Complex poles and spectral function of Yang-Mills theory

Yui Hayashi

Graduate School of Science and Engineering, Chiba University
March 26, 2019
in collaboration with K.-I. Kondo: based on
Y. H. and K.-I. Kondo, arXiv:1812.03116 (to appear in PRD),
see also
K.-I. Kondo, M. Watanabe, Y.H., R. Matsudo, Y. Suda, arXiv:1902.08894

Introduction

Color Confinement: the central feature of the strong interactions Colored particles, especially quarks and gluons, are absent in the observed spectrum.

To investigate the gluon confinement, we consider the Landau-gauge gluon propagator.

Introduction: decoupling solution

In the Landau gauge, the gluon and ghost propagators $D\left(k^{2}\right), \Delta_{g h}\left(k^{2}\right)$ take the forms,

$$
D_{\mu \nu}^{A B}(k)=\delta^{A B}\left(\delta_{\mu \nu}-\frac{k_{\mu} k_{\nu}}{k^{2}}\right) D\left(k^{2}\right), \Delta_{g h}^{A B}(k)=\delta^{A B} \Delta_{g h}\left(k^{2}\right)
$$

Recent lattice studies support the decoupling solution: massive gluon and massless ghost. ${ }^{1}$

${ }^{1}$ Figures: $S U(3)$ Yang-Mills, $\beta=6.3, L=128$, A.G. Duarte, O. Oliveira, and P.J. Silva, Phys. Rev. D94 (2016) 014502. arXiv:1605.00594 [hep-lat]

Introduction: spectral representation

A physical particle: Källén-Lehmann spectral representation, having singularities only on the time-like momentum (if analytically continued to k^{2} complex plane),

$$
D\left(k^{2}\right)=\int_{0}^{\infty} d \sigma^{2} \frac{\rho\left(\sigma^{2}\right)}{\sigma^{2}-k^{2}}
$$

follows from

- Poincaré invariance
- spectral condition : positive-definiteness of $P^{\mu} P_{\mu}$ and P^{0}
- completeness of the state space: $1=\sum_{n}|n\rangle\langle n|$

The spectral function

$$
\rho\left(\sigma^{2}\right)=\frac{1}{\pi} \operatorname{lm} D\left(\sigma^{2}+i \epsilon\right)
$$

contains "kinematic information".

Introduction: complex poles

A confined particle can have other analytic structure e.g. Gribov-Zwanziger model predicts the gluon propagator with a pair of complex conjugate poles

$$
D\left(k^{2}\right)=-\frac{k^{2}}{k^{4}+\gamma^{4}}
$$

In contrary, such "one-gluon state" should be excluded from a physical subspace via some confinement mechanism, since existence of complex poles invalidates the Källén-Lehmann spectral representation. The existence of complex poles can be a signal of confinement.
\rightarrow Consider the possibility of complex poles!

Plan

Introduction

Spectral representation from analyticity

Spectral function and the number of complex poles

Example: massive Yang-Mills model

Related topics and summary

Spectral representation from analyticity

The Källén-Lehmann spectral representation can be rederived by the following assumptions

1. $D(z)$ is holomorphic except singularities on the positive real axis.
2. $D(z) \rightarrow 0$ as $|z| \rightarrow \infty$.
3. $D(z)$ is real on the negative real axis.

$$
\begin{aligned}
D\left(k^{2}\right) & =\frac{1}{2 \pi i} \oint_{C} d \zeta \frac{D(\zeta)}{\zeta-k^{2}} \\
& =\int_{0}^{\infty} d \sigma^{2} \frac{\rho\left(\sigma^{2}\right)}{\sigma^{2}-k^{2}} \\
\rho\left(\sigma^{2}\right) & :=\frac{1}{\pi} \operatorname{Im} D\left(\sigma^{2}+i \epsilon\right) .
\end{aligned}
$$

Generalization

Generalization to the case in the presence of complex simple poles ${ }^{2}$ 1. $D(z)$ is holomorphic except singularities on the positive real axis and a finite number of simple poles.
2. $D(z) \rightarrow 0$ as $|z| \rightarrow \infty$.
3. $D(z)$ is real on the negative real axis.

$$
\begin{aligned}
D\left(k^{2}\right) & =\int_{0}^{\infty} d \sigma^{2} \frac{\rho\left(\sigma^{2}\right)}{\sigma^{2}-k^{2}} \\
& +\sum_{\ell=1}^{n} \frac{Z_{\ell}}{z_{\ell}-k^{2}}, \\
\rho\left(\sigma^{2}\right) & :=\frac{1}{\pi} \operatorname{Im} D\left(\sigma^{2}+i \epsilon\right), \\
Z_{\ell} & :=\oint_{\gamma_{\ell}} \frac{d \zeta}{2 \pi i} D(\zeta) .
\end{aligned}
$$

${ }^{2}$ F. Siringo, EPJ Web Conf. 137, 13017 (2017) arXiv: 1606.03769 [hep-ph]

Note: a generalized sum rule for the gluon propagator with complex poles

In the presence of complex poles, the superconvergence relation ${ }^{3}$

$$
\int_{0}^{\infty} d \sigma^{2} \rho\left(\sigma^{2}\right)=0
$$

does not hold generically. Instead, the RG analysis from the asymptotic freedom and the negativity of the gluon anomalous dimension yields

$$
\lim _{\left|k^{2}\right| \rightarrow \infty} k^{2} D\left(k^{2}\right)=0
$$

and therefore,

$$
\sum_{\ell=1}^{n} Z_{\ell}+\int_{0}^{\infty} d \sigma^{2} \rho\left(\sigma^{2}\right)=0
$$

[^0]
Note: a generalized sum rule for the gluon propagator with complex poles

In particular, for the gluon propagator with one pair of complex conjugate poles,

$$
\begin{aligned}
D\left(k^{2}\right)= & \int_{0}^{\infty} d \sigma^{2} \frac{\rho\left(\sigma^{2}\right)}{\sigma^{2}-k^{2}} \\
& +\frac{Z}{(v+i w)-k^{2}}+\frac{Z^{*}}{(v-i w)-k^{2}}
\end{aligned}
$$

we obtain the modified sum rule,

$$
2 \operatorname{Re} Z+\int_{0}^{\infty} d \sigma^{2} \rho\left(\sigma^{2}\right)=0
$$

Conversely, the violation of the Oehme-Zimmermann superconvergence relation indicates the existence of complex poles or other singularities.

Introduction

Spectral representation from analyticity

Spectral function and the number of complex poles

Example: massive Yang-Mills model

Related topics and summary

Spectral function and the number of complex poles

Argument principle for a propagator $D\left(k^{2}\right)$:

$$
N_{W}(C):=\frac{1}{2 \pi i} \oint_{C} d k^{2} \frac{D^{\prime}\left(k^{2}\right)}{D\left(k^{2}\right)}=N_{Z}-N_{P} .
$$

\rightarrow relations between the spectral function, $\rho\left(\sigma^{2}\right)=\frac{1}{\pi} \operatorname{lm} D\left(\sigma^{2}+i \epsilon\right)$, and the number of complex poles. (with suitable assumptions)

- (I) Positive spectral function
$\rightarrow N_{P}=N_{Z}$,
- (II) Negative spectral function $\rightarrow N_{P}=2+N_{Z}$:
$2+N_{Z}$ complex poles

etc.

Case (I) Positive spectral function

Suppose that a propagator exhibits the following behaviors.

1. The propagator has the leading asymptotic behavior: $D(z) \sim-\frac{1}{z} \tilde{D}(z)$ as $|z| \rightarrow \infty$, where $\tilde{D}(z)$ is a real and positive function $\tilde{D}(z)>0$ for large $|z|$.
2. $\rho\left(\sigma^{2}\right)>0$, i.e., $\operatorname{Im} D\left(\sigma^{2}+i \epsilon\right)>0$ for $\sigma^{2}>0$.
3. $D\left(k^{2}=0\right)>0$.

Assumption (1) \rightarrow

$$
\begin{aligned}
N_{W}\left(C_{1}\right): & =\frac{1}{2 \pi i} \int_{C_{1}} d k^{2} \frac{D^{\prime}\left(k^{2}\right)}{D\left(k^{2}\right)} \\
& =-1
\end{aligned}
$$

Case (I) Positive spectral function

Assumption (1) :
$D\left(k^{2} \rightarrow+\infty\right) \rightarrow-0$,
Assumption (3) :
$D\left(k^{2}=0\right)>0$, and
Assumption (2) :
$\rho\left(\sigma^{2}\right)=\operatorname{Im} D\left(\sigma^{2}+i \epsilon\right)>0$
Then, the winding number of the phase reads

$$
\begin{aligned}
N_{W}\left(C_{2}\right): & =\frac{1}{2 \pi i} \int_{C_{2}} d k^{2} \frac{D^{\prime}\left(k^{2}\right)}{D\left(k^{2}\right)} \\
& =+1
\end{aligned}
$$

Case (I) Positive spectral function

1. The propagator has the leading asymptotic behavior: $D(z) \sim-\frac{1}{z} \tilde{D}(z)$ as $|z| \rightarrow \infty$, where $\tilde{D}(z)$ is a real and positive function $\tilde{D}(z)>0$ for large $|z|$.
2. $\rho\left(\sigma^{2}\right)>0$, i.e., $\operatorname{Im} D\left(\sigma^{2}+i \epsilon\right)>0$ for $\sigma^{2}>0$.
3. $D\left(k^{2}=0\right)>0$.

$$
\begin{aligned}
\Longrightarrow N_{Z}-N_{P} & =N_{W}(C) \\
& =N_{W}\left(C_{1}\right)+N_{W}\left(C_{2}\right) \\
& =-1+1=0
\end{aligned}
$$

It is consitent with the physical case, where $N_{Z}=N_{P}=0$.

Case (II) Negative spectral function

Suppose

1. The propagator has the leading asymptotic behavior: $D(z) \sim-\frac{1}{z} \tilde{D}(z)$ as $|z| \rightarrow \infty$, where $\tilde{D}(z)$ is a real and positive function $\tilde{D}(z)>0$ for large $|z|$.
2. $\rho\left(\sigma^{2}\right)<0$, i.e., $\operatorname{Im} D\left(\sigma^{2}+i \epsilon\right)<0$ for $\sigma^{2}>0$.
3. $D\left(k^{2}=0\right)>0$.

Then, as before,

$$
N_{W}\left(C_{1}\right)=-1
$$

but, due to $\rho\left(\sigma^{2}\right)<0$,

$$
N_{W}\left(C_{2}\right)=-1
$$

leads to

$$
N_{Z}-N_{P}=N_{W}(C)=-2
$$

Note: "negativity in a weak sense"

To have $N_{W}(C)=-2$, the following "negativity in a weak sense" is enough instead of the assumption (2) $\rho\left(\sigma^{2}\right)<0$ for $\sigma^{2}>0$: $\rho\left(k_{0}^{2}\right)<0$ for all real positive zeros $k_{0}^{2}>0$ of $\operatorname{Re} D\left(k^{2}\right)$, $\operatorname{Re} D\left(k_{0}^{2}\right)=0$

Generalization

We define "positivity and negativity in a weak sense" as follows.

- quasi-positive

A spectral function $\rho\left(\sigma^{2}\right)$ is quasi-positive if and only if $k^{2}>0 \wedge \operatorname{Re} D\left(k^{2}\right)=0 \Rightarrow \rho\left(k^{2}\right)>0$, i.e., the spectral function is positive at all time-like zeros of $\operatorname{Re} D$.

- quasi-negative

A spectral function $\rho\left(\sigma^{2}\right)$ is quasi-negative if and only if $k^{2}>0 \wedge \operatorname{Re} D\left(k^{2}\right)=0 \Rightarrow \rho\left(k^{2}\right)<0$, i.e., the spectral function is negative at all time-like zeros of $\operatorname{Re} D$.
Although they are sufficient, not necessary, assumption to establish the generalized claim, the classification covers many spectral functions.
e.g. If $\operatorname{Re} D\left(k^{2}\right)$ has one zero on $k^{2}>0$, a spectral function is quasi-positive or quasi-negative.

Case (I') Quasi-positive spectral function

1. The propagator has the leading asymptotic behavior: $D(z) \sim-\frac{1}{z} \tilde{D}(z)$ as $|z| \rightarrow \infty$, where $\tilde{D}(z)$ is a real and positive function $\tilde{D}(z)>0$ for large $|z|$.
2. The spectral function $\rho\left(\sigma^{2}\right)$ is quasi-positive, i.e., $\operatorname{Im} D\left(\sigma^{2}+i \epsilon\right)>0$ for any $\sigma^{2}>0$ satisfying $\operatorname{Re} D\left(\sigma^{2}\right)=0$.
3. $D\left(k^{2}=0\right)>0$.

- $N_{W}\left(C_{1}\right)=-1$ as before,
- $N_{W}\left(C_{2}\right)=1$, because the trajectory on the phase $S^{1}: D\left(k^{2}\right) /\left|D\left(k^{2}\right)\right|$ can be continuously deformed into one of the positive case.

$$
N_{Z}-N_{P}=N_{W}(C)=0
$$

Example?: the numerical solution of DSE on complex k^{2} plane ${ }^{4}$
${ }^{4}$ S. Strauss, C. S. Fischer, and C. Kellermann, Phys. Rev. Lett. 109, 252001 (2012)

Case (I') Quasi-positive spectral function:

$$
N_{W}\left(C_{2}\right)=1
$$

Let us look into the upper part of
C_{2}, from $Q\left(k^{2}=0\right.$, $D /|D|=+1$) to R $\left(k^{2}=+\infty+i \epsilon, D /|D| \rightarrow-1\right)$. Since the spectral function is quasi-positive, the trajectory of $D /|D|$ never passes through $D /|D|=-i$. The trajectory can
 then be continuously deformed into one of the positive case.

$$
\Longrightarrow N_{W}\left(C_{2}\right)=1 .
$$

Case (II') Quasi-negative spectral function

1. The propagator has the leading asymptotic behavior: $D(z) \sim-\frac{1}{z} \tilde{D}(z)$ as $|z| \rightarrow \infty$, where $\tilde{D}(z)$ is a real and positive function $\tilde{D}(z)>0$ for large $|z|$.
2. The spectral function $\rho\left(\sigma^{2}\right)$ is quasi-negative, i.e., $\operatorname{Im} D\left(\sigma^{2}+i \epsilon\right)<0$ for any $\sigma^{2}>0$ satisfying $\operatorname{Re} D\left(\sigma^{2}\right)=0$.
3. $D\left(k^{2}=0\right)>0$.

- $N_{W}\left(C_{1}\right)=-1$ as before,
- $N_{W}\left(C_{2}\right)=-1$, because the trajectory $D\left(k^{2}\right) /\left|D\left(k^{2}\right)\right|$ can be continuously deformed into one of the negative case.

$$
N_{Z}-N_{P}=N_{W}(C)=-2
$$

Example: massive Yang-Mills model and its related models ${ }^{5}$
${ }^{5}$ M. Tissier and N. Wschebor, Phys.Rev. D84, 045018 (2011);M. Peláez, M. Tissier, and N. Wschebor, Phys. Rev. D90, 065031 (2014); F. Siringo, Nucl.Phys. B 907, 572 (2016)

Note: scaling behavior yields negative contribution

$$
\text { to } N_{W}(C)
$$

If the propagator has the scaling behavior $D\left(k^{2}\right) \rightarrow Z\left(-k^{2}\right)^{\alpha-1}$ ($1>\alpha-1>0$), the integration around $k^{2}=0$ gives negative contribution to the winding number $N_{W}(C)=N_{Z}-N_{P}$.
C encloses $k^{2}=0$ clockwise
\rightarrow the zero at $k^{2}=0$ gives negative contribution to the winding number

$$
N_{W}(C)=\frac{1}{2 \pi i} \oint_{C} d k^{2} \frac{D^{\prime}\left(k^{2}\right)}{D\left(k^{2}\right)}
$$

k^{2}

Scaling behavior

For example, we can obtain the following proposition

1. The propagator has the leading asymptotic behavior: $D(z) \sim-\frac{1}{z} \tilde{D}(z)$ as $|z| \rightarrow \infty$, where $\tilde{D}(z)$ is a real and positive function $\tilde{D}(z)>0$ for large $|z|$.
2. The spectral function $\rho\left(\sigma^{2}\right)$ is quasi-negative or quasi-positive.
3. $D\left(k^{2}\right) \rightarrow Z\left(-k^{2}\right)^{\alpha-1}$, where $Z>0$ and $2>\alpha>1$.

Then,

$$
N_{Z}-N_{P}= \begin{cases}0 & (1<\alpha<1.5, \rho \text { is quasi-positive }) \\ -2 & (1<\alpha<1.5, \rho \text { is quasi-negative }) \\ -2 & (1.5<\alpha<2, \rho \text { is quasi-positive }) \\ -2 & (1.5<\alpha<2, \rho \text { is quasi-negative })\end{cases}
$$

Example: Gribov propagator
"Negative" spectral function \rightarrow complex poles
Argument principle for a propagator $D\left(k^{2}\right)$:

$$
N_{W}(C):=\frac{1}{2 \pi i} \oint_{C} d k^{2} \frac{D^{\prime}\left(k^{2}\right)}{D\left(k^{2}\right)}=N_{Z}-N_{P} .
$$

- Negative spectral function $\rightarrow N_{W}(C)=-2, N_{P}=2+N_{Z}$
- "Negativity of the spectral function in a weak sense": $N_{W}(C)=-2$ yields the existence of complex poles in $D\left(k^{2}\right)$.
- The Landau-gauge gluon propagator has a negative spectral function in UV: $\rho\left(\sigma^{2}\right) \rightarrow \rho_{U V}\left(\sigma^{2}\right)<0, \sigma^{2} \rightarrow \infty .{ }^{6}$
\rightarrow This relation, arising from the argument principle, implies the existence of complex poles in the Landau-gauge gluon propagator.

[^1]
Introduction

Spectral representation from analyticity

Spectral function and the number of complex poles

Example: massive Yang-Mills model

Related topics and summary

Massive Yang-Mills model: an effective theory of the Landau-gauge pure Yang-Mills theory

To capture the decoupling feature, we add the naive mass term to the Landau-gauge Yang-Mills theory $(\alpha \rightarrow 0)$,
$\mathcal{L}_{m Y M}=-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu}-\frac{1}{2 \alpha}\left(\partial^{\mu} A_{\mu}^{A}\right)^{2}+i \bar{c}^{A} \partial^{\mu} \mathcal{D}_{\mu}[A]^{A B} c^{B}+\frac{1}{2} M^{2} A_{\mu}^{A} A^{A \mu}$
The origin of the effective mass term can be related with Gribov ambiguity ${ }^{7}, A_{\mu} A_{\mu}$ condensation ${ }^{8}$, or other non-perturbative effects.
${ }^{7}$ In the absolute Landau gauge, the functional along a gauge orbit

$$
F_{A}[U]:=\int d^{D} x \operatorname{tr}\left(A_{\mu}^{U} A_{\mu}^{U}\right)
$$

is minimized to pick up one configuration from a gauge orbit.
${ }^{8}$ H. Verschelde, K. Knecht, K. Van Acoleyen and M. Vanderkelen, Phys. Lett. B 516307 (2001) [arXiv:hep-th/0105018].

Massive Yang-Mills model: an effective theory of the Landau-gauge pure Yang-Mills theory

- Good accordance with the lattice results
- For some renormalization conditions and parameters, the running coupling has no Landau pole in all scales ${ }^{9}$
- Finite-temperature applications ${ }^{10}$
- It can reproduce both decoupling and (Gribov-type) scaling solution ${ }^{11}$
- also can be a probe to the radially-fixed gauge-scalar model ${ }^{12}$

[^2]Massive Yang-Mills model: an effective theory of the Landau-gauge pure Yang-Mills theory
Good accordance with the lattice results in the strict one-loop level: ${ }^{13}$

${ }^{13} S U(3)$ Yang-Mills, $\beta=6.3, L=128$, rescaled due to some renormalization factor, A.G. Duarte, O. Oliveira, and P.J. Silva, Phys. Rev. D94 (2016) 014502. arXiv:1605.00594 [hep-lat]; fitting parameters: $g=4.1, M=0.45 \mathrm{GeV}$

Massive Yang-Mills model: Infrared-safety

In the renormalization condition respecting the non-renormalization theorems, ${ }^{14}$

$$
\left\{\begin{array}{l}
Z_{A} Z_{C} Z_{M^{2}}=1 \\
\Gamma_{A}^{(2)}\left(k_{E}=\mu\right)=\mu^{2}+M^{2} \\
\Gamma_{g h}^{(2)}\left(k_{E}=\mu\right)=\mu^{2} \\
Z_{g} \sqrt{Z_{A}} Z_{C}=1
\end{array}\right.
$$

this model has trajectories without Landau pole in all scale, especially the flow of the fitting parameters
 (red line). ${ }^{15}$
${ }^{1}$ D. Dudal, H. Verschelde and S. P. Sorella, Phys. Lett. B 555126 (2003). N. Wschebor, Int. J. Mod. Phys. A 232961 (2008)J. C. Taylor, Nucl. Phys. B 33436 (1971)
${ }^{2}$ M. Tissier and N. Wschebor, Phys.Rev. D84, 045018 (2011). arXiv:1105.2475 [hep-th]

Massive Yang-Mills model: decoupling and scaling

The infrared-safe trajectories exhibits the decoupling features. On the separatrix(green), the flow has non-trivial IR fixed point, and behave as Gribov-type scaling solution. ${ }^{16}$

${ }^{16}$ U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor, Phys. Rev. D96, 014005 (2017). arXiv:1703.04041 [hep-th]

Analytic structure of the propagators in massive Yang-Mills model

In this model, for any parameters $\left(g^{2}, M^{2}\right)$,

- the gluon propagator has a negative spectral function, and therefore one pair of complex conjugate poles, or
"tachyonic" (real negative) poles with multiplicity two,
- the ghost propagator has no complex poles.

The RG improvement for a flow without Landau pole does not change these consequences.

Negative spectral function and one pair of complex conjugate poles of the transverse gluon propagator

At one-loop, we find for any $\left(g^{2}, M^{2}\right)$,

$$
\begin{aligned}
\rho\left(\sigma^{2}\right) & =\frac{1}{\pi} \operatorname{Im} D\left(\sigma^{2}+i \epsilon\right) \\
& =-\frac{1}{\pi} \frac{\operatorname{Im} \Pi\left(\sigma^{2}+i \epsilon\right)}{\left(M^{2}-\sigma^{2}+\operatorname{Re} \Pi\right)^{2}+(\operatorname{Im} \Pi)^{2}}<0 .
\end{aligned}
$$

and $\Gamma_{A}^{(2)}\left(k^{2}\right)=\frac{1}{D\left(k^{2}\right)}$ is regular on the complex k^{2} plane. Then $N_{P}-N_{Z}=2$ and $N_{Z}=0$, thus $N_{P}=2$: one pair of complex conjugate poles, or "tachyonic" (real negative) poles with multiplicity two.

The two properties of $\operatorname{Im} D\left(\sigma^{2}+i \epsilon\right)<0$ and regularity of $\Gamma_{A}^{(2)}\left(k^{2}\right)$ still hold after the RG improvement in one-loop level, if the flow has no Landau pole.

Origin of the negativity

Why $\rho\left(\sigma^{2}\right)<0$ in this model?

- In UV region: the negativity arises from the negativity of the gluon anomalous dimension, as in the pure Yang-Mills theory.
- In IR region: from the ghost-loop contribution.

(a)

(b)

(c)

Related topic: Violation of Reflection Positivity

If we consider Euclidean formulation as a starting point, the reconstruction of QFT requires the Osterwalder-Schrader axioms. One of the axioms is reflection positivity. The reflection positivity is violated in this model even in the transverse gluon sector, which is a signal of gluon confinement.
The reflection positivity for a 2-point Green function reads,

$$
\int d^{D} x \int d^{D} y f^{*}\left(\vec{x},-x_{D}\right) D(x-y) f\left(\vec{y}, y_{D}\right) \geq 0
$$

for any f, where $f\left(\vec{x}, x_{D}\right)$ is a complex valued test function with support in $\left\{\left(\vec{x}, x_{D}\right) ; x_{D}>0\right\}$. Some limit of this inequality requires the positivity of the Schwinger function $\Delta(t)$,

$$
\begin{aligned}
\Delta(t) & \geq 0 \\
\Delta(t) & :=\int d^{D-1} \vec{x} D(\vec{x}, t)=\int \frac{d k^{D}}{2 \pi} e^{i k^{D} t} D\left(\vec{k}=0, k^{D}\right)
\end{aligned}
$$

Related topic: Violation of Reflection Positivity

The gluon propagator in the massive Yang-Mills model has a negative spectral function $\rho\left(\sigma^{2}\right)<0$ and one pair of complex poles,

$$
\begin{aligned}
D\left(k^{2}\right)= & \int_{0}^{\infty} d \sigma^{2} \frac{\rho\left(\sigma^{2}\right)}{\sigma^{2}-k^{2}} \\
& +\frac{Z}{(v+i w)-k^{2}}+\frac{Z^{*}}{(v-i w)-k^{2}}
\end{aligned}
$$

This leads to violation of the reflection positivity, by simply evaluating the Schwinger function. ${ }^{17}$

$$
\Delta(t)=\int \frac{d k_{D}}{2 \pi} e^{i k_{D} t} D\left(\vec{k}=0, k_{D}\right)
$$

Since the contribution from the spectral function is negative for any t, and the one from the poles oscillates, the Schwinger function $\Delta(t)<0$ for some $t>0$.
${ }^{17}$ K.-I. Kondo, M. Watanabe, Y.H., R. Matsudo, Y. Suda, arXiv:1902.08894 [hep-th]

Massive Yang-Mills model in the parameter space

Since the gluon propagator has one pair of complex conjugate poles, we focus on the position of the complex conjugate poles $k^{2}=v \pm i w, w \geq 0$ in the parameter space $\left(g^{2}, M^{2}\right)$.

- No physical poles : gluons are always confined in this model
- Confinement-Higgs crossover $v \gg w$: particle-like gluon ("Higgs-like"); otherwise no particle picture ("Confinement-like").
- Similar structure can appear in the radially-fixed (strong scalar self-coupling) gauge-scalar model

cf.) Fradkin-Shenker continuity

Summary

- We have found the general relationships between the number of complex poles of a propagator and the sign of the spectral function by applying the argument principle to the propagator.
- In particular, "Negativity of the spectral function in a weak sense" yields the existence of complex poles.
It is well-known that the Landau-gauge gluon propagator has a negative spectral function in UV.
- In the effective (massive Yang-Mills) model of the Landau-gauge Yang-Mills theory, the gluon propagator has a negative spectral function and one pair of complex conjugate poles.
\rightarrow Our results implies the existence of complex poles in the Landau-gauge gluon propagator, signaling gluon confinement.

Related topics and future works

- Quark loop contribution seems not to affect the conclusion $N_{P}=2$ in the gluon propagator if $N_{f}<\frac{13}{4} C_{2}(G)$. Detailed analyses including the quark propagator: future work.
- Thermal contribution also seems not to affect the conclusion $N_{P}=2$. Some analytic feature from the gluon propagator near the deconfinement temperature?
- Relation with center vortices?
- Kinematic origin of complex poles, the violation of the Källén-Lehmann spectral representation?
- Confinement mechanism eliminating states yielding complex poles?

[^0]: ${ }^{3}$ R. Oehme and W. Zimmermann, Phys. Rev. D 21, 471-484 (1980)

[^1]: ${ }^{6}$ R. Oehme and W. Zimmermann, Phys. Rev. D 21, 471-484 (1980)

[^2]: ${ }^{9}$ M. Tissier and N. Wschebor, Phys.Rev. D84, 045018 (2011). arXiv:1105.2475 [hep-th]
 ${ }^{10}$ U. Reinosa, J. Serreau, M. Tissier and N. Wschebor, Phys. Rev. D 89 105016 (2014); Phys. Lett. B 742 (2015) 61; Phys. Rev. D 91045035 (2015); Phys. Rev. D 93105002 (2016).
 ${ }^{11}$ U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor, Phys. Rev. D96, 014005 (2017). arXiv:1703.04041 [hep-th]
 ${ }^{12}$ K.-I. Kondo, Eur. Phys. J. C 78, 577 (2018). arXiv:1804.03279 [hep-th] छ

