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Why real-time? CRC-TR2n

Performing calculations directly in real time (Minkowski spacetime)

» avoids the need of analytic continuation in comparison with the imaginary-time
formalism, and

» allows treating phenomena off-equilibrium, e.g. many aspects of heavy-ion collisions,
which are very dynamic in nature.
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Figure: Spectral functions of the quartic oscillator at finite temperature stemming from various
computational techniques, including the real-time FRG.
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Real-time QFT




Real-time QFT cnc.-rm

Time evolution of general mixed state j(t) is described by von Neumann equation

i%ﬁ(t) = [H(t), p(t)]

» which is formally solved by
p(t) =U(t, —00)poU(—00,1)

» with time-evolution operator

t
U(t,t") = Texp {—z/ dt"H(t”)}
t/

> Initial state pg = p(—o0) is defined in the distant past (see below)
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Real-Time QFT CRC-TR2n
Expectation value of observable

(o) = L)

Tr p(8) Schrodinger picture

Tr(OU(t, —00)poU (—00, t)) .
= 4 (use cyclicity)

Tr(U(t, —00)poU(—00, 1))

Tr(U(—o00,t)OU(t, —0)p
= H(U(=c0, 1) _ (t, ~00)o) Heisenberg picture

Tr po

Te(U(— o0, +00)U( 100, )OU(t, —00)p .

= (U (=00, +00) gr; JOU(t, ~o0)po) (extend evolution to +0)
I po

Now the time evolution goes from —oo to +o00, and then back to —co, hence the name
‘closed time path’ (CTP).
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Figure: A. Kamenev, Field Theory of Non-Equilibrium Systems, (Cambridge University Press,
2011).
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Real-time QFT CRC-TR2n
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Figure: A. Kamenev, Field Theory of Non-Equilibrium Systems, (Cambridge University Press
2011).

Define partition function

Tr(U(—00, +00)U (400, —00)fo) )
Tr po -

Z

Expectation values by introducing sources on forward and/or backward branch, e.g.
> to calculate expectation value (O(t)) from above
> replace H — H* = H + V(t)O, then

2y =TI o - ]

by functional differentiation.
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I cnc.-rm

Digression: Why and when is closing the time path necessary?

» Zero-temperature field theory is concerned with quantities e.g. of the form
(QO()|2)

with interacting ground state |Q).

» Usual trick: Adiabatic switching off interactions in distant past and future
(1) 192) = U(to, —0)|0) with free ground state |0)
(2) U(+00, —00)|0) = €*7|0)

» Then (define Heisenberg picture w.r.t. to here, O(t) = Ul(to,t)OU (¢, t0))

(QO1)|) L (0]U(—o00, t)O()U (to, —)|0)
= (0|U(—00, +00)U (+00, t0)O(t)U (to, —0)|0)
e"?(0]U (400, t0) O(t)U (to, —o0)|0)
) (0]U (00, t0) O (1)U (o, —50)|0)
(01U (450, —o0)[0)

2

N

S

only needs forward evolution!
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I cnc.-rm

Digression: Why and when is closing the time path necessary?

» Zero-temperature field theory is concerned with quantities e.g. of the form
(QO()|2)

with interacting ground state |Q).

» Usual trick: Adiabatic switching off interactions in distant past and future
(1) 192) = U(to, —0)|0) with free ground state |0) still ok v/
(2) U(+00,—00)|0) = €*7|0)
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) (0]U (00, t0) O (1)U (o, —50)|0)
(01U (450, —o0)[0)

2

N

S

only needs forward evolution!

Johannes Roth Real-time FRG for critical dynamics Lunch Club | June 8, 2022



I cnc.-rm

Digression: Why and when is closing the time path necessary?
» Zero-temperature field theory is concerned with quantities e.g. of the form
Qo®))
with interacting ground state |Q2).

» Usual trick: Adiabatic switching off interactions in distant past and future
(1) 12) = U(to, —0)|0) with free ground state |0) still ok v/
(2) U(400, —00)|0) = €*¥]0) no longer valid! X

» Then (define Heisenberg picture w.r.t. to here, O(t) = Ul(to, t)OU (t,t0))
(20(1)19) = (0|U (=00, t) OB (to, —o0)[0)
(O] (=00, +00)U(+00, t0) O(t)U (to, —00)|0)

2

N/

(
= e "#{0|U (+00, to)O(t)U (to, —00)[0)
@) (0] (400, o) OH)U (to, —20)|0)

(0]U (400, —00)|0)

only needs forward evolution!

Trick not possible when non-adiabatic changes are present during time evolution!
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Real-time QFT cnc.-rm

Consider harmonic oscillator Hy = woa'a (zero-point energy subtracted)
in thermal equilibrium pg = e #0.

To arrive at path integral representation of the partition function
Suzuki-Trotter-decompose Z in ‘coherent’ states

ala) = ala), (e C)
defined as eigenstates of annihilation operator a.
> Express in energy eigenstates,

la) = emlel?/2 Z %|n> , with Ho|n) = nwo|n) .
n=0 :

» Calculate inner product,

1

(alay = e~ 3 (lal?+le’|?~2a%a")

2 2
a2 +|a’ |2 —2eP (\/)

Tq 1
(special case of (a|e”® *|a)= e~ 2 ( for p € R).

» Form over-complete basis and evaluate traces,

1= [Tl mo= [T a0l
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Real-time QFT cnc.-rm

Consider harmonic oscillator Hy = woa'a (zero-point energy subtracted)
in thermal equilibrium pg = e #0.

To arrive at path integral representation of the partition function
Suzuki-Trotter-decompose Z in ‘coherent’ states

ala) = ala), (e C)

defined as eigenstates of annihilation operator a.
Convenient because discretized partition function is product of exponentials,

* 1 5 2 4 %
(///)“(\ 102N 7§<\u:\' F1 “Z‘H(‘N‘J*Z”,\' ' 1“A\')

<(1z| ‘f)(;‘('lg \'> = <('k N+1 ‘(L\') =€

(@nt1|U(tn £ 6, tn)|an) = (g |an)e ™20 m10n 4 O(57)

0
7 +0¢ T

. ——> ¢

—0

Figure: Discretized CTP.

(Define Boltzmann factor po = e~ #*0)
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Real-time QFT cnc.-rm

Write partition function now as discretized path integral

1 N Pa;
2= | (1552 ] o fisitos oy =1

with discretized action

2N
. Qy — Q-1 .o . —Bw
SH{aj, a5} = E 8t (za;% — woa;aj_1> + i ((\,1 — e “(u\')
— J
Jj=2

Noeo, /dt (o (t)idrar(t) — woa™ (t)ax(t)) + boundary terms
cTp

boundary terms are inconvenient in (naive) continuum limit, as they spoil manifest
time-translation invariance of a system in thermal equilibrium. (Impractical.)

Goal: Find a continuum action that is time-translation invariant, and reproduces free
Green functions via rules of Gaussian integration ...
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Real-time QFT cnc.-rm

. But before that, simplify the notation:
Introduce fields on the forward (4) and backward (—) branches of the contour,

at@® =al?), a @)=alt)

Calculate discrete propagators by matrix inversion,

* ] i 1 if >4 .
e = G‘H' = z(ozjoej, )= k (Wt ™7 x _Bwo - J - J_, ‘time ordered’,
1—=po e PY if i<

- - —Bwo £ s -/

. L, s it e if 7 > o :
Gl =G = aja; )= ! (wh)? =7 x . ] Z/ ‘anti-time-ordered’ ,

‘ 7 J 1—po 1 if j <j

< - = i i—j' ‘ )
Gy = G;—j’ = z<0‘;‘r0‘j/ )= 1= o ()™ po lesser’
G;_'// = G]_JT = i(aj_a;r,*> =7 —Zpo (u"')j_j, ‘greater’,

not all independent, but generally interrelated by
++ —— +— -+ _ 5, : : P
G+ Gy — G — Gy =0, — 0in continuum limit

(Note here: Kronecker-4, not é-function!)
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Real-time QFT cnc.-rm

Exploit this linear interrelation by orthogonal
transformation which sets one of the Green functions
identically to zero:

» achieved by ‘Keldysh rotation’

Figure: Keldysh rotation: Clockwise
. . ) rotation in the (+, —)-field space.
> with ‘classical’ and ‘quantum’ fields a(t), a?(t

» Green functions are ‘rotated’ according to

time ordered lesser Keldysh retarded
GTr(t,t) Gt (t,t) . GE(t,t") GR(t,t)
G t(tt) G (tt) GA(t,t) 0

greater anti-time-ordered advanced
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Real-time QFT cnc.-rm

Now perform the continuum limit to (statistical function F(w) = 2ng(w) + 1)
> find Keldysh-rotated propagators (1°* order form),
GR(t, ') = i(t —t')e ot=1)
GA(t, 1) = —ib(t' — t)e *ot=1)

GE(t,t') = iF(wp)e o t=t)
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Real-time QFT cnc.-rm

Now perform the continuum limit to (statistical function F(w) = 2np(w) + 1)

> find Keldysh-rotated propagators (1°* order form),

. !’ 1
R N - 41\, —iwo(t—=t") R _ _
Gt t) =0t —t)e — G (w) DT i
Apy N e g (t—t) AN 1
G (t,t") = —i0(t" —t)e — G (w) pp——
GE(t,t') = iF(wp)e wo=t) — G (W) = 271 F (wo)d(w — wo) ,
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Real-time QFT cnc.-rm

Now perform the continuum limit to (statistical function F(w) = 2np(w) + 1)

> find Keldysh-rotated propagators (1°* order form),

. !’ 1
R N - 41\, —iwo(t—=t") R _ _
Gt t) =0t —t)e — G (w) DT i
Apy N e g (t—t) AN 1
G (t,t") = —i0(t" —t)e — G (w) pp——
GE(t,t') = iF(wp)e wo=t) — G (W) = 271 F (wo)d(w — wo) ,

» discover general requirement of

Retarded (advanced) propagator GkR(A)(w) is analytic in the upper (lower) half w-plane.
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Real-time QFT cnc.-rm

Now perform the continuum limit to (statistical function F(w) = 2np(w) + 1)

> find Keldysh-rotated propagators (1°* order form),

. !’ 1
R N - 41\, —iwo(t—=t") R _ _
Gt t) =0t —t)e — G (w) DT i
Apy N e g (t—t) AN 1
G”(t,t") = —i0(t' —t)e — G (w) pp——
GE(t,t') = iF(wp)e wo=t) — G (W) = 271 F (wo)d(w — wo) ,

» and write down action which reproduces these Green functions by the rules of
Gaussian integration,

Free Keldysh action (1°* order form)

— > c* q* 0 10¢ — i€ — wo ac(t)
S = [dt (" (t), 2" (t)) (z’ﬁt +ie — wo 2z'eF8(wo) ) (aq(t))

[ee]

which is manifestly time-translation invariant. (Goal reached!)
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Real-time QFT cnc.-rm

Starting with

Free Keldysh action (1 order form)

5= [ 0070 (19,10 i) (540

P introduce canonical oscillator coordinates ¢ and 7 again,

. " 1 .
(wop +im) , @ = —=— (wogp — i) |

vV 2(.00

1
vV 2000

> integrate out Gaussian 7's, to arrive at

Free Keldysh action (2" order form)

1 [ . 4 0 10y —ie)® —wi \ [ ¢°(t
s=3/ a (¢°(), ¢°(1) ((iat vier-a o 0) (qsqgt;)

(in coordinate space) (Shorthand notation!
Actually non-local in time ...)
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Real-time QFT — Interactions CR?—%

Include interactions by

» adding potential term to Keldysh action

/Z%(—W%4¢+)+x@«¢‘ﬂ

oo C q Cc _ A9
[ 4@(¢+¢>+w4¢ ¢)
—oo V2 V2
» and imagine that interactions are adiabatically

switched off in the distant past, t - —o0
(but they may stay finite in the distant future t — 400 (1))

Sv

> e.g. quartic coupling Vi () = Ap*/4!,

&:_%,?mwmwwww&m+wm&mwmwm)

‘classical’ vertex ‘quantum’ vertex
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Real-time QFT — Relation to classical-statistical systems CRC.-'ﬁ

Sv =gy [ @ (0O OE O 1)+ 0" (0 (00()

‘classical’ vertex ‘quantum’ vertex

Why the names ‘classical’ and ‘quantum’?

Perform classical limit of Keldysh action by reintroducing &, then take the limit 7 — 0,
> S — S/h,
» T - T/h = F(w) — 2T /hw + O(h) (Rayleigh-Jeans distribution),
> ¢%(t) — he'(t),

(obtained from dimensional analysis)

c q_lood‘” c a 0 (w —ie)? — wi ¢°
Sl¢% '] = 2 / o (9%6%) ., ((w+i€)2 —w 4i:‘dwcot€h(w/2T)> <<Z>q>
-2 (67 (18" (1) ()" (1) + ¢° (1) 9" (1) (1) (1))
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Real-time QFT — Relation to classical-statistical systems CRC.-'ﬁ

Sv =gy [ @ (0O OE O 1)+ 0" (0 (00()

‘classical’ vertex ‘quantum’ vertex

Why the names ‘classical’ and ‘quantum’?

Perform classical limit of Keldysh action by reintroducing &, then take the limit 7 — 0,
> S — S/h,
» T - T/h = F(w) — 2T /hw + O(h) (Rayleigh-Jeans distribution),
> ¢%(t) — he'(t),

(obtained from dimensional analysis)

Lo o 1 [dw e 0 (w — ie)? — w2 ¢°
gs[‘ﬁ Ni’]zjh / g(‘b he?)_, <(w+i5)2—w§ 4iso;coti1(7i¢u/2T)> <h¢q>
— 5 [ (17 06 W6 06" (0) + 1 (06" (8 6 (1)
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Real-time QFT — Relation to classical-statistical systems CRC.-'ﬁ

Sv =gy [ @ (0O OE O 1)+ 0" (0 (00()

‘classical’ vertex ‘quantum’ vertex

Why the names ‘classical’ and ‘quantum’?

Perform classical limit of Keldysh action by reintroducing &, then take the limit 7 — 0,
> S — S/h,
» T - T/h = F(w) — 2T /hw + O(h) (Rayleigh-Jeans distribution),
> ¢%(t) — he'(t),

(obtained from dimensional analysis)

Veire vy 1 [dw o 0 (w—ie) — w3 (¢
ﬁ5[¢,¢]=5/5(¢,¢)_w ((w+is)2—w§ } 8ng w><q§q)
-2 [ s wenem)

— 0o

i.e. only ‘classical’ vertex remains in classical limit, hence the name.
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Real-time QFT - Relation to classical-statistical systems cnc’ﬁ

1 ¢ q 1 dw ;e q 0 (w—ie)? — wi ¢
ﬁS[¢,¢]:5/E(¢,¢)_W ((w+is)2—w§ 8i=T ><¢ﬂ>
- 15 [ @t e Oe©eo)

> Arrived at the Martin-Siggia-Rose-Janssen-de Dominicis path integral formulation of
classical-statistical systems. (Later)

» From the point of view of the formalism non-equilibrium QFT and
classical-statistical field theories are virtually indistinguishable.

» One may now linearize action in ¢?(t) by Hubbard-Stratonovich transformation,
integrate linear ¢?(t) to get d-functional, enforcing class.-stat. equations of motion

. A
97 + 22000 +wie + 15(6°) = €(1)

(€@)s =0, (E)EW)) g = 8T6(t — 1))

for a particle in infinitesimal contact = to an external heat bath. (Canonical ensemble)
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Real-time QFT — Summary CRc.-TRm

Generating functional
725°, 59 = / D¢ D exp {i5[¢°,¢q]+z‘ L dt (jc(t)¢q(t)+jq(t)¢c(t))}

with Keldysh action

Sle*. ¢ = % / (;707: (¢°(-w), " () <w2 + iﬁ(')w — W ? 2;7?;](;)%) (i‘j&;)

—o0

% /;/ ((.‘)(v(/,)o(‘(/,)(,‘)"(/,)q‘)q(/,) } o"(/)oq(l,)c‘)q(l,)oq(/,)),

J—oc
with

» quartic self-interaction

> finite coupling to dissipative external heat bath (Caldeira-Leggett model, later)

Effective action by Legendre transform

P(g°,6%) = sup {—nog 214 - [ at (508 +jq<t><z‘f<t>)}

73 )
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Real-time functional renormalization group




Idea of the (functional) renormalization group CRC-TR2n

> Suppose the effective action I of the theory is known at some momentum /energy
scale k, denoted 'y, where fluctuations from modes |p| = k have been taken into
account.

> Realized by modifying the action with an infrared cutoff ASi[¢°, ¢7],
S — S+ AS,

suppressing modes with |p| < k.

» Has the structure (1D = d + 1 number of spacetime dimensions)

AS[6 /#’/f’ (@) Ri(m,2)p(x), 67 = (¢°67),

with the 2 x 2-‘regulator’ matrix

0
M@:GM)%@

in momentum space.
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Idea of the (functional) renormalization group (RC-TRan

» Change the scale k — k + dk, arrive at ‘flow’ equation

1 —1
8kl“k = —%tr (akRk o Gk), Gk = — (F,(f) -+ Rk)

» Has the form of a 1-loop integral,

Ty = —%

but is exact. Fully field-dependent
propagator G [¢]

k—A . .
» Have I'y —— S, classical action.
(Demonstrated via saddle-point approximation.)
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Causal regulators CRC.-'%

» Regulator changes analytic structure of propagators,

1
G (w,p) = — = retarded
elop) I (w,p) + Ry (w, p) ( )
Git(w,p) = ! (advanced)

- T3(w,p) + R (w,p)
» What are the consequences?

» Maybe everything fine for kK = 07
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Causal regulators? CRC.-'ﬁ

Test:
> Observe very general property of Keldysh action:

5=3 [@n.0 ) (” jjj) (jﬁﬁﬁ;) +o

follows from that for 7 = ¢~ the action vanishes, S[¢°,0] = 0.
» Necessary condition for the correctness of the flow.
Find:
» Popular regulators like sharp/exponential /algebraic/... cutoff produce such an
unphysical component during flow.

» Problem of causality not trivial.
» An insufficient regulator leads to an incorrect Keldysh action.
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Causal regulators CRC.-'%

What can we do?

(Start with 0+1 dimensional case, i.e. quantum mechanics.)

Most simple regulator which we could write down has form of a purely mass-like shift,
(Callan-Symanzik regulator)

Ry (w) = K

» Trivially causal, only induces mass-shift m? — m? + k2 in propagators.
» Too simple?

> Flow no longer consistent with Wilson's idea of integrating out energy (momentum)
shells?
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Heat bath regulators cnc’ﬁ

Regulator motivated by physics: (Causality guaranteed!)
> Imagine AS} is the result of integrating out an external heat bath.

» Heat bath (HB) is modeled as an ensemble of independent harmonic oscillators,
attached to the particle. (Caldeira-Leggett model)

Particle .’\/\/\/\/\/\QHB 0SCi. 2 2 2
1 7Ts ws gS
v i H—ZS <2+2<%_w3”>>

> Integrate out heat bath = Particle acquires self-energy $7/4(w)
gs gs ®dw' 2w J(W)

R = —_— - — - —— — — _
2 (w) = D.(w) /(; 21 (w + €)% — w2

S

2
» Fully controlled by a spectral density J(w) =7, 1—555(w — ws)

> Invert ~ J(w) = 2Im ©F(w), but self-energy = also has a non-vanishing real part.
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Heat bath regulators CR?—%

> Now make the spectral density k-dependent, J(w) — Ji(w),
and choose it to damp infrared modes.
> The resulting self-energy is the regulator, ©%/4(w) — R,I:/A(w).

— Ju(w)lk?
*h Example:
= ‘ > e an Je(w) = kuw exp {—w2/k2}

— ¢(t) ~ e */? for w < k,damped
ost But: Heat bath induces negative (!) shift
Ai\ — RelR(w)k] in the squared mass

\ Im[Ry(w)/k?]
oo 2

02 0 ™ w 47T
paf Makes the theory unstable and acausal for

sufficiently large values of £ !
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Heat bath regulators CRC.-'%

> Way out: We learned that a masslike shift is causal.
~+ Add mass-like ‘counter-term’ —ak? with o > 0
to compensate unwanted shift in squared mass!
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Heat bath regulators C(RC-TRan

10 10 10
— Re[Ri(w)/K] —— Re[Ry{w)/k’] —— Re[Ri(w)/k]
— Im{Ry(w)K?) Im{Ra(w)/K] Im{R(wyA?)
AN\ 05 os
S whk a whk = — whk
N — 5 = ] 7 i B 3 ) E} 0 2 3
'/
" os -05 T
10 -0 ),
1s 15 15
20 20 20
2 2 2
1 1+ 1 1
3o 3 op B 3o
E E E
E p /. o\\
-1 Z1k 4 -1
- 2 2 L
-2 -1 0 1 2 -2 -1 o 1 2 -2 -1 o 1 2
Re wy(k) Re w(K) Re w,(k)

a=0 a=1/VA4m, a=1/V4r+1,

(balanced) (balanced + regulated)
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Heat bath regulators CRC.-'%

> Way out: We learned that a masslike shift is causal.
~+ Add mass-like ‘counter-term’ —ak? with o > 0
to compensate unwanted shift in squared mass!

Heat bath regulator in 1 4 0d

R/A, \ _ MLM 2w’ Ji (w”) U
R (w) = /0 21 (w £ ie)? — w"? ak
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Heat bath regulators for field theories CRC.-'%

What about a field theory?

» Arguably simplest ansatz: Imagine an independent bath of harmonic oscillators for

every spatial momentum mode p. Then the spectral representation just acquires an
additional p-dependence,

Heat bath regulator

® dw' 2w Jk (W', p)

RE/A
o 27 (wEie)? —w?

k (C‘)*p) = =

which still ensures causality.

20
15
10

05

-Re[RF(w.p)IKYZE
Im[RE(wp)IKYZE

Figure: Real part (Mass shift). Figure: Imaginary part (Damping).
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Heat bath regulators for field theories cnc’ﬁ

» And when we have no preferred frame of reference, e.g. no external medium?
What about Lorentz invariance?

» A regulator like the one above would break Lorentz symmetry.

» Imagine the heat bath to be an ensemble of Klein-Gordon fields with a relativistic
dispersion relation w? = p? + m?2,
~+ Our field gains a self-energy
(Kallén-Lehmann representation)

Js Js e} d 2 j 2
ZkR(va): _"_"—:_/ = ; 2(5)2_ 2
. Dy(w,p) o 27 (wtie)>—p’—p

with invariant spectral density J(u?) = 27 >, 928(p* —m32) in

J(w,p) = sgn(w) 0(p°) J(p°)

» Reintroduce masslike counter-term —ak?, and then
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Heat bath regulators for field theories CRC.-'%

find general form of

Lorentz-invariant heat-bath regulator

oo 2 T 2
R/A __ [T du Je (1) g2
R, (w,p) = /0 21 (w£ie)? — p? — p? ok

(Special case of spectral representation shown above)

Example:
T2 4kp
M= ey

Im{R(w,p)ic]

> p? is a Lorentz scalar.

» sgnw is also a Lorentz scalar, but only if p is
timelike and if we restrict ourselves to
orthochronous Lorentz transformations.

Figure: Imaginary part (damping).
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Critical dynamics CR?—%

Consider classical A\p*-theory with Landau-Ginzburg free energy (statics) Model A
in thermal equilibrium,

F= /dd{ 24+ V(p } /DsoeﬁF,

and equations of motion (dynamics) with dissipative coupling v to heat bath (Langevin)

oF
Ao +0p = —55 tE&@),
7

with Gaussian white noise(s)

(&(z))s =0,
(€(2)&(x"))p = 29T6(x — '),

Discrete Z» (¢ — —¢) symmetry breaks spontaneously for T < T. when m? < 0.
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Critical dynamics CRC.-'ﬁ

Consider classical A\p*-theory with Landau-Ginzburg free energy (statics) Model B
with coupling BB between conserved density n(x) and (z)

F:/ddx{%(ﬁgo)Q—i-V(go)—l-B;n—i—%nQ}, Z:/D@DneiBF,
0

and equations of motion (dynamics) with dissipative coupling v to heat bath (Langevin)

8 +10ip = —% +€(2),
+ n = W?% +V - {(x),
with Gaussian white noise(s)
<£ $)>5 =0, <Cl(x)>ﬂ =0,
(E(@)E(a")) s = 29To(x — '), (') () g = 20T 6(x — o) .

Discrete Z2 (¢ — —¢) symmetry breaks spontaneously for T < T. when m? < 0.
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Critical dynamics CRC.-'ﬁ

Consider classical Ap*-theory with Landau-Ginzburg free energy (statics) Model C
with coupling g between conserved density n(x) and ¢*(z)

F = /dd { (Vo) +V(p) + 2 L,on—l——n}, /D(,oDne ,

and equations of motion (dynamics) with dissipative coupling v to heat bath (Langevin)

oF
o +0ip = —— +£&(x),

%)
+ O = AV? ‘;Z V()
with Gaussian white noise(s)
(€(@))s =0, (¢"(@)s =0,
(E(@)E(a")) s = 29To(x — '), (@) () g = 2AT695(x — ') .

Discrete Z2 (¢ — —¢) symmetry breaks spontaneously for T < T. when m? < 0.
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Critical dynamics CRC.-'%

Spectral function defined as
1 i Tw .
o) = o [t [atifott.a),00.0)),

which
» behaves like p(w) ~ |w|~7 at the critical point, T' = T, with
> scaling exponent o = (2 — ) /z, which is related to

» dynamical critical exponent z, defined by & ~ &7.
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Critical dynamics CR?—%

Write down corresponding Keldysh (Martin-Siggia-Rose) action S[¢°, ¢7], then solve via
real-time FRG, i.e.

> truncate ['x[¢°, ¢7],
(exemplary for Model A)

_! T 0 Z“(W)WQ_ZA-L 2 —mp —iyk(w)w
N 5/pA¢ (=p) <c.c. of adv. * 4i'i(w)Tk T Ag(p)
- [ =)t -5 [ @ —dhn)’ o,

with power-law behavior and finite (# 0) anomalous scaling dimension
N = —koy log Zi- in mind, and with the fluctuation A¢ = ¢ — ¢o.x around the
minimum, and then
» solve truncated flow equations numerically,
(here e.g. for 2-point function)

1
oI (z,2') = —i ;O, + ;O, +§ Q
x 7)/

’
x
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Critical spectral functions CRC-TR2n

Results for critical spectral functions at T' ~ T, Model A

108

—1=0

spectral function p(w) / MeV2
2
spectral function p(w) / MeV-2

1010 10
w/ MeV

Figure: d = 2. Figure: d = 3.

» visible power-law behaviour building up close to the critical point

(Reduced temperature 7 = (T — T¢)/T%)
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Critical spectral functions CRC-TR2n

Results for critical spectral functions at T' ~ T, Model B
L L
2 2
3 3
QU QU
»‘é 102 g
g 104 g
& \| %
106
108 1

10710 1075 10°
w/MeV

Figure: d = 2. Figure: d = 3.

> visible power-law behaviour building up close to the critical point
» conserved density non-critical, but

» non-trivial spectral function at p = 0!
Non-conserved ¢ also resembles critical dynamics of Model B

(Reduced temperature 7 = (T — T¢)/T%)
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Critical spectral functions CRC-TR2n

Results for critical spectral functions at T' ~ T, Model C

o2

[ —1=0

o, ——r=29x107
~ 108 ——1=0.014 ~
N 3
s 10°F =
3 wof 3
QU - QU
§ 10°f §
N g
£ wof g
g 102f 5
gL g
& o0+ &

10

108 1 10’_10

w/MeV
Figure: d = 2. Figure: d = 3.

> visible power-law behaviour building up close to the critical point,

> conserved density becomes critical due to non-linear interaction ~ ¢?n with critical
(-mode, and

» for comparison the Model A result indicated as dashed lines.

(Reduced temperature 7 = (T — T¢)/T%)
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Critical spectral functions CRC-TR2n

Extraction scheme: Model A
Look at logarithmic derivative 0 = —w dlog p(w)/Ow in scaling regime of critical spectral
function to extract dynamical critical exponent z = (2 — ) /o
(also compare against mean-field result o,s = l,r/nff =0 = zpf=2)

0.0 0.0 T T T
_ 02 _o2b |
3 2 |
& -04f 8 04l |
3 3 1
3 3 |
2 -06[ 2 -06] |
3 \
: : |
%’08’ g -08F — 120
2 2 ——1=10.0043
S s —1=0.03

-1or O r=0.004

—1=0.29
o o 10° 10° 0.01 10 -2 08 100 105 01
w/MeV w/!MeV
Figure: d=2. Figure; d=3.

272 2.094 =2+ ¢t 2R 2.042=2+cn—
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Critical spectral functions CRC-TR2n

Extraction scheme: Model B
Look at logarithmic derivative 0 = —w dlog p(w)/Ow in scaling regime of critical spectral
function to extract dynamical critical exponent z = (2 — ) /o

(also compare against mean-field result o = l) 7][#f =0 = zmr=4)

0.0 T T T T
-02} |

= 1 3 |
3 |
5 s

g 1 20 |
< S ‘
3 n

; P .

5 3
3 \
& v x
& -08F —1=0 i g -08F —1=0 \
3 ——1=55x10"8 2 ——1=10.0043
3 ——1=0.062 s [—1=003
“10F — =02 1 OF —r=0.004
— =042 —1=029
-12 -12 - : : :
10717 10712 107 0.01 1000.00 1073 107¢ 10°° 0.1
w/MeV w/MeV
Figure: d = 2. Figure: d = 3.
A oL , 1
z/R3.55=4—1n z~390=4—1n9
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Critical spectral functions CRC-TR21

Extraction scheme: Model C
Look at logarithmic derivative 0 = —w dlog p(w)/Ow in scaling regime of critical spectral
function to extract dynamical critical exponent z = (2 — n*) /o

(also compare against mean-field result os = 1,7 = 0 = 2¢ = 2)

0.0 0.0
—1=0
——1=0.0011

5 -0.2F 5 -0.2 —1=0.038
< < —r=022
8 -04at 8 -04f
S S
3 3
i i
3 o8} 5 -08f
5 ¥
g -08}F g 081
° e
5 £

10k -10F

12 2l \

fo-15 1010 10
w/MeV w/MeV
Figure: d = 2. Figure: d = 3.

z2R256=2+a/v zR231=2+a/v

(problematic. . .)
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Summary & outlook cnc’ﬁ

We have

» constructed regulators in the real-time FRG which automatically take care of
causality and Lorentz invariance, and

» calculated critical spectral functions using one and two-loop self-consistent
truncation schemes in Model A, B, and C.

For the future, we plan to

» extract universal scaling functions which describe universal behaviour in close vicinity
of critical point,

> inspect real-time dynamics of Model G and H,

v

include fermions (~ low-energy effective models of QCD in real time), and

» analyze non-equilibrium phenomena.

Thank you for your attention!
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Causal Regulators? CR?—%

Diagram(s) that correspond to the unphysical upper left (cc) component of the Keldysh

action,
cc —i
e [ dw N B .

T2 2 (G’“ ()9 Ril (0)GF (w) + Gic () Ry (w) G, (w))

20 for a flow that respects the causal structure of the action.
Propagators:

R(A 1
G (w) = -

w? £iyw —m? + RR(A)( )
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Causal Regulators? CRC.-'%

» Well-known regulator from the Euclidean FRG
» Regulator has the form

R/ (w) = (K - w)O(k® — w?),

with a sharp cutoff at w = k.

> Result:

4 v}m:o.s R

12 —
g
8
o 1r ]
2
z .
3 sl 1 > Flow indeed generates an
A . .
B oo, unphysical cc component in
< the action.
g 04 |
E » Pole at k=m !

02 4

o ‘ ‘

0 1 2 3 4 5
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Causal Regulators? CRC.-'%

» s it the sign?

» Regulator now has the form
R w) = (K = w”)0(k* = w?),

still with a sharp cutoff at w = k.
> Result:

+ No more singularities in the flow.

— Flow still generates an
unphysical cc component in the
action.

(im2/2\) 9 IS (should be zero)
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Plots of Lorentz invariant Causal Regulators CRC.-'%

Im[RK(w,p)/K]

Figure: Real part (Mass shift). Figure: Imaginary part (Damping).
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