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1) General Objectives and Setup
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Objectives

[Annala et al.(2019)][Blaizot (2004)]

➢ QCD at low energies: 

● Chiral phase structure

● Dynamical mass generation

● Equation of State 

➢ Especially interested in large µ
B
 and low T

● neutron stars

● lattice not applicable, use functional 
methods

● Rely on effective models

 

?
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Requirements for regulators:

1.  

2.

3.

➢ Introduce an UV- and IR-regulation to our theory

➔ scale dependent effective action Γ
k

➢ Scale dependence of Γ
k 

Wetterich equation: 

   

Functional Renormalization Group
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Truncation Errors

➢ Solving Wetterich eq. for full theory not possible

➔ Use effective model / truncation 

➢ Leads to truncation errors and regulator dependence of results

➔ Choice of regulator becomes relevant

↳ Different optimization criteria for regulators

(  Principle of minimum sensitivity,                                                                    
   “Gap Criterion” [Litim(2000)],                                                                          
   “Shortest Path” [Pawlowski(2007)]  )
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➢Quark-meson model (N
f
=2, N

c
=3):

➢Various truncations: 

Effective Action for QCD

Yukawa interaction derivative expansion kin. term expl. sym.
breaking
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➢Quark-meson model (N
f
=2, N

c
=3):

➢Various truncations: 

Effective Action for QCD

➢Restrict ourselves to LPA:

➔ Optimized regulator:

gk≡g ,ZΨ , k=ZΦ ,k≡1

Rk
flat ,3d

=(k2− p⃗2)Θ(k2− p⃗2)

Yukawa interaction derivative expansion kin. term expl. sym.
breaking
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Effective Potential 

➢ UV-Ansatz for the effective potential:

➢ Parameter fixing (a
1
,a

2
,c and g) to get correct vacuum values

➢ Spontaneous symmetry breaking:  

k
UV

k
IR

Ω
k

Ω
k Ω

k

σσσ
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2) Phase Diagram at High Density
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Chiral Phase Transition 

[Tripolt et al.(2017)]
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Chiral Phase Transition 

[Tripolt et al.(2017)]

What’s going on 
here ?
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Chiral Phase Transition 

[Tripolt et al.(2017)]

➢Strange back-bending in the 
phase diagram

➢Only small first order transition 
with residual condensate 

➢Not found in mean field (MF) 
calculations
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Thermodynamics

T=5 MeV
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➔Entropy densities
are negative!
↳Unphysical result

but consistent

with Clausius- 

Clapeyron:

Thermodynamics

T=5 MeV



July 6, 2022 Christopher Busch 16

Missing Physics Due to Finite Infrared Cutoff?

➢ Example pressure in the chiral limit:

At low temperatures the infrared       
cutoff k

IR
=k

0  
results in large errors

Maybe it’s similar for back-bending?

➢ Chiral phase transition for various k
IR

:

➔ Back-bending found over wide range 
of IR-scales

➔ Transition line freezes out at scales 
around k=100 MeV

↳ Not caused by missing IR physics

➔ CEP sensitive to choice of k
IR
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Potential Reasons

➢ Signal for physics which are not 
captured in this model

● Inhomogeneous Phases:

• Assumption of spatial 
homogeneity wrong?   

● Color Superconductivity:

• Attractive diquark channel 
could lead to Cooper 
pairing and a supercond. 
phase  

(comp. NJL studies)

➢ Missing DoF which might be 
vital for the thermodynamics in 
this region:

● Vector mesons

● Diquarks

● ... 

➢ Truncation artifact

➔ Check scheme dependence: 
Use different regulators
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3) Regulator Scheme Dependence

R
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Regulator Choices

➢ Flat “Litim” regulator:

➔ Replaces (3-)momentum in 
loop propagators:

➔ Optimized for LPA, “usual” 
choice

➢ Mass-like regulator:

➔ Momentum structure 
unchanged:

➔ Not obtained via any 
optimization criterion

Rk
flat ,3 d

=(k2− p⃗2)Θ(k 2− p⃗2) Rk
mass ,3d

=k 2Θ(kϕ
2
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Pole Proximity in the Vacuum

➢ Observation: Vacuum flows for small σ values run alongside pion pole

• Example flat regulator:

➔ At low scales: 

• Flows with mass-like regulators

much closer to the pole:

 

➔ vacuum calculations and usual

way of parameter fixing unfeasible 
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“New” Parameter Fixing

➢ Silver Blaze: For T=0, µ<µ
c 
observables are independent of µ

➔ use this property to extrapolate f
π 

and m
σ
 to the vacuum

➢ Use alternative approach for parameter fixing:

Approximated LPA’ flow 
eq’s at large scales

partial IR fixed point

• Solve full LPA flow 
starting at fixed point

• Tune k
ɸ
 and  k

χ 
to 

adjust IR-values
 

At large scales k>k
χ
:                 

Neglect mesonic contributions

• Simple flows for Yukawa coupling and 
wavefunction renormalizations at σ=0:

• IR fixed points for coefficients n≥2 in 
the field expansion of the 
dimensionless potential  

[Berges et al.(1997)]
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Main Results

➢ Flat regulator:
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Main Results

➢ Flat regulator: ➢ Mass-like regulator:

No back bending/ negative entropy densities with mass-like regulator!

Very strong scheme dependence. Why?
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Possible Explanation

What causes the back-bending? What has changed when 
we switched regulators? 

➢ At large chemical potentials:  

Fermi momentum p
F
 acts as infrared cutoff, e.g. fermionic contribution for 

mass-like regulator:

➔ Fermions decouple from flow

➢ Decoupling changes almost arbitrarily with choice of regulator, 
truncation can’t compensate this
↳ Truncation artifacts!
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Closer Look at the Effective Potential

crit. values at T=0

explicit sym. 
breaking 
included

Mass-like regulator:

• Small variation between T=0    
and T=10 MeV

• Potential pushed downwards for 
increasing temperature

↳chiral symmetry restoration

Flat regulator:

• Stronger temperature 
dependence for small fields

• Potential pushed upwards

↳chiral symmetry breaking 
increases with T
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Flows with Flat Regulators

➢ Flat regulator:

● Instant decoupling for T=0

● Strong T-dependence

● Symmetry restoration at low scales decreases with T
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Flows with Flat Regulators

➢ Flat regulator:

● Instant decoupling for T=0

● Strong T-dependence

● Symmetry restoration at low scales decreases with T

● Bosonic contributions cause net increase in symmetry breaking 
when temperature is raised
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Flows with Mass-like Regulators

➢ Mass-like regulator:

● smooth decoupling

● T-dependence barely visible

● sym. breaking decreases with 
temperature for all scales



July 6, 2022 Christopher Busch 30

Fazit Fermion Decoupling

➢Flat regulator: 

• Abrupt decoupling leads to strong T-dependencies

• Backcoupling into bosonic flow leads to asymmetry and                     
increased symmetry breaking at finite T 

➢Mass-like regulator:

• Smooth decoupling, nearly unperturbed by regulator

• Symmetry restoration when temperature is raised
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4) Summary and Outlook



July 6, 2022 Christopher Busch 32

4) Summary

➢ Investigated truncation artifacts in the FRG framework

➢ Results with flat regulator at large densities:

➔ phase transition shows a strange back-bending 

➔ negative entropy densities

➢ Mass-like regulator: No back-bending, entropy remains positive

➢ Likely reason: Regulator induced change in the fermion                           
                 decoupling causes artifacts   
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4) Outlook

➢ Optimize setup to allow access to full range                                         
of temperatures and chemical potentials 

➢ Find solutions/regulators for more advanced truncations, e.g. LPA’ or 
higher order derivative expansions

➢ Effects on neutron star equation of state and mass-radius relations?

 see [arXiv:1910.11929] and [arXiv:2007.07394] for first FRG works on 
those topics
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Backup Slides
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Why are we using 3d-regulators?

➢ Downside: Dimensionally reduced regulators break O(4) symmetry

➢ Upsides:

• Matsubara summation can be performed analytically
• Easiest way to prevent regulators from breaking Silver Blaze symmetry

4d fermionic regulators:

● Necessary for Silver Blaze: 

● Silver Blaze violation still possible 
due to regulator induced complex 
poles, e.g.  with exponential reg.:

● Discussion and Solutions:                 
      [Pawlowski,Strodhoff (2015)] 
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Why are we using 3d-regulators?

➢ Mass-like regulators allow us to circumvent this problems

➢ Only small quantitative differences found:

Minor impact of 
dimensional reduction on 
results

Especially: No connection 
between back-bending and 
3d-regulators
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Pole Proximity: Estimation

➢ Reminder: Vacuum flow runs close to the pole at E
π
=0:  

How can we estimate the distance to this pole for a given regulator?
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➢ For convenience define                                       Pole at  

➢ Examine it’s flow equation for different (fixed) values U’’ :  

Pole Proximity: Estimation

Relevant 
cases       
(small U’’>0)
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➢ For convenience define                                       Pole at  

➢ Examine it’s flow equation for different (fixed) values U’’ :  

Pole Proximity: Estimation

➔Relevant cases have attractive 
stationary point near pole

↳no fixed point (depends on U’’)

↳Explains behavior observed  
in the flow

↳Setting                  and 
expanding in                        
allows to approximate 
distance between pole and 
attractive point

attractive 
points
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