Scheme Dependence of the

Chiral Phase Transition at High Densities

Christopher Busch

in collaboration with: Konstantin Otto, Bernd-Jochen Schaefer

[arXiv: 2206.13067]

Lunchclub Seminar Giessen – 06.07.2022

Outline

- 1) General Objectives and Setup
- 2) Phase Diagram at High Density
- 3) Regulator Scheme Dependence
- 4) Summary & Outlook

1) General Objectives and Setup

Objectives

- \succ QCD at low energies:
 - Chiral phase structure
 - Dynamical mass generation
 - Equation of State

- > Especially interested in large μ_{B} and low T
 - neutron stars
 - lattice <u>not</u> applicable, use functional methods
 - Rely on effective models

Functional Renormalization Group

 \succ Introduce an UV- and IR-regulation to our theory

 \rightarrow scale dependent effective action Γ_{k}

> Scale dependence of Γ_{k}

Truncation Errors

Solving Wetterich eq. for full theory not possible

- → Use effective model / truncation
- \succ Leads to truncation errors and regulator dependence of results

 \rightarrow Choice of regulator becomes relevant

- \rightarrow Different optimization criteria for regulators
 - (Principle of minimum sensitivity, "Gap Criterion" [Litim(2000)],
 "Shortest Path" [Pawlowski(2007)])

Effective Action for QCD

 \succ Various truncations:

Label	Scale Dep.
LPA	$arOmega_{m k}$
LPA+Y	Ω_k, g_k
LPA'	$\Omega_{m k}, Z_{m \psi, m k}, Z_{\phi, m k}$
LPA'+Y	$\Omega_{m k},\!g_{m k},Z_{\psi,k},Z_{\phi,k}$

Effective Action for QCD

$$\begin{split} & \searrow \text{Quark-meson model (N_f=2, N_c=3):} \qquad \qquad \phi = \begin{pmatrix} \sigma \\ \vec{\pi} \end{pmatrix} \\ & \Gamma_k = \int_x \left\{ \vec{\psi} \left[\underbrace{Z_{\psi,k} \left(\not{\partial} - \mu \gamma_0 \right)}_{\text{kin. term}} + \underbrace{g_k \left(\sigma + i \gamma_5 \vec{\tau} \vec{\pi} \right) \psi}_{\text{Yukawa interaction}} \right] + \underbrace{\Omega_k \left(\phi^2 \right) + \frac{Z_{\phi,k}}{2} \left(\partial_\mu \phi \right)^2 - c\sigma}_{\text{derivative expansion}} \right\} \\ & \text{ the second se$$

 \succ Various truncations:

Label	Scale Dep.
LPA	$arOmega_k$
LPA+Y	Ω_k, g_k
LPA'	$oldsymbol{\Omega_k}, Z_{oldsymbol{\psi}, oldsymbol{k}}, Z_{oldsymbol{\phi}, oldsymbol{k}}$
LPA'+Y	$(egin{array}{c} \Omega_k, g_k, Z_{\psi,k}, Z_{\phi,k} \end{array})$

➢ Restrict ourselves to LPA:

$$g_k \equiv g$$
 , $Z_{\Psi,k} \equiv Z_{\Phi,k} \equiv 1$

→ Optimized regulator:

$$R_k^{\text{flat,3d}} = (k^2 - \vec{p}^2) \Theta(k^2 - \vec{p}^2)$$

Effective Potential

> UV-Ansatz for the effective potential: $\Omega_{\Lambda} = a_1 \phi^2 + \frac{a_2}{2} \phi^4$

> Parameter fixing $(a_1, a_2, c \text{ and } g)$ to get correct vacuum values

 $\left(egin{array}{c} \sigma \ ec \pi \end{array}
ight)$

 $\phi =$

2) Phase Diagram at High Density

Chiral Phase Transition

Chiral Phase Transition

Chiral Phase Transition

Strange back-bending in the phase diagram

Only small first order transition with residual condensate

➢Not found in mean field (MF) calculations

Thermodynamics

Thermodynamics

 →Entropy densities are <u>negative</u>!
 →Unphysical result but consistent with Clausius-Clapeyron:

July 6, 2022

Missing Physics Due to Finite Infrared Cutoff?

 \succ Example pressure in the chiral limit:

At low temperatures the infrared cutoff $k_{IR} = k_0$ results in large errors

Maybe it's similar for back-bending?

> Chiral phase transition for various k_{IR} :

- Back-bending found over wide range of IR-scales
- Transition line freezes out at scales around k=100 MeV
 - → Not caused by missing IR physics
- → CEP sensitive to choice of k_{IR}

Potential Reasons

- Signal for physics which are not captured in this model
 - Inhomogeneous Phases:
 - Assumption of spatial homogeneity wrong?
 - Color Superconductivity:
 - Attractive diquark channel could lead to Cooper pairing and a supercond. phase

(comp. NJL studies)

- Missing DoF which might be vital for the thermodynamics in this region:
 - Vector mesons
 - Diquarks
 - ...
- Truncation artifact
 - Check scheme dependence:
 Use different regulators

Potential Reasons

- Signal for physics which are not captured in this model
 - Inhomogeneous Phases:
 - Assumption of spatial homogeneity wrong?
 - Color Superconductivity:
 - Attractive diquark channel could lead to Cooper pairing and a supercond. phase

(comp. NJL studies)

- Missing DoF which might be vital for the thermodynamics in this region:
 - Vector mesons
 - Diquarks

- Truncation artifact
 - Check scheme dependence:
 Use different regulators

3) Regulator Scheme Dependence

Regulator Choices

Flat "Litim" regulator:

 $R_{k}^{flat,3d} = (k^{2} - \vec{p}^{2})\Theta(k^{2} - \vec{p}^{2})$

Replaces (3-)momentum in loop propagators:

$$G_k^{-1} = p_0^2 + k^2 + m^2$$

➔ Optimized for LPA, "usual" choice

$$R_k^{mass,3d} = k^2 \Theta \left(k_{\phi}^2 - \vec{p}^2 \right)$$

➔ Momentum structure unchanged:

$$G_k^{-1} = p_0^2 + \vec{p}^2 + k^2 + m^2$$

→ <u>Not</u> obtained via any optimization criterion

Pole Proximity in the Vacuum

- \succ Observation: Vacuum flows for small σ values run alongside pion pole
 - **Example flat regulator:**

$$\begin{split} \nu_{\pi} &= \sqrt{k^{2} + 2\Omega'_{k}} \\ \partial_{t}\Omega_{k}^{\text{vac}}|_{\sigma^{2}=0} &= \frac{k^{5}}{12\pi^{2}} \left(\frac{4}{E_{\pi}} - \frac{24}{k}\right) & \stackrel{-0.2}{}_{\text{F}} \int_{-0.7}^{-0.2} \int_{-0.7}^{0} E_{\pi}/k &\sim 0.01 \end{split}$$

۲ <u>much</u> closer to the pole:

 $E_{\pi}/k \sim 10^{-150}$ (estimated)

➔ vacuum calculations and usual way of parameter fixing unfeasible

"New" Parameter Fixing

> Silver Blaze: For T=0, $\mu < \mu_c$ observables are independent of μ

- \rightarrow use this property to extrapolate f_{π} and m_{σ} to the vacuum
- [Berges et al.(1997)]
 Use alternative approach for parameter fixing:

Approximated LPA' flow eq's at large scales

 \rightarrow partial IR fixed point

- Solve full LPA flow starting at fixed point
- Tune k_{ϕ} and k_{χ} to adjust IR-values

At large scales $k > k_{\chi}$: Neglect mesonic contributions

• Simple flows for Yukawa coupling and wavefunction renormalizations at σ =0:

$$\partial_t g_k^2 = \eta_{\phi,k} g_k^2 \qquad \eta_{\phi,k} = \frac{N_c g_k^2}{8\pi^2}$$
$$\eta_{\psi,k} = 0$$

 IR fixed points for coefficients n≥2 in the field expansion of the dimensionless potential

 k_{ϕ}

 k_{χ}

 k_{IR}

Main Results

Flat regulator:

Main Results

 \rightarrow No back bending/ negative entropy densities with mass-like regulator!

 \rightarrow Very strong scheme dependence. Why?

Possible Explanation

What causes the back-bending? What has changed when we switched regulators?

At large chemical potentials:

Fermi momentum p_F acts as infrared cutoff, e.g. fermionic contribution for mass-like regulator:

$$\partial_t \Omega_k = \int_{p_F}^{k_\phi} \mathrm{d}p \ \mathrm{I}\left(p^2\right) \qquad p_F = \sqrt{\mu^2 - k^2 - m_\psi^2}$$

→ Fermions decouple from flow

- Decoupling changes almost arbitrarily with choice of regulator, truncation can't compensate this
 - → Truncation artifacts!

Closer Look at the Effective Potential

Mass-like regulator:

- Small variation between T=0 and T=10 MeV
- Potential pushed **downwards** for increasing temperature
 - \hookrightarrow chiral symmetry restoration

Flat regulator:

- Stronger temperature dependence for small fields
- Potential pushed **upwards**
 - → chiral symmetry breaking increases with T

Flows with Flat Regulators

Symmetry restoration at low scales decreases with T

Flows with Flat Regulators

- Strong T-dependence
- Symmetry restoration at low scales decreases with T
- Bosonic contributions cause net increase in symmetry breaking when temperature is raised

Flows with Mass-like Regulators

- T-dependence barely visible
- sym. breaking decreases with temperature for all scales

Fazit Fermion Decoupling

➢Flat regulator:

- Abrupt decoupling leads to strong T-dependencies
- Backcoupling into bosonic flow leads to asymmetry and increased symmetry breaking at finite T

 \succ Mass-like regulator:

- Smooth decoupling, nearly unperturbed by regulator
- Symmetry restoration when temperature is raised

4) Summary and Outlook

4) Summary

- \succ Investigated truncation artifacts in the FRG framework
- \succ Results with flat regulator at large densities:
 - \rightarrow phase transition shows a strange back-bending
 - ➔ negative entropy densities
- > Mass-like regulator: **No** back-bending, entropy remains **positive**
- Likely reason: Regulator induced change in the fermion decoupling causes artifacts

4) Outlook

- Optimize setup to allow access to full range of temperatures and chemical potentials
- Find solutions/regulators for more advanced truncations, e.g. LPA' or higher order derivative expansions
- \succ Effects on neutron star equation of state and mass-radius relations?
 - see [arXiv:1910.11929] and [arXiv:2007.07394] for first FRG works on those topics

Backup Slides

Why are we using 3d-regulators?

 \blacktriangleright Downside: Dimensionally reduced regulators break O(4) symmetry

> Upsides:

- Matsubara summation can be performed analytically
- Easiest way to prevent regulators from breaking Silver Blaze symmetry

 $\mathbf{D}F$ \therefore F(...2/1.2)

4d fermionic regulators:

- Necessary for Silver Blaze:
- Silver Blaze violation still possible due to regulator induced complex poles, e.g. with exponential reg.:
- Discussion and Solutions: [Pawlowski,Strodhoff (2015)]

Why are we using 3d-regulators?

 \succ Mass-like regulators allow us to circumvent this problems

 \succ Only small quantitative differences found:

Pole Proximity: Estimation

> Reminder: Vacuum flow runs close to the pole at $E_{\pi}=0$:

How can we estimate the distance to this pole for a given regulator?

Pole Proximity: Estimation

For convenience define $\tilde{u}'_k = 2U'_k(0)/k^2$ — Pole at $\tilde{u}'_k = -1$

 \succ Examine it's flow equation for different (fixed) values U" :

Pole Proximity: Estimation

For convenience define $\tilde{u}'_k = 2U'_k(0)/k^2$ — Pole at $\tilde{u}'_k = -1$

 \succ Examine it's flow equation for different (fixed) values U" :

