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Introduction & motivation
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Introduction & motivation

Compact-star binaries

Compact stars are natural laboratories which allow us to study the properties of nuclear
matter under extreme physical conditions (strong gravity, strong magnetic fields, etc.).

The recent detection of gravitational and electromagnetic waves originating from black
hole or neutron star mergers motivates studies of compact binary systems.

Such studies might place constraints on the properties of compact star parameters and
contain useful information about the properties of extremely hot and dense matter.

Various physical processes in the compact binary systems can be modelled in the
framework of general-relativistic hydrodynamics simulations.

Transport coefficients are key inputs in hydrodynamic modelling of compact star mergers
as they measure the energy dissipation rate in hydrodynamic evolution of matter.

The bulk viscosity might affect the hydrodynamic evolution of mergers by damping the
density oscillations which can affect the form of the gravitational signal.

Our aim is to study the bulk viscosity in dense baryonic matter for temperatures relevant
to neutron star mergers and supernovas T ≥ 5 MeV.

At these temperatures neutrinos are trapped in matter, and the bulk viscosity arises from
weak interaction (neutron decay and electron capture) processes.



Introduction & motivation

Relativistic hydrodynamics and bulk viscosity

Hydrodynamic evolution of a relativistic system is described by means of the
energy-momentum tensor and particle current which obey the conservation laws

∂µTµν = 0, ∂µNµ = 0.

For ideal hydrodynamic, i.e., without dissipation

Tµν0 = ε0uµuν − p0∆µν , Nµ0 = n0uµ,

and the system of conservation laws is closed by an equation of state p0 = peq(ε0, n0).

For a dissipative fluid with velocity gradients

Tµν = εuµuν − p∆µν + πµν , Nµ = nuµ.

In this case the pressure obtains a non-equilibrium contribution

p = peq + Π.

where the bulk viscous pressure reads Π = −ζθ with θ = ∂µuµ.

Thus, the bulk viscosity ζ describes dissipation in the case where pressure falls out of
equilibrium on uniform expansion/contraction.
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Urca processes and bulk viscosity

Urca process rates

We consider a simple composition of baryonic matter consisting of neutrons, protons,
electrons and neutrinos. The simplest weak-interaction processes are the following
(direct) Urca processes

n� p + e− + ν̄e (neutron decay process) (1)

p + e− � n + νe (electron capture process) (2)

In β-equilibrium the chemical potentials of particles obey the relation
µn + µν = µp + µe. Out of β-equilibrium in general implies an imbalance

µ∆ ≡ µn + µν − µp − µe 6= 0.

as a measure of deviation from β-equilibrium. The rate at which µ∆ relaxes to zero is a
measure of speed at which the constitution of matter adjusts to a change in pressure.
The β-equilibration rate for the neutron decay is given by

Γ1p(µ∆) =

∫
dΩ
∑

si

|MUrca|2 f (p′) f̄ (k′) f̄ (k) f̄ (p) (2π)4 δ(4)(p + k + k′ − p′),

with f̄ (p) = 1− f (p). Similar expressions can be written also for Γ1n, Γ2p and Γ2n.
The squared matrix element of Urca processes is

[
G2 = G2

F cos2 θc(1 + 3g2
A)
]
]∑

si

|MUrca|2 = 32G2(k · p′)(p · k′) ' 32G2p0p′0k0k′0.



Urca processes and bulk viscosity

Density oscillations in neutron-star matter

Consider now small-amplitude density oscillations in baryonic matter with frequency ω

nB(t) = nB0 + δnB(t), nL(t) = nL0 + δnL(t), δnB(t), δnL(t) ∼ eiωt.

The baryon and lepton number conservation ∂ni/∂t + div (niv) = 0 implies

δni(t) = −
θ

iω
ni0, i = {B, L}, θ = div v.

The oscillations cause perturbations in particle densities nj(t) = nj0 + δnj(t), due to
which the chemical equilibrium of matter is disturbed leading to a small shift
µ∆ = δµn + δµν − δµp − δµe, which can be written as

µ∆ = (Ann − Apn)δnn + Aννδnν − (App − Anp)δnp − Aeeδne, Aij =

(
∂µi

∂nj

)
0
.

The off-diagonal elements Anp and Apn are non-zero because of the cross-species strong
interaction between neutrons and protons.

If the weak processes are turned off, then a perturbation conserves all particle numbers

∂

∂t
δnj(t) + θnj0 = 0, δnj(t) = −

θ

iω
nj0.



Urca processes and bulk viscosity

Chemical balance equations and bulk viscosity

Out of equilibrium the chemical equilibration rate to linear order in µ∆ is given by

Γp − Γn = λµ∆, λ > 0.

The rate equations which take into account the loss and gain of particles read as

∂

∂t
δnn(t) + θnn0 = −λµ∆(t),

∂

∂t
δnp(t) + θnp0 = λµ∆(t).

Solving these equations we can compute the pressure out of equilibrium

p = p(nj) = p(nj0 + δnj) = p0 + δp = peq + δp′,

where the non-equilibrium part of the pressure - the bulk viscous pressure, is given by

Π ≡ δp′ =
∑

j

(
∂p
∂nj

)
0
δn′j =

∑
ij

ni0Aijδn′j .

The bulk viscosity is then identifined from Π = −ζθ

ζ =
C2

A
λA

ω2 + λ2A2

with susceptibilities A = −
1

nB

(
∂µ∆

∂xp

)
nB

and C = nB

(
∂µ∆

∂nB

)
xp

.



Urca processes and bulk viscosity

Limiting cases for bulk viscosity

In the low-temperature limit the matter is ν-transparent, and the equilibration rate λ reads

λtrans =
17

240π
m∗2G2T4pFeθ(pFp + pFe − pFn),

where pFi are Fermi-momenta of particles. The θ-function blocks direct Urca processes
at densities where pFp + pFe < pFn ⇒ modified Urca processes should be included.

The neutrino-trapped β-equilibration rate for strongly degenerate matter is given by

λtrap =
1

12π3
m∗2G2T2pFepFν(pFe + pFν − |pFn − pFp|).

In contrast to the ν-transparent case here the rate is finite in the low-temperature limit
⇒ modified Urca reactions are not required to be included.

Because in the degenerate regime pFi � T , the equilibration rate is alwals much larger in
the case of trapped neutrinos.

In the high-frequency (ω � λA), low-frequency (ω � λA) limits and at the maximum
of the bulk viscosity (ω = λA) we find

ζhigh =
C2λ

ω2
, ζlow =

C2

λA2
, ζmax =

C2

2Aω
.



Density functional theory

Beta-equilibrated nuclear matter

We use the density functional theory approach to the nuclear matter, which is based on
phenomenological baryon-meson Lagrangians of the type proposed by Walecka and others.

The Lagrangian density of matter is given by

L =
∑

N

ψ̄N

[
γµ
(

i∂µ − gωNωµ −
1
2

gρNτρµ

)
− m∗N

]
ψN +

∑
λ

ψ̄λ(iγµ∂µ − mλ)ψλ

+
1
2
∂µσ∂µσ −

1
2

m2
σσ

2 − U(σ)−
1
4
ωµνωµν +

1
2

m2
ωω

µωµ −
1
4
ρµνρµν +

1
2

m2
ρρ
µρµ.

The pressure of baryonic matter is given by

PN = −
m2
σ

2
σ2 − U(σ) +

∑
λ

gλ
6π2

∫ ∞
0

k4 dk
(k2 + m2

λ)1/2

[
f (Eλk − µλ) + f (Eλk + µλ)

]
+

m2
ω

2
ω2

0 +
m2
ρ

2
ρ2

03 +
∑

N

2JN + 1
6π2

∫ ∞
0

k4 dk
(k2 + m∗2

N )1/2

[
f (EN

k − µ
∗
N) + f (EN

k + µ∗N)
]

Here m∗N = mN − gσNσ and µ∗N = µN − gωNω0 − gρNρ03I3 are the nucleon effective mass

and effective chemical potentials, respectively; I3 is the third component of nucleon isospin and

σ, ω0 and ρ03 are the mean values of the meson fields.



Density functional theory

Meson mean-fields and susceptibilities

The mean-field values of the ω and ρ mesons are given by

gωω0 =

(
gω
mω

)2

(nn + np), gρρ03 =
1
2

(
gρ
mρ

)2

(np − nn).

The mean value of the scalar field is given by

gσσ = −
gσ
m2
σ

∂U(σ)

∂σ
+

1
π2

(
gσ
mσ

)2∑
N

∫ ∞
0

p2dp
m∗√

p2 + m∗2
[fN(p) + f̄N(p)].

The “beta-disequilibrium–proton-fraction” susceptibility in low-T limit is given by

A =
π2

m∗

(
1

pFn
+

1
pFn

)
+
π2

p2
Fe

+
2π2

p2
Fν

+

(
gρ
mρ

)2

.

The “beta-disequilibrium–baryon-density” susceptibility in low-T limit reads

C =
p2

Fn − p2
Fp

3m∗
+

pFν − pFe

3
+

nn − np

2

(
gρ
mρ

)2

+ nB
p2

Fn − p2
Fp

2m∗2

(
gσ
mσ

)2

.



Density functional theory

Particle fractions in equilibrium

The particle fractions are found from β-equilibrium conditions µn + µν = µp + µe and
µµ = µe, the charge neutrality condition np = ne + nµ, the baryon number conservation
nB = nn + np, and the lepton number conservation nl + nνl = nL = YLnB.
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We consider two cases: (i) YL = 0.1 for both flavors, typical for neutron star mergers;
(ii) YLe = 0.4 and YLµ = 0 typical for matter in supernovae and proto-neutron stars.

The particle fractions are not sensitive to the temperature for the given value of YL.

In the low-density and high-temperature regime the net neutrino density becomes
negative, indicating that there are more anti-neutrinos than neutrinos in that regime.

Merger matter has much smaller electron neutrino fraction than supernova matter.



Density functional theory

The equation of state for two models of nuclear matter
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In the case of model DD-ME2 U(σ) = 0, and the couplings gσ , gω and gρ are
density-dependent.

In the case of model NL3 U(σ) = g2σ
3/3 + g3σ

4/4 6= 0, but the couplings gσ , gω and
gρ are density-independent.



Results for bulk viscosity

β-equilibration rates (DD-ME2)
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The neutron decay rate Γ1 is exponentially suppressed at low temperatures because of
damping of anti-neutrino population in the degenerate matter.

The electron capture rate Γ2 has a finite low-temperature limit which is ∝ T3.

In the regime of interest Γ1 � Γ2, therefore the electron capture process dominates in
the β-equilibration and the bulk viscosity.



Results for bulk viscosity

β-relaxation rate (DD-ME2)
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The β-relaxation rate λA determines the frequency at which the bulk viscosity reaches its
resonant maximum (ωmax = λA).
The relaxation rate is slowest in the neutrino-transparent case, and increases with the
lepton fraction in the neutrino-trapped case.
In neutrino-trapped matter λA� ω for oscillation frequencies typical to neutron star
mergers and supernovas ⇒ the bulk viscosity takes the form ζ ≈ C2/(λA2).
The neutrino-transparent matter instead features a relaxation rate which is comparable to
the oscillation frequencies at typical temperatures T ' 2÷ 7 MeV.



Results for bulk viscosity

The susceptibility prefactor C2/A (DD-ME2)
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The susceptibility A does not depend strongly on the density and temperature and has
roughly the same order of magnitude A ∼ 10−3 MeV−2.
The susceptibility C increases with density and at high temperatures T & 30 MeV
crosses zero at certain values of density where the proton fraction attains a minimum.
At this critical density the system is scale-invariant: it can be compressed and remain in
beta equilibrium ⇒ the bulk viscosity drops to zero at the critical point.



Results for bulk viscosity

Bulk viscosity of neutrino-trapped matter (DD-ME2)
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The density dependence of the bulk viscosity follows that of the susceptibility C2/A.
The temperature dependence of ζ arises mainly from that of β-relaxation rate λA ∝ T2.
Bulk viscosity is independent of oscillation fequency and decreases as ζ ∝ T−2 in the
neutrino-trapped regime.
This scaling breaks down at high temperatures T ≥ 30 MeV where the bulk viscosity has
sharp minimums ζ → 0 when the matter becomes scale-invariant.



Results for bulk viscosity

Bulk viscosity of neutrino-trapped matter (NL3)
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The density dependence of the bulk viscosity follows that of the susceptibility C2/A.
The temperature dependence of ζ arises mainly from that of β-relaxation rate λA ∝ T2.
Bulk viscosity is independent of oscillation fequency and decreases as ζ ∝ T−2 in the
neutrino-trapped regime.
This scaling breaks down at high temperatures T ≥ 30 MeV where the bulk viscosity has
sharp minimums ζ → 0 when the matter becomes scale-invariant.



Results for bulk viscosity

Bulk viscosity of neutrino-transparent matter
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The bulk viscosity in neutrino-transparent matter is frequency-dependent.

The relaxation rate is slower for neutrino-transparent matter, and the resonant peak of the
bulk viscosity occurs within its regime of validity.

It attains its maximum value at temperature T ' 2÷ 7 MeV, where ω = λA.

This is the temperature range which is relevant for neutron-star mergers. 1

1
M. G. Alford, et al., On the importance of viscous dissipation and heat conduction in binary neutron-star mergers, 2017



Results for bulk viscosity

Bulk viscosity of neutrino-transparent matter (NL3)
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The bulk viscosity in neutrino-transparent matter is frequency-dependent.

The relaxation rate is slower for neutrino-transparent matter, and the resonant peak of the
bulk viscosity occurs within its regime of validity.

It attains its maximum value at temperature T ' 2÷ 7 MeV, where ω = λA.

This is the temperature range which is relevant for neutron-star mergers. 2

2
M. G. Alford, et al., On the importance of viscous dissipation and heat conduction in binary neutron-star mergers, 2017



Results for bulk viscosity

Bulk viscosity of baryonic matter (DD-ME2)
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We interpolate our numerical results for the bulk viscosity between the
neutrino-transparent and neutrino-trapped regimes in the interval 5 ≤ T ≤ 10 MeV.

The bulk viscosity in the neutrino transparent regime is larger, and drops by orders of
magnitude as the matter enters the neutrino-trapped regime.

The bulk viscosity attains its maximum at temperatures T ' 2÷ 6 MeV.



Results for bulk viscosity

Bulk viscosity of baryonic matter (NL3)
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We interpolate our numerical results for the bulk viscosity between the
neutrino-transparent and neutrino-trapped regimes in the interval 5 ≤ T ≤ 10 MeV.

The bulk viscosity in the neutrino transparent regime is larger, and drops by orders of
magnitude as the matter enters the neutrino-trapped regime.

The bulk viscosity attains its maximum at temperatures T ' 2÷ 6 MeV.



Results for bulk viscosity

Estimation of oscillation damping timescale

The energy density of baryonic oscilations with amplitude δnB is

ε =
K
2

(δnB)2

nB
.

Coefficient K is the compressibility of nuclear matter

K = nB
∂2ε

∂n2
B
.

The enegy dissipation rate per volume by bulk viscosity is

dε
dt

=
ω2ζ

2

(
δnB

nB

)2

.

The characteristic timescale required for dissipation is τ = ε/(dε/dt)

τ =
KnB

ω2ζ
.

In the high-frequency (ω � λA), low-frequency (ω � λA) limits and at the maximum
of the bulk viscosity (ω = λA) we find

τhigh =
KnB

λC2
, τlow =

λ2A2

ω2

KnB

λC2
, τmin = 2

KnB

λC2
.



Results for bulk viscosity

Nuclear compressibility for two EoS
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Results for bulk viscosity

Oscillation damping timescale for DD-ME2 model
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Damping timescales are comparable to the merging timescales τmerg ' 10 ms at
temperatures T . 7 MeV where neutrinos are not trapped.
Therefore, bulk viscosity will have its greatest impact on neutron star mergers in regions
that are neutrino transparent rather than neutrino trapped.
This also implies weak damping of gravitational waves emitted by the oscillations of the
post-merger remnant in the high-temperature, neutrino-trapped phase of evolution.



Results for bulk viscosity

Oscillation damping timescale for NL3 model
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Damping timescales are comparable to the merging timescales τmerg ' 10 ms at
temperatures T . 7 MeV where neutrinos are not trapped.
Therefore, bulk viscosity will have its greatest impact on neutron star mergers in regions
that are neutrino transparent rather than neutrino trapped.
This also implies weak damping of gravitational waves emitted by the oscillations of the
post-merger remnant in the high-temperature, neutrino-trapped phase of evolution.



Conclusions

Conclusions

We studied the bulk viscosity of dense nuclear matter in the case of trapped neutrinos.

We find that the bulk viscosity is dominated by electron capture process and its inverse.

The bulk viscosity attains its maximum at temperatures 2÷ 7 MeV for
neutrino-transparent matter.

The neutrino-trapped bulk viscosity does not attain its maximum within its range of
validity because of faster equilibration rates.

The nuclear matter becomes scale-invariant at a critical density at high temperatures
T ≥ 30 MeV driving the bulk viscosity to zero at those points.

The bulk viscosity of neutrino-trapped matter is several orders of magnitude smaller than
that of neutrino-transparent matter.

We find that the neutron star oscillation damping timescales in neutrino-trapped matter
are likely to be too long to affect the evolution of neutron star mergers.

This also implies weak damping of gravitational waves emitted by the oscillations of the
post-merger remnant in the high-temperature, neutrino-trapped phase of evolution.
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