Exclusive pion electroproduction off nucleons and nuclei

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

International Workshop on 'In-Medium Effects in Hadron

Partonic Systems' rourol Austria Febr 21-25

Obergurgl, Austria, Febr. 21-25,2011 Work supported by SFB/TR 16 and BMBF

Electroproduction of π above $\sqrt{2}$ GeV

Motivation

- Color Transparency
 - Exclusive π production off nuclei
 - Onset of Color Transparency in $A(e, e', \pi^+ n)A 1$ at JLAB
- Exclusive π production off nucleons
 - Reaction mechanism in $N(e, e'\pi)N$
 - Puzzles
 - More Puzzles
 - Charged pion electroproduction
 - Neutral pion electroproduction

Summary

Color Transparency (CT) in $A(e, e'\pi^+)A^*$

- CT effect in $A(e, e'\pi^+)A'$ off nuclei
- QCD factorization (GPD based models) requires CT effect

JLAB: B. Clasie et al., Phys. Rev. Lett. 99, 242502 (2007)

 $A(e, e'\pi^{+})A^{*}$

 $T_A = \sigma_A / A \sigma_N$

 σ (*FSI*) $\propto d_{\perp}^2 \sim 1/Q^2$

 M. M. Kaskulov, K. Gallmeister and U. Mosel, Phys. Rev. C 79, 015207 (2009)
 A. Larson, G. A. Miller, M. Strikman, Phys. Rev. C74, 018201 (2006).
 W. Cosyn, M. C. Martinez, J. Ryckebusch, Phys. Rev. C77, 034602 (2008).
 CT: Longitudinal (γ^{*}_L)

and/or Transverse ($\gamma_{\rm T}^*$)

Color Transparency (CT) in $A(e, e'\pi^+)A^*$

- CT effect in $A(e, e'\pi^+)A'$ off nuclei
- QCD factorization (GPD based models) requires CT effect

JLAB: B. Clasie et al., Phys. Rev. Lett. 99, 242502 (2007)

$$T_A = \sigma_A / A \sigma_N$$

 $A(e, e'\pi^{+})A^{*}$

$$\sigma(\textit{FSI}) \propto \textit{d}_{\perp}^2 \sim 1/Q^2$$

- M. M. Kaskulov, K. Gallmeister and U. Mosel, Phys. Rev. C **79**, 015207 (2009)
- A. Larson, G. A. Miller, M. Strikman, Phys. Rev. C74, 018201 (2006).
 W. Cosyn, M. C. Martinez, J. Ryckebusch, Phys. Rev. C77, 034602 (2008).
- CT: Longitudinal (γ_L^*) and/or Transverse (γ_T^*)

Institut für Theoretische Physik Universität Gießen

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Color Transparency in $A(e, e'\pi^+)A^*$

CT: Longitudinal $(\gamma_{\rm L}^*)$ or Transverse $(\gamma_{\rm T}^*)$??

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

Color Transparency in $A(e, e'\pi^+)A^*$

CT: Longitudinal (γ_L^*) or Transverse (γ_T^*) ??? CT is Transverse !!! 1) Why γ_T^* ? 2) Physics of γ_L^*/γ_T^* ?

Deep Exclusive $N(e, e'\pi^{\pm})N'$

DIS region: √s > 2 GeV, Q² > 1 GeV² Experimental data base is extremely rich: Cambridge Electron Accelerator (CEA) (1973) Wilson Synchrotron Laboratory at Cornell (1974,1976,1978) DESY two independent groups (1976,1977,1978,1979) JLAB@5 (2006,2007,[2008]³) ⇒ JLAB@12 HERMES/DESY (2008) Theory: in QCD σ_T is power suppressed by 1/Q²: σ_L ≫ σ_T

• Exp.: $\sigma_{\rm T}$ is large: $\sigma_{\rm T} > \sigma_L$

A remarkably rich experimental data base remains unexplained !!!

$\sigma_{ m L}$ in (γ^*, π^+) : π quasi-elastic knockout

π-exchange dominates in σ_L
 because of the pole at low -t

$$\sigma_{\rm L} \propto \left[rac{F_\pi(Q^2)}{t-m_\pi^2+i0^+}
ight]^2$$

σ_L dominates in the cross section ???

The (γ_L, π[±]) is the only source of exp. information about the charge form factor of π at Q² > 0.3 GeV²

Modelling π^{\pm} photoproduction:

 $\pi, \rho(770), a_1(1260), b_1(1235)$ and $a_2(1300)$ Regge trajectories

$$\mathcal{R}(s,t) = -\alpha' \left[\frac{1 + (-)^{\tau} e^{-i\pi\alpha(t)}}{2} \right] \Gamma(\tau - \alpha(t)) \left(\frac{s}{s_0} \right)^{\alpha(t) - \tau}$$

where $\alpha(t) = \alpha_0 + \alpha' t = \tau + \alpha' (t - m^2)$

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

π^{\pm} photoproduction: Regge-pole model

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

Exclusive reaction $N(e, e'\pi)N'$

The cross section with polarized electrons

$$\begin{split} \frac{d\sigma}{dQ^2d\nu dtd\phi} &= \frac{\Phi}{2\pi} \left[\frac{d\sigma_{\rm T}}{dt} + \varepsilon \; \frac{d\sigma_{\rm L}}{dt} \; + \; \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{\rm LT}}{dt} \cos(\phi) + \varepsilon \frac{d\sigma_{\rm TT}}{dt} \cos(2\phi) \right. \\ &+ \; h \sqrt{2\varepsilon(1-\varepsilon)} \frac{d\sigma_{\rm LT'}}{dt} \sin(\phi) \bigg] \end{split}$$

- $\sigma_{\rm T}$ Transverse CS
- $\sigma_{\rm L}$ Longitudinal CS
- $\sigma_{LT}, \sigma_{TT}, \sigma_{LT'}$ Interference CS's
- ε polarization of γ^*
- *h* -helicity of the electron

Exp. data vs. theory $p(e, e'\pi^+)n$

G. M. Huber et al., Phys. Rev. C 78, 045203 (2008).

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

Regge-pole model in π^+ electroproduction

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

Exp. data vs. theory $n(e, e'\pi^-)p$

M. M. Kaskulov and U. Mosel, Phys. Rev. C 81, 045202 (2010).

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

Neutral Pion Electroproduction

Regge poles: ω (785), ρ (770), $b_1(1235)$, $h_1(1170)$

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

New puzzle in $p(e, e'\pi^0)p$ from JLAB

In $\gamma^* + p \rightarrow \pi^0 + p$ the character of the reaction apparently

changes drastically when going to electroproduction.

arXiv:1003.2938 [nucl-ex]: JLAB Hall A data are at $Q^2 = 2 \text{ GeV}^2$.

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

Beam spin asymmetry: CLAS data

$$\frac{d\sigma}{dQ^2d\nu dt d\phi} \rightarrow \frac{\Phi}{2\pi} \left[h \sqrt{2\varepsilon(1-\varepsilon)} \frac{d\sigma_{\rm LT'}}{dt} \sin(\phi) \right]$$

$$A_{\rm LU}(\phi) \equiv rac{d\sigma^{
ightarrow}(\phi) - d\sigma^{
ightarrow}(\phi)}{d\sigma^{
ightarrow}(\phi) + d\sigma^{
ightarrow}(\phi)},$$

$$A_{
m LU}^{\sin(\phi)} = rac{\sqrt{2arepsilon(1-arepsilon)}d\sigma_{
m LT'}}{d\sigma_{
m T}+arepsilon d\sigma_{
m L}}$$

1) $A_{L\,U}(\phi)$ demands interference between single helicity flip and nonflip or double helicity flip amplitudes

2) In Regge models the asymmetry may result from Regge cut corrections to single Reggeon exchange

 A nonzero beam SSA can be also generated by the interference pattern of amplitudes where particles with opposite particles are exchanged.

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

Beam spin Asymmetry in $p(\vec{e}, e'\pi^0)p$

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei Institut für Theoretische Physik Universität Gießen

institut für Theoretische Physik Oniversit

Photo- vs. Electroproduction

- What is the physics behind these drastic changes with Q²
- $\sigma_{\rm T}$ at JLAB, DESY and Cornell cannot be described by the hadronic models
- Therefore, we conclude that something is not understood in the tranverse γ^{*}_T channel

Scattering off partons

- \blacksquare At $W>2~{\rm GeV}$ many resonances can contribute to 1π
- How to model the contribution of nucleon resonances
- Direct hard interaction of virtual photons with partons (DIS) since DIS involves all possible transitions of the nucleon from its ground state to any excited state
- The idea followed here is complement the soft hadron-like interaction types which dominate in photoproduction and low Q² electroproduction by direct interaction of virtual photons with partons followed by the hadronization process into π⁺n

 \implies Exclusive limit of SIDIS

Scattering off partons

- \blacksquare At $W>2~{\rm GeV}$ many resonances can contribute to 1π
- How to model the contribution of nucleon resonances
- Direct hard interaction of virtual photons with partons (DIS) since DIS involves all possible transitions of the nucleon from its ground state to any excited state
- The idea followed here is complement the soft hadron-like interaction types which dominate in photoproduction and low Q^2 electroproduction by direct interaction of virtual photons with partons followed by the hadronization process into $\pi^+ n$

 \implies Exclusive limit of SIDIS

$p(e, e'\pi^+)n$: soft and hard contributions

M. M. Kaskulov, K. Gallmeister and U. Mosel, Phys. Rev. D 78, 114022 (2008)

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

$p(e, e'\pi^+)n$: soft and hard contributions

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

$p(e, e'\pi^+)n$: soft and hard contributions

Exclusive-Inclusive connection

 Q^2 dependence of Exclusive $\pi^+ \sigma_T$ exactly follows Q^2 dependence of inclusive $F_2(x, Q^2)$ structure function $\sigma_T^{Excl}(Q^2) \sim \sigma_T^{Incl}(Q^2) \propto F_1(x, Q^2)$

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

Dual Exclusive-Inclusive connection

We connect the partonic and hadronic sectors Incoherent sum over quarks in DIS

$$F_2^p(x_{\rm B}, Q^2) = x_{\rm B} \sum_q e_q^2 f_q(x_{\rm B}, Q^2)$$

Dual Bloom-Gilman connection \Longrightarrow Coherent sum over the resonances

$$F_2^p(x_{
m B},Q^2) = \sum_R (M_R^2 - M_p^2 + Q^2) W(Q^2,M_R) \delta(s - M_R^2)$$

$$\sum |\mathsf{N}^*
angle\langle\mathsf{N}^*|=1
ightarrow\sum|q
angle\langle q|=1$$

How to sum up an infinite tower of resonances ??? \implies M. M. Kaskulov and U. Mosel, Phys. Rev. C **81**, 045202 (2010).

Modeling π^{\pm} electroproduction:

Diagramatic approach:

Interpretation of the Regge behavior:

a sum of all possible one-particle exchanges in the t-channel

- *) How to sum up an infinite tower of resonances $??? \implies$
- M. M. Kaskulov and U. Mosel, Phys. Rev. C 81, 045202 (2010).

Dual Exclusive-Inclusive Connection

Resonance Transition Form Factors: Bloom-Gilman connection

$$F_{s}(Q^{2},s) = \frac{s \ln\left[\frac{\xi Q^{2}}{M_{p}^{2}} + 1\right] \frac{(2\xi Q^{2} + s)}{(\xi Q^{2})^{2}} - \frac{s(\xi Q^{2} + s)}{\xi Q^{2}(\xi Q^{2} + M_{p}^{2})} + \ln\left[\frac{s - M_{p}^{2}}{M_{p}^{2}}\right] - i\pi}{\left(\frac{\xi Q^{2}}{s} + 1\right)^{2} \left(\frac{s^{2} + 2sM_{p}^{2}}{2M_{p}^{4}} + \ln\left[\frac{s - M_{p}^{2}}{M_{p}^{2}}\right] - i\pi\right)},$$

$$F_{u}(Q^{2}, u) = \frac{u \ln \left[\frac{\xi Q^{2}}{M_{p}^{2}} + 1\right] \frac{(2\xi Q^{2} + u)}{(\xi Q^{2})^{2}} - \frac{u(\xi Q^{2} + u)}{\xi Q^{2}(\xi Q^{2} + M_{p}^{2})} + \ln \left[\frac{M_{p}^{2} - u}{M_{p}^{2}}\right]}{\left(\frac{\xi Q^{2}}{u} + 1\right)^{2} \left(\frac{u^{2} + 2uM_{p}^{2}}{2M_{p}^{4}} + \ln \left[\frac{M_{p}^{2} - u}{M_{p}^{2}}\right]\right)}$$

1)
$$F_s(Q^2, s) \Longrightarrow p(e, e'\pi^+)n$$

2) $F_u(Q^2, u) \Longrightarrow n(e, e'\pi^-)p$
3) $F_s(Q^2, s)$ and $F_u(Q^2, u) \Longrightarrow p(e, e'\pi^0)p$

Scaling factor $\xi \rightarrow$ density of states

At $Q^2 = 0.7 \text{ GeV}^2 \& W = 2 \text{ GeV}$

0.1

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

03

0.4

0.2

 $-t [GeV^2]$

JLAB high Q^2 data

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

JLAB high Q^2 data

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

Azimuthal dependence in $p(e, e'\pi^+)n$

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

DESY data: $n(e, e'\pi^{-})p$ is parameter free

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

DESY data: $n(e, e'\pi^-)p$ is parameter free

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

HERMES: Deeply virtual $p(e, e'\pi^+)n$

True DIS region: $s = 16 \text{ GeV}^2 \& 1 \text{ GeV}^2 < Q^2 < 11 \text{ GeV}^2$

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

HERMES: Q^2 -dependence in $p(e, e'\pi^+)n$

GPD models: $\sigma_{\rm L}$ must dominate at high Q^2 ???

We get just opposite behavior !!!

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

Q^2 -dependence in $p(e, e'\pi^+)n$

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

Beam spin asymmetry: CLAS data

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

Hadronic vs partonic: JLAB data

(1) Phys. Rev. C81, 045202 (2010)

(2) Phys. Rev. D78, 114022 (2008)

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

Neutral Pion Photoproduction

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

Neutral Pion Photoproduction

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen

Neutral Pion Electroproduction in DVS

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

Neutral Pion Electroproduction

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

Beam spin Asymmetry in $p(\vec{e}, e'\pi^0)p$

4

$$A_{\rm LU}(\phi) \equiv \frac{d\sigma^{\rightarrow}(\phi) - d\sigma^{\leftarrow}(\phi)}{d\sigma^{\rightarrow}(\phi) + d\sigma^{\leftarrow}(\phi)},$$

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

Beam spin Asymmetry in π^0 DVS

4

$$A_{\rm LU}(\phi) \equiv \frac{d\sigma^{\rightarrow}(\phi) - d\sigma^{\leftarrow}(\phi)}{d\sigma^{\rightarrow}(\phi) + d\sigma^{\leftarrow}(\phi)},$$

Institut für Theoretische Physik Universität Gießen

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

Summary

A detailed knowledge of the p(e, e'π)n reaction above the resonances √s > 2 GeV is mandatory for the interpretation of the Color Transparency signal observed in (e, e'π) reaction off nuclei
Our main idea is to separate the soft hadronic (exchange of Regge trajectories) and hard partonic (excitation of nucleon resonances) reaction mechanisms

There must be a connection between the resonances and Regge cuts

Back slides

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Exclusive limit of fragmentation in SIDIS

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel Exclusive pion electroproduction off nucleons and nuclei

Transverse Target Polarization at HERMES: $\vec{p}(e, e'\pi^+)n$

Murat M. Kaskulov, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen