5

p_T [GeV]

2

2.5

3

Vertex Correction and Infrared problems

- Vertex Correction interferes with LO process
- Loop integral is infrared divergent, cancels against soft Bremsstrahlung
- ightarrow Bloch-Nordsieck mechanism

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

E866 p_T -Spectrum

E866, pp, S=1500 GeV²

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

E866 M-Spectrum

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

E288 p_T -Spectrum

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

E439 M-Spectrum

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

$\overline{P}ANDA$ prediction $(\overline{p}p)$

$$\bar{p}p$$
, S=30 GeV², 1.5 < M [GeV] < 2.5, x_F = 0

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

Summary

- pQCD parton model has deficiencies in describing semi-exclusive DY observables
- Introduce initial parton transverse momentum distribution
- standard NLO calculation suffers from divergent p_T spectrum
- Phenomenological mass distributions (width Γ) for quarks can cure this problem
- Complete model including all processes up to O(α_s) describes high energy data rather well, no K factor!
- Prediction for PANDA possible:
 - Γ dependence becomes more important

Many thanks to Ulrich Mosel and happy retirement!

(But before you sail the world, please read my thesis!)

Fabian Eichstädt, Stefan Leupold, Ulrich Mosel

Institut für Theoretische Physik Justus-Liebig-Universität Gießen