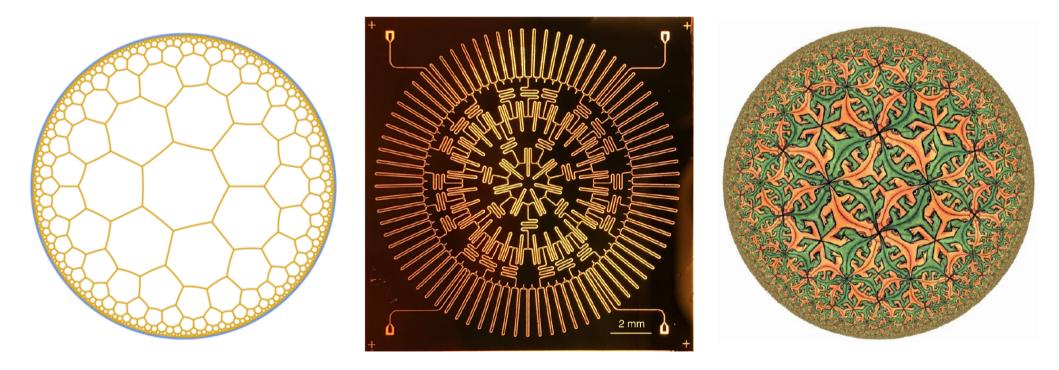
Quantum Simulation of Hyperbolic Space with Circuit QED: From Graphs to Geometry



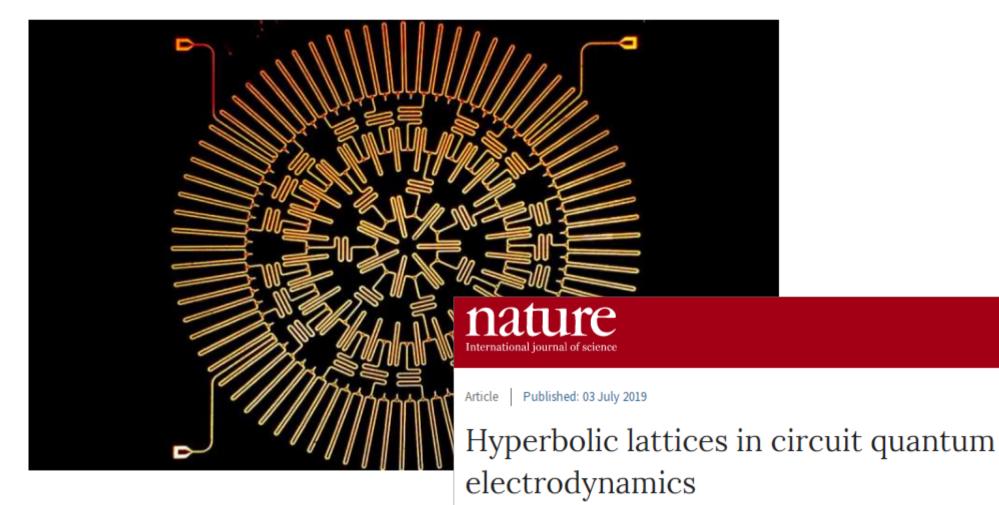
Igor Boettcher, University of Maryland

IB, Bienias, Belyanksy, Kollár, Gorshkov, arXiv:1910.12318

() JULY 12, 2019

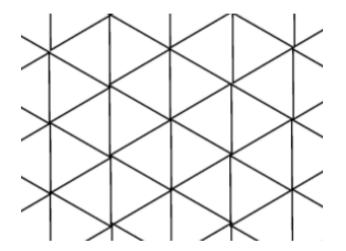
Strange warping geometry helps to push scientific boundaries

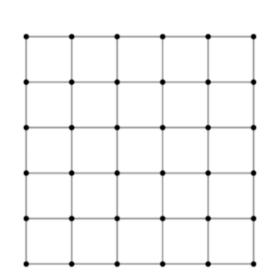
by Molly Sharlach, Princeton University



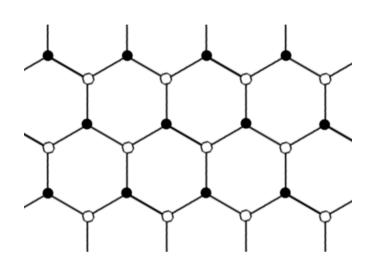
Alicia J. Kollár 🏁, Mattias Fitzpatrick & Andrew A. Houck

Nature 571, 45-50 (2019) | Download Citation 🚽





{4,4}



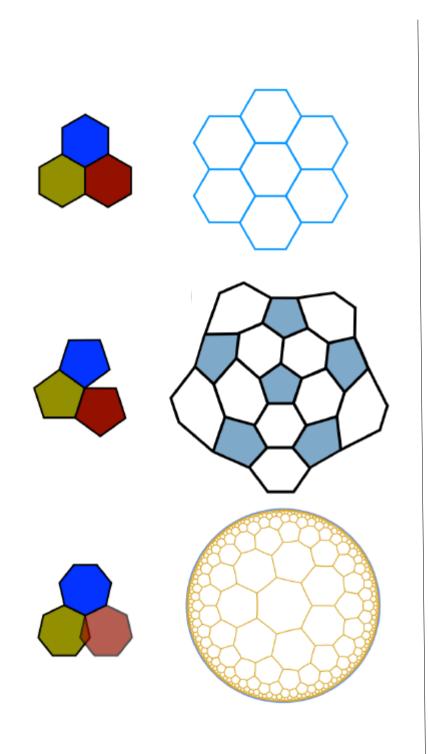
{6,3}

$$\{p,q\}$$

Schläfli-symbol: lattice made from regular p-gons, q lines meet at each vertex

$$(p-2)\cdot(q-2)=4$$

condition for regular tessellation of the plane

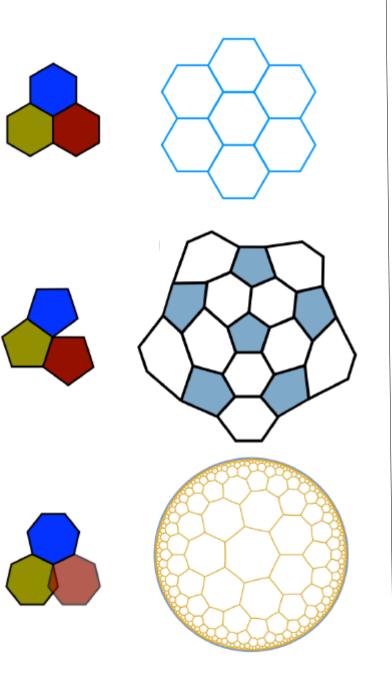


$(p-2)\cdot(q-2)<4$

Platonic solids [edit]

Main article: Platonic solid

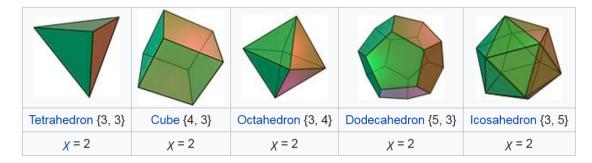
Tetrahedron {3, 3}	Cube {4, 3}	Octahedron {3, 4}	Dodecahedron {5, 3}	Icosahedron {3, 5}		
χ = 2	χ = 2	χ = 2	χ = 2	χ = 2		



$(p-2)\cdot(q-2)<4$

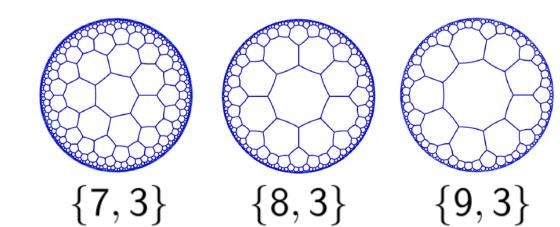
Platonic solids [edit]

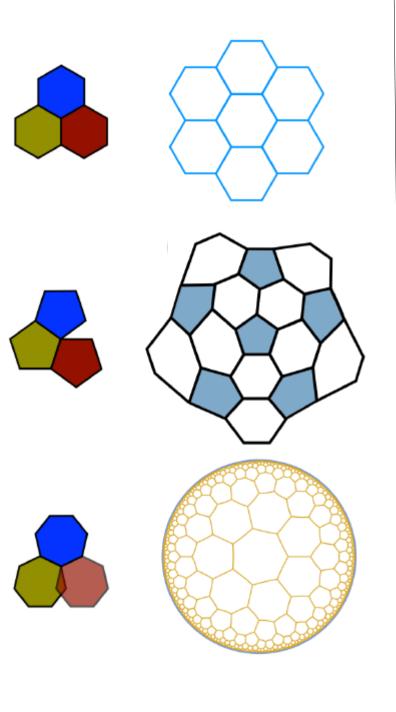
Main article: Platonic solid

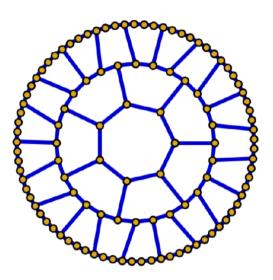


hyperbolic tessellations

 $(p-2) \cdot (q-2) > 4$



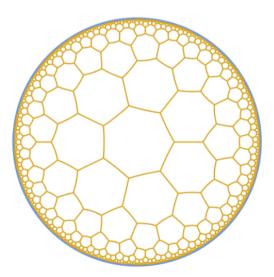


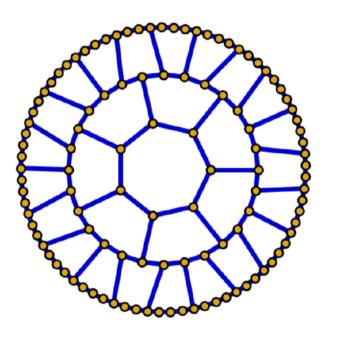


- Graphs
- Geometry

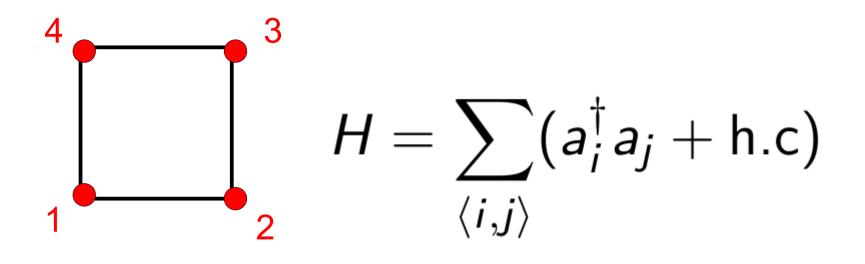
• From Graphs to Geometry

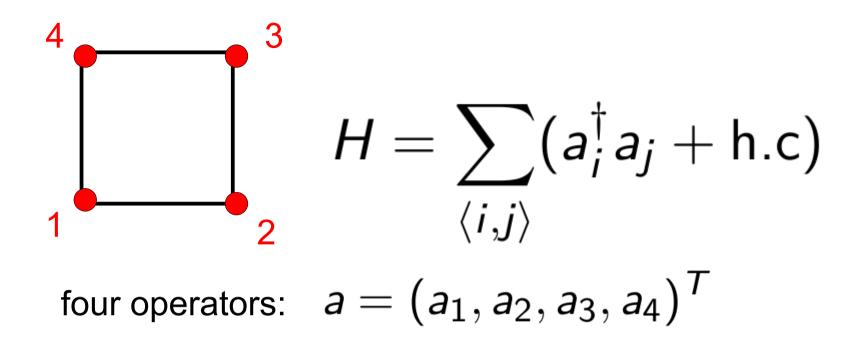
- Applications
- Experimental outlook

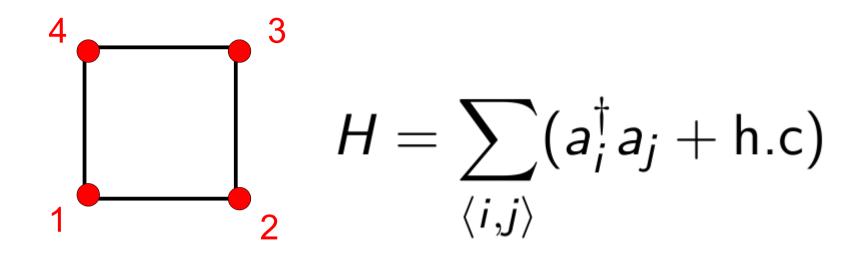


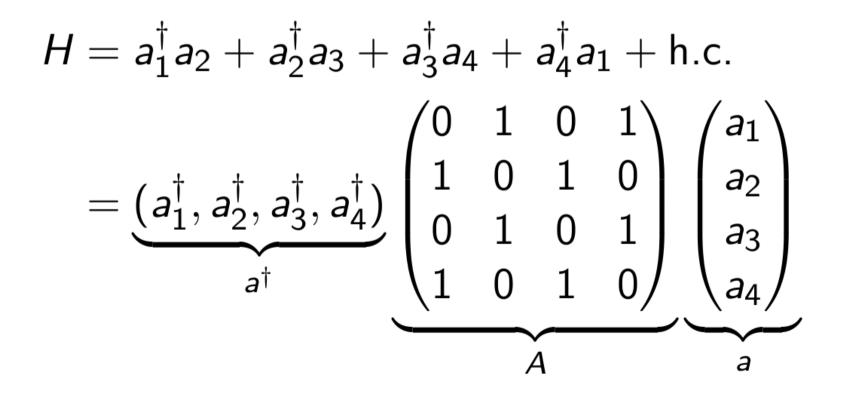


Graphs





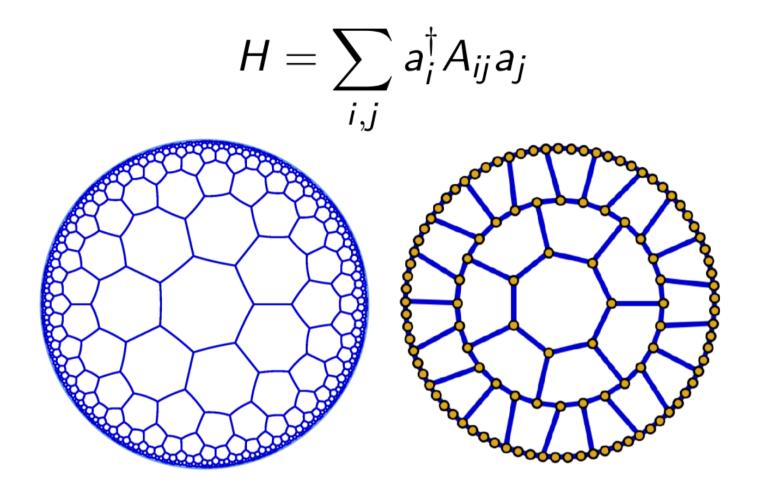


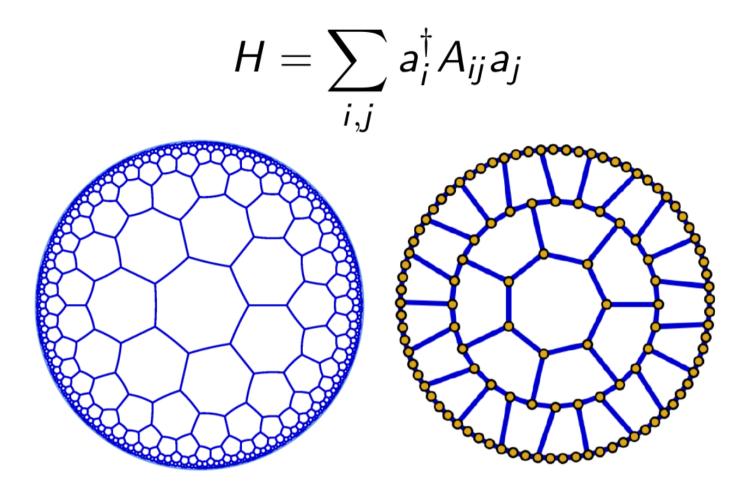


$$\begin{array}{c} 4 \\ 1 \\ 2 \end{array} \qquad \begin{array}{c} 3 \\ H = \sum_{i,j} a_i^{\dagger} A_{ij} a_j = a^{\dagger} A a$$

"adjacency
matrix"
$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
• real and symmetric
• exists orthogonal O:
 $OAO^T = D = diagonal$

$$H = (a^{\dagger}O^{T})(OAO^{T})\underbrace{(Oa)}_{b} = b^{\dagger}Db = \sum_{n} D_{n}b_{n}^{\dagger}b_{n}$$

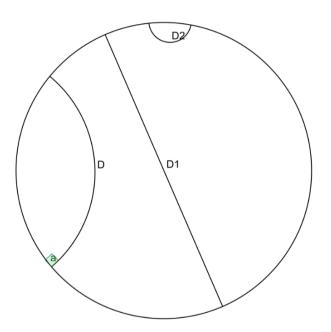




number of rings ℓ	1	2	3	4	5	6	7	8	9	10
number of sites N	7	35	112	315	847	2240	5887	15435	40432	105875

$$N \sim 7\varphi^{2\ell}, \ \varphi = \frac{1+\sqrt{5}}{2} = 1.618$$

exponential growth with graph diameter!



Geometry

Poincaré disk model of hyperbolic space

$$\mathbb{D} = \{ z \in \mathbb{C}, \ |z| < 1 \}$$

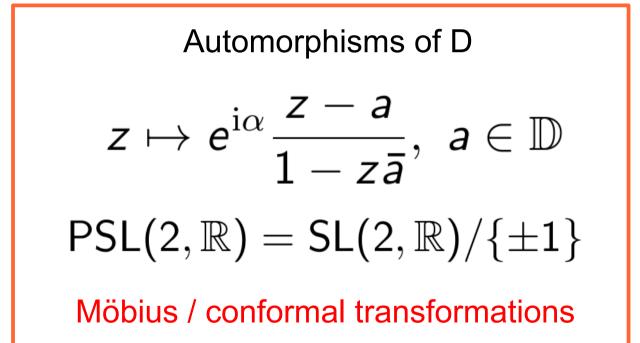
$$ds^{2} = \frac{dx^{2} + dy^{2}}{(1 - |z|^{2})^{2}} = \frac{dr^{2} + r^{2}d\phi^{2}}{(1 - r^{2})^{2}}$$

$$z = re^{i\phi} = x + iy, \ R = 1$$

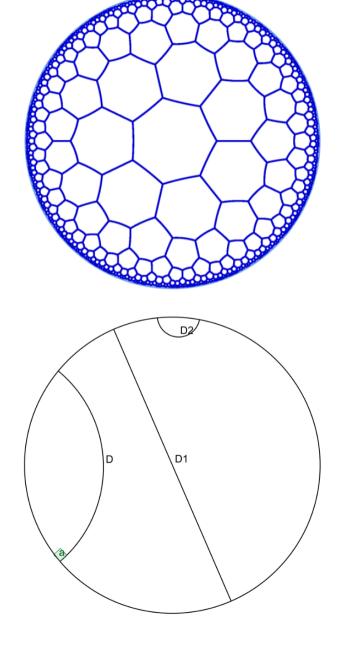
$$d(z, z') = \frac{1}{2}\operatorname{arcosh}\left(1 + \frac{2|z - z'|^{2}}{(1 - |z|^{2})(1 - |z'|^{2})}\right)$$

Poincaré half-plane model Poincaré disk model $z \in \mathbb{D} \longrightarrow \mathbb{H} = \{ w \in \mathbb{C}, \text{ Im } w > 0 \}$ Cayley $\mathrm{d}s^2 = \frac{\mathrm{d}x^2 + \mathrm{d}y^2}{4v^2}$ $w = i \frac{1+z}{1-z}$

Poincaré disk model of hyperbolic space



non-commutative geometry



$$ds^2 = \frac{dx^2 + dy^2}{(1 - r^2)^2} = g_{ij}dx^i dx^j \quad g^{ij} := (g^{-1})_{ij}$$

Laplace-Beltrami operator

$$\Delta_g f = \frac{1}{\sqrt{\det g}} \partial_i \left(\sqrt{\det g} g^{ij} \partial_j f \right)$$

$$ds^2 = \frac{dx^2 + dy^2}{(1 - r^2)^2} = g_{ij}dx^i dx^j \quad g^{ij} := (g^{-1})_{ij}$$

 $\begin{array}{ll} \mbox{Laplace-Beltrami} & \Delta_g f = \frac{1}{\sqrt{\det g}} \partial_i \Big(\sqrt{\det g} g^{ij} \partial_j f \Big) \\ \mbox{operator} \end{array}$

$$\langle f_1, f_2 \rangle = \int \underbrace{\mathrm{d}^d x \sqrt{\mathrm{det}g}}_{dV_g} f_1^*(\vec{x}) f_2(\vec{x})$$

$$\begin{split} \langle f_1, \Delta_g f_2 \rangle &= \int d^d x \sqrt{\det g} \ f_1 \ \frac{1}{\sqrt{\det g}} \partial_i \Big(\sqrt{\det g} g^{ij} \partial_j f_2 \Big) \\ &= - \int d^d x \sqrt{\det g} \ g^{ij} \partial_i f_1 \ \partial_j f_2 \\ &= \langle \Delta_g f_1, f_2 \rangle \\ \end{split}$$

$$ds^2 = \frac{dx^2 + dy^2}{(1 - r^2)^2} = g_{ij}dx^i dx^j \quad g^{ij} := (g^{-1})_{ij}$$

 $\begin{array}{ll} \mathsf{Laplace}\text{-}\mathsf{Beltrami} & \Delta_g f = \frac{1}{\sqrt{\mathsf{det}g}}\partial_i \Big(\sqrt{\mathsf{det}g}g^{ij}\partial_j f\Big) \\ \\ \mathsf{operator} \end{array}$

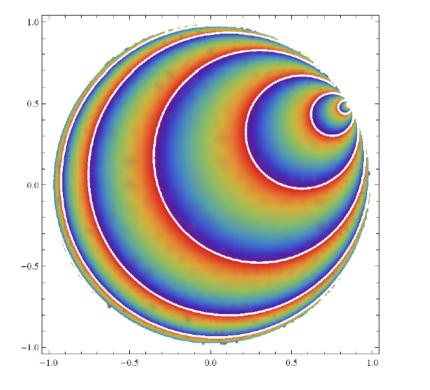
Euclidean
$$\Delta_g^{(eucl)} = \delta^{ij} \partial_i \partial_j = \Delta$$
Minkowski $\Delta_g^{(mink)} = \eta^{\mu\nu} \partial_\mu \partial_\nu = \Box$

Poincaré disk
$*$
 $\Delta_g = (1-r^2)^2 \Delta$

Spectrum of
$$-\Delta_g$$

$$\varepsilon = 1 + k^2$$

$$\psi_{\kappa}(z) = \left(\frac{1-|z|^2}{|1-ze^{-i\beta}|^2}\right)^{\frac{1}{2}(1+ik)}$$



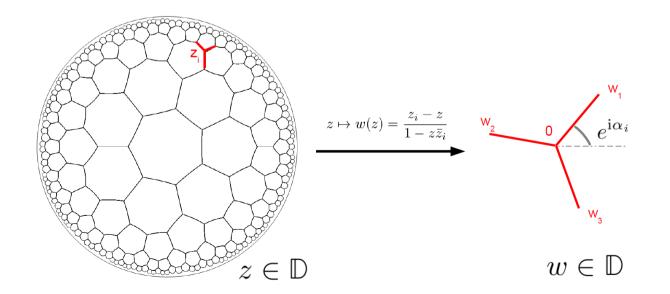
 $\textit{K}=\textit{ke}^{\mathrm{i}eta}\in\mathbb{C}$

Spectrum of
$$-\Delta_g$$

 $\varepsilon = 1 + k^2$
 $\psi_{\kappa}(z) = \left(\frac{1 - |z|^2}{|1 - ze^{-i\beta}|^2}\right)^{\frac{1}{2}(1+ik)}$
 $e^{i\mathbf{k}\cdot\mathbf{r}} = \exp\left[\frac{i}{2}(\kappa\bar{z} + \bar{\kappa}z)\right]$

 ${\it K}={\it ke}^{{
m i}eta}\in {\mathbb C}$

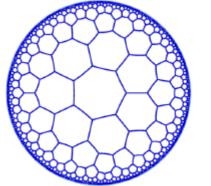
From Graphs to Geometry

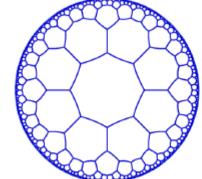


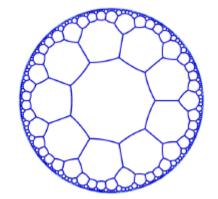
embedding $i \in G \mapsto z_i \in \mathbb{D}$

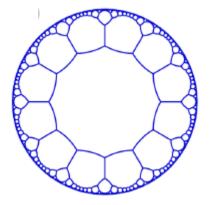
 $d(z_i, z_{i+e}) = d_0 = 0.283 \leq$

Tiling polygon p	lattice constant
7	0.283
8	0.364
9	0.410
10	0.461







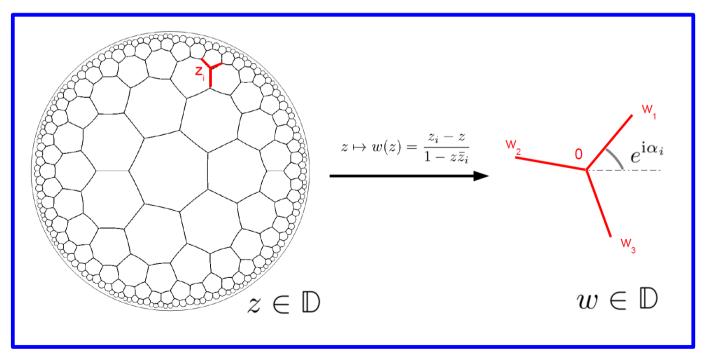


adjacency matrix $H = \sum_{i,j} a_i^{\dagger} A_{ij} a_j$

 $\sum_{i} A_{ij} f(z_j) = f(z_{i+e_1}) + f(z_{i+e_2}) + f(z_{i+e_3})$

adjacency matrix $H = \sum_{i,j} a_i^{\dagger} A_{ij} a_j$

$$\sum_{j} A_{ij} f(z_j) = f(z_{i+e_1}) + f(z_{i+e_2}) + f(z_{i+e_3})$$



$$w_{1} = w(z_{i+e_{1}}) = he^{i\alpha},$$

$$w_{2} = w(z_{i+e_{2}}) = he^{i2\pi/3}e^{i\alpha},$$

$$w_{3} = w(z_{i+e_{3}}) = he^{i4\pi/3}e^{i\alpha}$$

 $d(h,0) \stackrel{!}{=} d_0: h = 0.276$

adjacency matrix $H = \sum_{i,j} a_i^{\dagger} A_{ij} a_j$

$$\sum_{j} A_{ij} f(z_j) = f(z_{i+e_1}) + f(z_{i+e_2}) + f(z_{i+e_3})$$

$$= f\left(\frac{z_{i} - w_{1}}{1 - w_{1}\bar{z}_{i}}\right) + f\left(\frac{z_{i} - w_{2}}{1 - w_{2}\bar{z}_{i}}\right) + f\left(\frac{z_{i} - w_{3}}{1 - w_{3}\bar{z}_{i}}\right)$$

$$=3f(z_i)+\frac{3}{4}h^2\Delta_g f(z_i)+\mathcal{O}(h^3)$$

h = 0.276

lattice sums
$$H = \sum_{i,j} a_i^{\dagger} A_{ij} a_j$$

$$\sum_{i\in G} f(r_i) \approx \int \mathrm{d}\mathcal{N}(r)f(r)$$

-

$$\mathcal{N}(r) = \sum_{i \in G} \Theta(r - r_i)$$

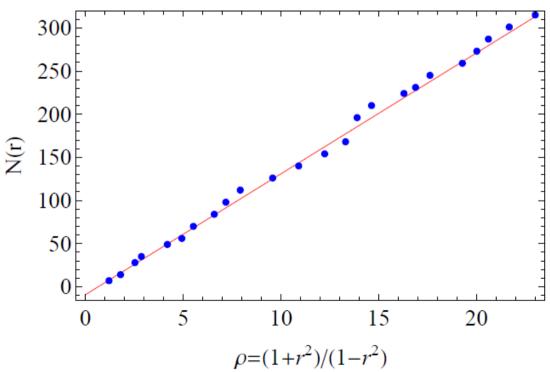
counting function

lattice sums
$$H = \sum_{i,j} a_i^{\dagger} A_{ij} a_j$$

$$\sum_{i\in G} f(r_i) \approx \int \mathrm{d}\mathcal{N}(r)f(r)$$

$$\mathcal{N}(r) = \sum_{i \in G} \Theta(r - r_i)$$

 $pprox 14
ho + ext{const}$
 $\mathrm{d}
ho = 4rac{\mathrm{d}r \ r}{(1 - r^2)^2}$



lattice sums
$$H = \sum_{i,j} a_i^{\dagger} A_{ij} a_j$$

$$\sum_{i \in G} f(r_i) \approx \int d\mathcal{N}(r) f(r) = 14 \int d\rho f(r)$$

$$= 14 \cdot 4 \int_0^L \frac{\mathrm{d}r \ r}{(1 - r^2)^2} f(r)$$
$$= \frac{28}{\pi} \int_{|z| \le L} \frac{\mathrm{d}^2 z}{(1 - |z|^2)^2} f(|z|)$$

$$\begin{aligned} \text{lattice sums} \quad H &= \sum_{i,j} a_i^{\dagger} A_{ij} a_j \\ \sum_{i \in G} f(z_i) &\approx \frac{28}{\pi} \int_{|z| \le L} \frac{d^2 z}{(1 - |z|^2)^2} f(z) \\ N &\stackrel{!}{=} \frac{28}{\pi} \frac{\pi L^2}{(1 - L^2)} \quad \Leftrightarrow \quad L &= \sqrt{\frac{N}{N + 28}} \end{aligned}$$

number of rings ℓ	1	2	3	4	5	6	7	8	9	10
effective disk radius L	0.447	0.745	0.894	0.958	0.984	0.994	0.998	0.9990	0.9997	0.9999

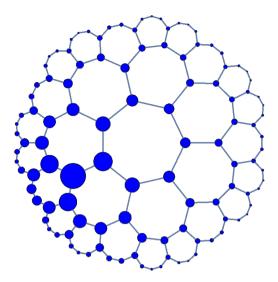
<u>Graph / Conti</u>	nuum Dictionary	
finite graph with N sites	finite disk with radius $L < 1$	
$i \in G$	$z_i \in \mathbb{D}$	
f_i	$f(z_i)$	محور
A_{ij}	$3 + \frac{3}{4}h^2\Delta_g$	A
N	$L = \sqrt{\frac{N}{N+28}}$	₩.
$\sum_{i \in G}$	$\frac{28}{\pi} \int_{ z \le L} \frac{d^2 z}{(1 - z ^2)^2}$	- CONTRACTOR

number of rings ℓ	1	2	3	4	5	6	7	8	9	10
effective disk radius L	0.447	0.745	0.894	0.958	0.984	0.994	0.998	0.9990	0.9997	0.9999

Example: Bose-Hubbard model

$$\hat{\mathcal{H}} = \sum_{i \in G} \left[-t \sum_{j \in G} \hat{a}_i^{\dagger} A_{ij} \hat{a}_j - \mu \hat{a}_i^{\dagger} \hat{a}_i + U(\hat{a}_i^{\dagger} \hat{a}_i)^2 \right]$$
$$[\hat{a}_i, \hat{a}_j^{\dagger}] = \delta_{ij}$$

$$\hat{\mathcal{H}}' = \int_{|z| \le L} \frac{d^2 z}{(1 - |z|^2)^2} \Big[\hat{\alpha}_z^{\dagger} (-J\Delta_g - \mu') \hat{\alpha}_z + U' (\hat{\alpha}_z^{\dagger} \hat{\alpha}_z)^2 \Big]$$
$$[\hat{\alpha}(z), \hat{\alpha}^{\dagger}(z')] = (1 - |z|^2)^2 \delta^{(2)}(z - z')$$



Applications

Application 1:

Ground state energy and spectral gap of

$$H=-\sum_{i,j}a_i^{\dagger}A_{ij}a_j$$

$$\operatorname{spec}(-A) \subset (-3,3), \ E_0 = \min\left[\operatorname{spec}(-A)\right]$$

What about $\ell ightarrow \infty$?

number of rings ℓ	1	2	3	4	5	6	7	8	9	10
E_0 (graph)	-2	-2.636	-2.787	-2.847	-2.877	-2.894	-2.905	-2.91	-2.92	-2.92

need sparse matrix techniques

Ground state energy and spectral gap of

$$H=-\sum_{i,j}a_i^{\dagger}A_{ij}a_j$$

Mathematicians know: $\lim_{\ell \to \infty} E_0 \in [-2.966, -2.862]$

Higuchi and Shirai, Interdiscip. Inform. Sci. 9, 221 (2003) Paschke, Math. Z., 225 (1992) Kollar, Fitzpatrick, Sarnak, Houck, arXiv:1902.02794

number of rings ℓ	1	2	3	4	5	6	7	8	9	10
E_0 (graph)	-2	-2.636	-2.787	-2.847	-2.877	-2.894	-2.905	-2.91	-2.92	-2.92

Ground state energy and spectral gap of

$$H=-\sum_{i,j}a_i^{\dagger}A_{ij}a_j$$

Mathematicians know: $\lim_{\ell o \infty} E_0 \in [-2.966, -2.862]$

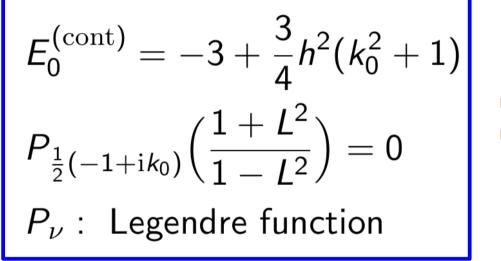
Continuum theory:

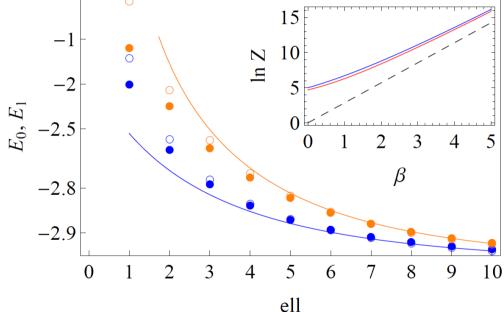
$$E_0 = -3 + \frac{3}{4}h^2(1+k_0^2)$$
$$\stackrel{\ell \to \infty}{\longrightarrow} -3 + \frac{3}{4}h^2 = -2.94295$$

number of rings ℓ	1	2	3	4	5	6	7	8	9	10
$E_0 \; ({ m graph})$	-2	-2.636	-2.787	-2.847	-2.877	-2.894	-2.905	-2.91	-2.92	-2.92

Ground state energy and spectral gap of

$$H=-\sum_{i,j}a_i^{\dagger}A_{ij}a_j$$

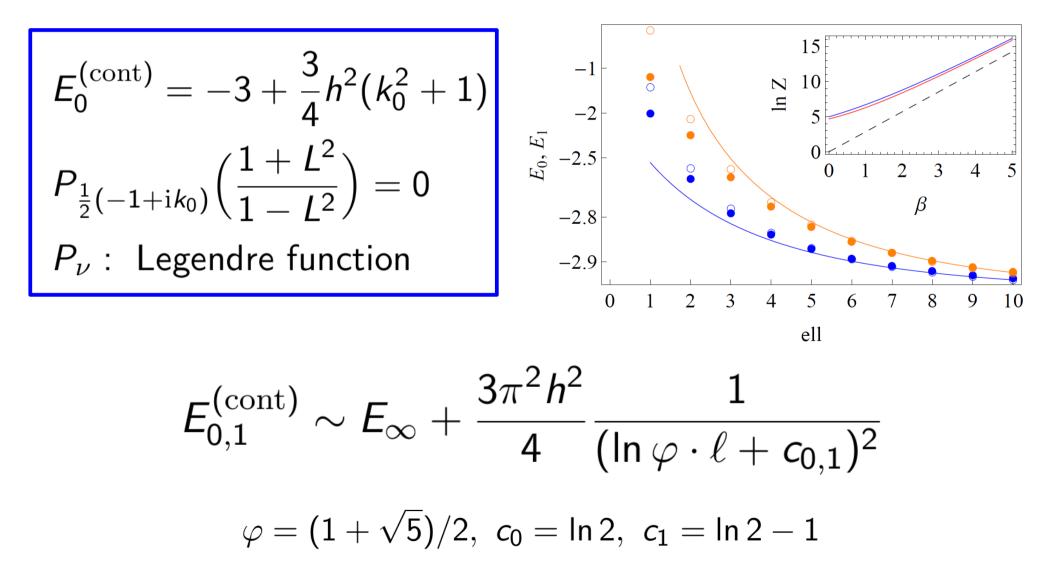




number of rings ℓ	1	2	3	4	5	6	7	8	9	10
E_0 (graph)	-2	-2.636	-2.787	-2.847	-2.877	-2.894	-2.905	-2.91	-2.92	-2.92
E_0 (continuum)	-1.5	-2.570	-2.770	-2.842	-2.876	-2.895	-2.906	-2.914	-2.920	-2.924

Ground state energy and spectral gap of

$$H=-\sum_{i,j}a_i^{\dagger}A_{ij}a_j$$

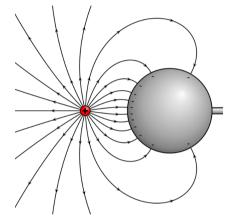


Correlation functions $G_{ij}(\omega) = \left(\frac{1}{\omega - H}\right)_{ij} = \langle a_i(\omega) a_j^{\dagger}(\omega) \rangle_0$

Correlation functions

$$G_{ij}(\omega) = \left(\frac{1}{\omega - H}\right)_{ij} = \langle a_i(\omega) a_j^{\dagger}(\omega) \rangle_0$$

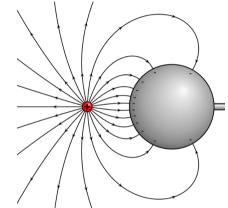
$$\begin{aligned} G_{ij}(\omega) &\approx \frac{\pi}{21h^2} \ G\Big(z_i, z_j, \frac{4(\omega+3)}{3h^2}, L\Big) \\ (\lambda+\Delta_g)G(z, z', \lambda, L) &= -(1-|z|^2)^2 \delta^{(2)}(z-z') \end{aligned}$$

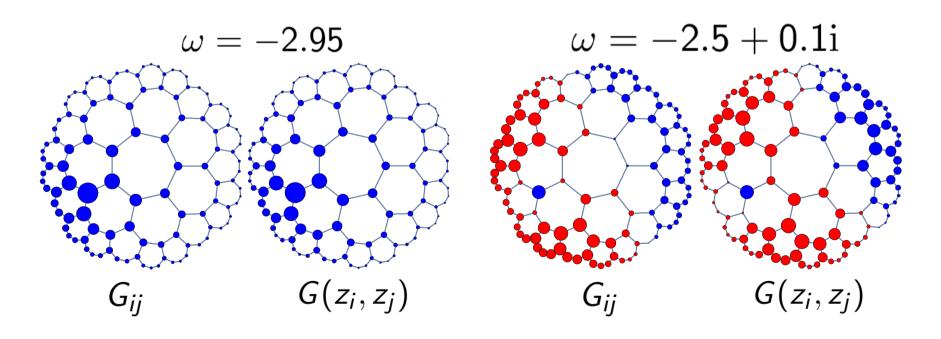


Correlation functions

$$G_{ij}(\omega) = \left(\frac{1}{\omega - H}\right)_{ij} = \langle a_i(\omega) a_j^{\dagger}(\omega) \rangle_0$$

$$G_{ij}(\omega) \approx \frac{\pi}{21h^2} G\left(z_i, z_j, \frac{4(\omega+3)}{3h^2}, L\right)$$
$$(\lambda + \Delta_g)G(z, z', \lambda, L) = -(1 - |z|^2)^2 \delta^{(2)}(z - z')$$

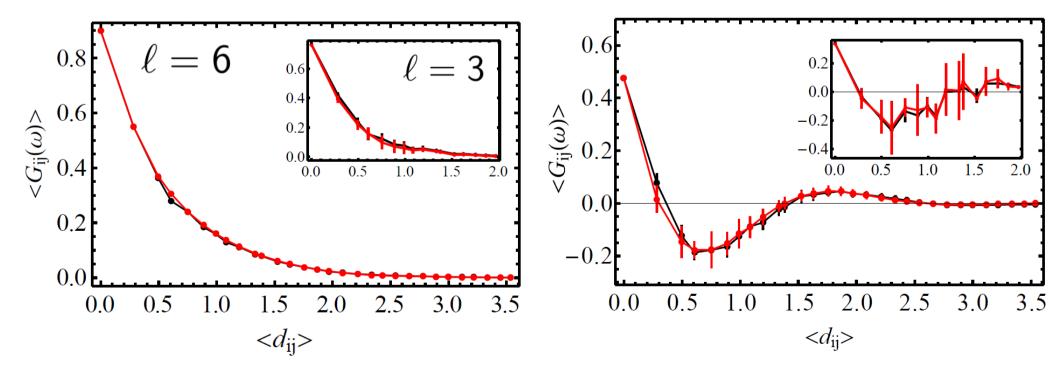




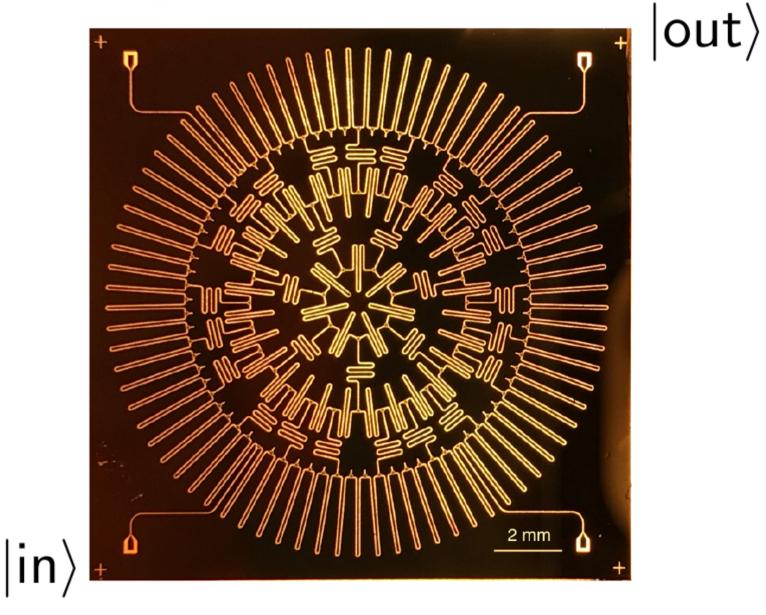
Correlation functions
$$G_{ij}(\omega) = \left(\frac{1}{\omega - H}\right)_{ij} = \langle a_i(\omega) a_j^{\dagger}(\omega) \rangle_0$$

emergent conformal symmetry:

 G_{ij} is (approximately) a function of $d_{ij} = d(z_i, z_j)$: $G_{ij} = f(d_{ij})$



Experimental outlook

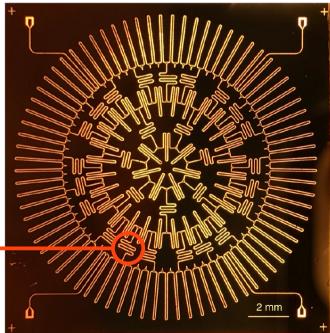


scattering experiments, relation to quantum optics

Experimental outlook

 $\mathcal{H} = -\sum t_{ij}(B)A_{ij}\hat{a}_i^{\dagger}\hat{a}_j$ i,j

spatial / temporal variations in hopping

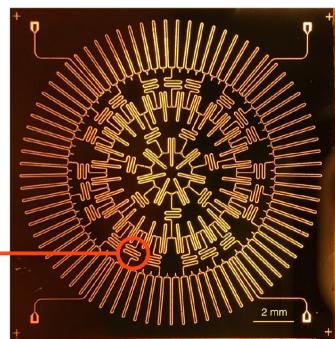


Experimental outlook $\mathcal{H} = -\sum t_{ij}(B)A_{ij}\hat{a}_{i}^{\dagger}\hat{a}_{j} + \sum \underline{\omega}_{i}\hat{a}_{i}^{\dagger}\hat{a}_{i}$ i,j

spatial / temporal variations in hopping

disorder: localization transition?

SQUID loops (B)



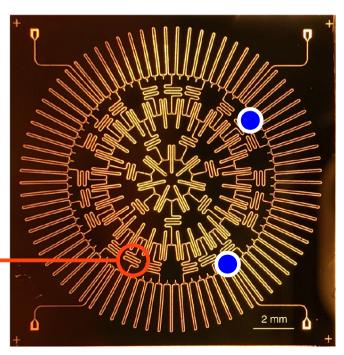
Experimental outlook
$$\mathcal{H} = -\sum_{i,j} \underline{t_{ij}(B)} A_{ij} \hat{a}_i^{\dagger} \hat{a}_j + \sum_i \underline{\omega_i} \hat{a}_i^{\dagger} \hat{a}_i \\ + \Delta \sigma_{i_0}^z + g(\sigma_{i_0}^+ \hat{a}_{i_0} + \sigma_{i_0}^- \hat{a}_{i_0}^{\dagger})$$

spatial / temporal variations in hopping

disorder: localization transition?

tunable qubits: spin-boson model

SQUID loops (B)



Experimental outlook

$$\langle S_i S_j \rangle \sim e^{-d(i,j)/\xi} \sim rac{1}{|i-j|^{\xi}}$$

boundary critical correlations

 $d(i,j) \sim \log |i-j|$

$$\langle S_i S_j S_k \rangle, \langle S_i S_j S_k S_l \rangle$$
 ??

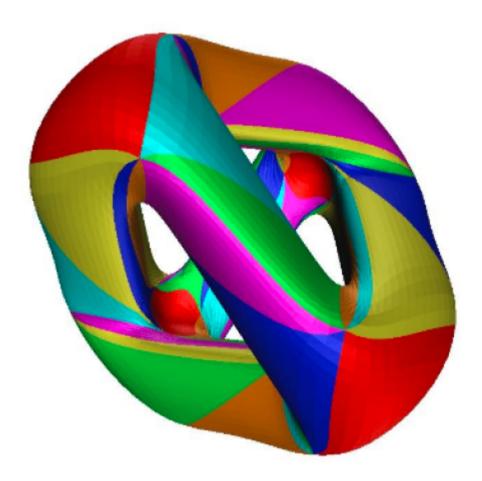
boundary fields

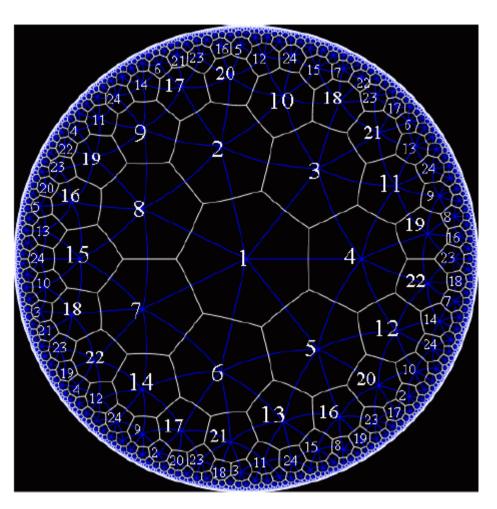
$$z\mapsto e^{\mathrm{i}lpha}rac{z-a}{1-zar{a}},\ a\in\mathbb{D}$$

$$\hat{\psi}(heta) = \hat{lpha}(Le^{\mathrm{i} heta})$$



Periodic boundary conditions





www.math.ucr.edu/home/baez/klein.html

Klein Quartic: hyperbolic surface of genus g=3