

Antiproton - nucleus collisions with PANDA

Feb 25, 2011 | Albrecht Gillitzer

IKP, Forschungszentrum Jülich & Jülich Center for Hadron Physics

In-Medium Effects in Hadronic and Partonic Systems, Obergurgl, Feb 21-25, 2011

Outline

- Ideas for a p
 A physics* program with PANDA
- Kinematical and instrumental aspects
- J/ψ absorption in nuclear matter
- Non-charmed hadrons in nuclear matter
- p-induced hard processes in nuclei
- Possible roads to slow D mesons in nuclei
- Summary

*excl. hypernuclear physics

The "early" picture

Motivation to study hadron properties in the nuclear medium

The "early" picture

Motivation to study hadron properties in the nuclear medium

Medium modification of D mesons I

idea: extend in-medium studies to the charm sector

Medium modification of D mesons I

idea: extend in-medium studies to the charm sector

Medium modification of D mesons II

• more recent theory work ...

0.08

²⁰⁸Pb

10

8

see also T. Mizutani, A. Ramos, PRC 74 (2006) 065201

Bound D⁻ states?

- assisted by Coulomb potential
- Pb nucleus: V_C(0) = -25 MeV
- even bound with repulsive Dpotential
- only weak decay \rightarrow narrow !
- new family of anti-charmed hypernuclei
- further theoretical studies welcome

L. Tolos *et al*., PRC 77 (2008) 015207 ∆M = 15 … 20 MeV

Medium modification of charmonium I

	Quantum numbers	QCD 2 nd Stark eff.	Potential model	QCD sum rules	Effects of DD loop
η _c	0-+	— <mark>8 MeV</mark> [1]		–5 MeV [4]	
J/ψ	1	— <mark>8 MeV</mark> [1]	-10 MeV [3]	—7 MeV [4]	+3 MeV [5]
X c0,1,2	0,1,2++	-40 MeV [2]	-60 MeV [2]		
ψ(3686)	1	-100 MeV [2]	ightarrow strong bindi	ng	-30 MeV [5]
ψ(3770)	1	-140 MeV [2]	for higher state	es?	+15 MeV [5]

[1] Peskin, NPB 156 (1979) 365, Luke et al., PLB 288 (1992) 355

[2] S.H. Lee, nucl-th/0310080

[3] Brodsky et al., PRL 64 (1990) 1011

[4] Klingl, Kim, Lee, Morath, Weise, PRL 82 (1999) 3396

[5] Lee, Ko, PRC 67 (2003) 038202

 $\Delta M_{J/\psi}$ = -16...-24 MeV G. Krein *et al.*, arXiv:1007.2220

Kinematics in pA collisions

- pN annihilation in nuclear target: charmed mesons are produced at high momentum in the nuclear rest frame!
- holds for D mesons and charmonium states
- e.g. $\overline{p}p \rightarrow D^+D^-$ at threshold: $p_{\overline{p}} = 6.44 \text{ GeV/c}$
- Fermi momentum not sufficient: 10 GeV/c 0.5 GeV/c
 - $\overrightarrow{p} \rightarrow \leftarrow \overrightarrow{p} \quad p_{D} > 0.72 \text{ GeV/c}$

• $\overline{p}NN \rightarrow \overline{D}\Lambda_c$ may help more:

p_D > 0.23 GeV/c

 no direct road to slow charmed hadrons in nuclear matter

Albrecht Gillitzer

Options for PANDA

can we still do something interesting?

Y E S, we can !

- use the nucleus as a laboratory for hadron-nucleon interactions
- access to hadron-nucleon cross section / imaginary nuclear potential in attenuation measurements
- access to real part of nuclear potential in cases where slow hadrons can be produced (?)
- study of hard reactions inside the nuclear environment

HESR and PANDA

- p momentum: 1.5 ... 15 GeV/c
- $L_{max} \sim 10^{32} \text{ cm}^{-2}\text{s}^{-1} (\text{R} \sim 10^{7}/\text{s})$
- ~4 π acceptance for charged and neutrals
- p, K, π , e[±], μ^{\pm} , γ identification
- displaced vertex detection

Albrecht Gillitzer

Physics reach

key issues of the program:

- study of charmonium or charmonium-like states
- search states with gluonic excitations
- kinematic limit: $\sqrt{s} = 5.5 \text{ GeV} \sim \Omega_c \overline{\Omega}_c$

- targets: pellet, cluster jet, solid
- pellet & cluster jet work for:
 D₂, N₂, Ne, Ar, Kr, Xe
- L_{max} decreases with Z
- Au target: lose ~factor 10³ at 1.5 GeV/c, ~10² at 15 GeV/c
- Iuminosity determination for pp doesn't work for pA

J/ψ and ψ ' absorption in nuclei

 J/ψ as indicator for QGP formation in relativistic nucleus-nucleus collisions:

G. Borges, JPG 30 (2004) S1351, B. Alessandro *et al.*, EPJC 33 (2004) 31; EPJC 48 (2006) 329 PHENIX: $\sigma_{diss}^{J/\psi} \sim 3 \text{ mb}$; other analyses: $\sigma_{diss}^{J/\psi} = 1...7 \text{ mb}$

energy dependence uncertain

February 25, 2011

Albrecht Gillitzer

J/ψ absorption in nuclei

- model calculations show large variation of J/ψN cross section dependent on choice of parameters
- different predictions with meson-exchange and quark-interchange model

See also L. Gerland, L. Frankfurt, M. Strikman, PLB 619 (2005) 95: GVDM, $\sigma_{J/\psi N} \sim 3...4$ mb

$J/\psi N$ dissociation cross section with \overline{p}

well-defined production 'on-resonance'

$$\overline{p} + A \rightarrow J/\psi + X \rightarrow e^+e^- + X$$

$$\overline{p} + A \rightarrow J/\psi + X \rightarrow \mu^+\mu^- + X$$

measure cross section as function of A and $p_{\overline{p}}$ deduce J/ ψ N dissociation cross section at *lower, well-defined* J/ ψ momentum

See also S.J. Brodsky, A.H. Müller, PLB 206 (1988) 685, G.R. Farrar, L.L. Frankfurt, M.I. Strikman, NPB 345 (1990) 125

note:
$$\sigma_{\overline{p}A \rightarrow J/\psi X} \ll \sigma_{\overline{p}p \rightarrow J/\psi}$$

need to detect S/B = 10⁻¹⁰ !

$J/\psi N$ dissociation cross section with PANDA

- "on-resonance" $\rightarrow p_{\overline{p}} = 4.05 \text{ GeV/c}, \sqrt{s_{J/\psi N}} = 4.48 \text{ GeV}$
- rate of J/ $\psi \rightarrow e^+e^-/\mu^+\mu^-$: ~ 20/d × L/10³⁰ cm⁻²s⁻¹ × $f_{esc} \times f_{instr}$
- no J/ ψ background due to feeding from ψ '
- only few open channels $J/\psi N \rightarrow \overline{D}^{(*)}Y_c^{(*)}$, $\eta_c N$, $\chi_c N$
- $J/\psi N \rightarrow D\overline{D}N$ only with Fermi momentum $-p_z > 0.23$ GeV/c
- exclusive measurements of $J/\psi n$ final states with $\overline{p}d$
- systematic study of inclusive 'resonant' J/ ψ production with D₂, N₂, Ne, Ar, Kr, Xe, Au (?) targets

Simulation studies for PANDA

- First detailed simulation studies done
- Signal:
 - use $pA \rightarrow J/\psi X$ event generator
 - 80 k 4.05 GeV/c \overline{p} + ⁴⁰Ca \rightarrow J/ ψ + X \rightarrow e⁺e⁻ + X
 - 80 k 4.05 GeV/c \overline{p} + ⁴⁰Ca \rightarrow J/ ψ + X \rightarrow $\mu^+\mu^-$ + X
- Background:
 - 26.4 M UrQMD 4.05 GeV/c \overline{p} + ⁴⁰Ca generic background
 - 30 M 4.05 GeV/c \overline{p} + 'p' $\rightarrow \pi^+ \pi^-$; 'p' with Fermi momentum

A. Sibirtsev

P. Bühler, SMI Vienna

Simulation studies for PANDA

 e^+e^- identification \rightarrow background reduction not sufficient

 \rightarrow exploit topology of signal events:

- track origin at primary vertex
- $p_z(e^+) + p_z(e^-) \sim p_z(\overline{p})$
- p_x(e⁺) + p_x(e⁻) ~ 0
- $p_y(e^+) + p_y(e^-) \sim 0$

Simulation result

- reconstruction efficiency: $\epsilon_{signal} = 0.73$
- background suppression for UrQMD generic: no event out of 26.4 M!
 f_{bq} < 3.8·10⁻⁸ → S/B > 5·10⁻³
- background suppression for $\pi^+\pi^-$: 2.4·10⁻⁶ \rightarrow S/B ~ 10

generic background needs to be extrapolated based on assumptions:

- integral background = 1 event
- background shape independent of cuts
- scale background sample up to 8-10¹⁴ events = 10¹⁰ × signal

P. Bühler, SMI Vienna

J/ψ N dissociation cross section from A dependence

- <u>1st step</u>: use simple geometric MC model: p absorption, Fermi momentum, J/ψ absorption
- next step: use transport code, e.g. GiBUU

February 25, 2011

Nuclear potential for non-charmed hadrons?

- charmed hadrons much too fast to feel nuclear potential
- access to nuclear potential for light (u,d,s) hadrons?
- methods:
 - reconstruct mass shift from in-medium decay
 - reconstruct excitation energy of residual system from missing mass measurement (~recoil-free kinematics)
 - transverse momentum distributions
- possible for \overline{p} , $\overline{\Lambda}$, ϕ , \overline{K} , \overline{K}^* , η'

Antiprotons

- low energy measurements don't have sensitivity to Re Up
- models predict deep potential with cold nuclear compression
 I.N. Mishustin *et al.*, PRC 71 (2005) 035201,
 A.B. Larionov *et al.*, PRC 78 (2008) 014604
- repeat p knock-out experiment at high energy with PANDA

Anti-Lambda's

ī a n)d a

- nuclear potential non known
- use $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ at $\theta_{\Lambda} \sim 0^{\circ}$ with nuclear proton
- small momentum transfer
- $d\sigma/d\Omega_{\overline{p}p \rightarrow \overline{\Lambda}\Lambda} (\theta_{\Lambda} \sim 0^{\circ}) = 2 \,\mu b/sr$ at p = 1.77 GeV/c P.D. Barnes *et al.* (LEAR-PS185), PRC 54 (1996) 2831

 $\sigma \sim \mu b$: large signal rate

• alternative proposal: measure Λ and $\overline{\Lambda}\,$ p_t distributions in coincidence

J. Pochodzalla, PLB 669 (2008)306

Anti-Kaons

 $\overline{p} \longrightarrow \bigoplus^{A_{\mathbb{Z}}} \longrightarrow \bigoplus^{(A-1)(\mathbb{Z}-1)} \phi \longrightarrow \bigoplus^{(K-1)(\mathbb{Z}-1)} \phi \longrightarrow \bigoplus^{K^+: F.S.} K^+: F.S.$

- nuclear potential of K still controversially discussed
- use pp → φφ at θ = 0° to produce
 ce slow K⁻ in nuclei

•
$$\sigma_{\overline{p}p \rightarrow \phi \phi} \approx 4 \ \mu b \ at \ p = 1.4 \ GeV/c$$

JETSET: PLB 345 (1995) 325

- K⁻ captured in attractive potential
- problem: detect and identify slow K⁺

New ideas: Color Transparency (CT)

- initiated by B. Pire, M. Strikman and others
- small size color-neutral objects have reduced cross section
- analogous effect in QED
- conditions to observe CT:
 - large momentum transfer Q²
 → transverse size d ~ 1/√Q² << hadron size
 - high momentum of produced hadrons $\rightarrow I_{coh} \sim 0.6 \text{ fm} \times p \text{ [GeV/c]} > d_{NN}$
- CT established at high energies
- CT at intermediate energies in (e,e'π⁺) at JLAB

B. Clasie *et al.*, PRL 99 (2007) 242502

CT at PANDA: $\overline{p} A \rightarrow \pi^+ \pi^-$ (A-1)

- exclusive: need missing mass resolution $\delta M \ll m_{\pi}$ (~few 10 MeV)
- $\sigma_{tot}(\overline{p}p \rightarrow \pi^+\pi^-) \sim \text{few } \mu b$ R ~ few 10/s at L = 10³¹ cm⁻²s⁻¹

e.g.
$$p = 15 \text{ GeV/c}$$
, $\theta_{cm} = 90^{\circ}$:
pion transverse and longitudinal momenta:
 $p_l = 7.5 \text{ GeV/c}$, $p_t = 0.93 \text{ GeV/c}$ larger than in
 $t = -14.1 \text{ GeV}^2$ JLab experiment
 $\theta_{\pi}^{(lab)} = 7^{\circ}$, Lorentz boost $\gamma_{\pi} = 54$

• many other reactions should and can be studied: $\overline{p}p \rightarrow \rho\pi$, $\overline{K}K$, $\phi\phi$, $\overline{p}p$, $\overline{\Lambda}\Lambda$, $\overline{\Sigma}\Sigma$

measure transparency ratio:

Study of Short Range Correlations

- understanding of high momentum components / high density behavior of nuclear matter
- high momentum nucleons are paired
- recent observation at BNL and JLAB
- most nucleons with p > p_F are paired
- most pairs are pn
- pp pairs are rare but particularly interesting since directly related to high density matter in neutron stars
- PANDA can observe both pp and pn correlations

Outlook: slow D/D mesons in nuclei

m_D ~ 2m_N → D can be stopped in the nucleus if its momentum is transferred to a NN pair

 $(\mathfrak{b}^{\circ} \rightarrow \overset{\mathfrak{p}}{\underset{n}{\circ}}) \overset{\mathfrak{b}^{\circ}}{\underset{n}{\circ}} \overset{\mathfrak{p}}{\underset{n}{\circ}} \rightarrow \qquad \min p_{D} \sim 0 \text{ GeV/c}$

- "3rd generation" experiment at PANDA: combine D meson production with knock-out of correlated NN pair
- very low cross section expected
- excitation energy of the residual D-mesic nuclear system needs to be reconstructed from complicated final state

Outlook: slow D/D mesons in nuclei (2)

- consider $\overline{d}d$ annihilation: how likely is $6\overline{q}$ -6q annihilation into $c\overline{c}$?
- \overline{d} observed in e⁺e⁻ annihilation at CLEO D.M. Asner et al., PRD 75 (2007) 012009 and at Belle S. Künze et al., DPG 2010, HK 36.11
- d form factor measured in e⁻ scattering up to $Q^2 = 4 \text{ GeV}^2$ $(1+Q^2/m_p^2) F_d(Q^2) \approx 4 \cdot 10^{-2} F_{1p}^2(Q^2/4)$

R.G. Arnold et al., PRL 35 (1975) 776

- concept for \overline{d} breeding in $\overline{p} \, \overline{p} \rightarrow \overline{d} \, \pi^{-1}$ using double-ring collider with momentum matching exists:
 - ~20000 d/day estimated

Summary

- With its universal design PANDA allows to address many different physics questions in anitiproton-nucleus collisions.
- As a first step to study the interaction of charmed hadrons with nucleons we are planning the measurement of the A dependence of resonant J/ ψ formation.
- Hadrons with light quarks (\overline{p} , $\overline{\Lambda}$, ϕ , \overline{K}) can be studied at rest or low momentum in the nuclear environment in recoil-free reactions.
- The study of hard exclusive reactions inside nuclei gives access to phenomena like color transparency or short range correlations.
- The observation of D meson mass shifts, D-mesic nuclear states or anti-charmed nuclei requires complicated reaction schemes.

About 420 physicists from 53 institutions in 16 countries

U Basel **IHEP Beijing** U Bochum IIT Bombay U Bonn **IFIN-HH Bucharest** U & INFN Brescia U & INFN Catania JU Cracow **TU Cracow IFJ PAN Cracow GSI** Darmstadt **TU** Dresden **JINR** Dubna (LIT, LPP, VBLHE) **U** Edinburgh U Erlangen **NWU Evanston**

U & INFN Ferrara U Frankfurt **LNF-INFN** Frascati U & INFN Genova **U** Glasgow U Gießen KVI Groningen IKP Jülich I + II **U** Katowice IMP Lanzhou U Lund U Mainz U Minsk **ITEP Moscow MPEI Moscow TU München U** Münster **BINP Novosibirsk**

IPN Orsay U & INFN Pavia **IHEP** Protvino **PNPI** Gatchina U of Silesia **U** Stockholm **KTH Stockholm** U & INFN Torino Politecnico di Torino U Piemonte Orientale, Torino U & INFN Trieste U Tübingen TSL Uppsala U Uppsala **U** Valencia SMI Vienna **SINS Warsaw TU Warsaw**

About 420 physicists from 53 institutions in 16 countries

U Basel **IHEP Beijing** U Bochum **IIT Bombay** U Bonn **IFIN-HH Bucha** U & INFN Bres U & INFN Cata JU Cracow **TU Cracow** IFJ PAN Craco **GSI** Darmstadt **TU** Dresden **JINR** Dubna (LIT, LPP, VBLHE) U Edinburgh U Erlangen **NWU Evanston**

U Frankfurt U & INFN Pavia LNF-INFN Frascati IHEP Protvino LA INFN Comparison - however:

U & INFN Ferrara

The antiproton-nucleus physics group is small ... New members are welcome !

> ITEP Moscow MPEI Moscow TU München U Münster BINP Novosibirsk

U Uppsala U Valencia SMI Vienna SINS Warsaw TU Warsaw

IPN Orsay

no

