Complex poles and spectral function of Yang-Mills theory

Yui Hayashi

Graduate School of Science and Engineering, Chiba University

March 26, 2019

in collaboration with K.-I. Kondo: based on Y. H. and K.-I. Kondo, arXiv:1812.03116 (to appear in PRD),

----- see also

K.-I. Kondo, M. Watanabe, Y.H., R. Matsudo, Y. Suda, arXiv:1902.08894

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Introduction

Color Confinement: the central feature of the strong interactions Colored particles, especially quarks and gluons, are absent in the observed spectrum.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

To investigate the gluon confinement, we consider the Landau-gauge gluon propagator.

Introduction: decoupling solution

In the Landau gauge, the gluon and ghost propagators $D(k^2)$, $\Delta_{gh}(k^2)$ take the forms,

$$D_{\mu\nu}^{AB}(k) = \delta^{AB}\left(\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right) D(k^2), \ \Delta_{gh}^{AB}(k) = \delta^{AB}\Delta_{gh}(k^2)$$

Recent lattice studies support the decoupling solution: massive gluon and massless ghost. $^{1} \ \ \,$

Introduction: spectral representation

A physical particle: Källén-Lehmann spectral representation, having singularities only on the time-like momentum (if analytically continued to k^2 complex plane),

$$D(k^2) = \int_0^\infty d\sigma^2 \frac{\rho(\sigma^2)}{\sigma^2 - k^2},$$

follows from

- Poincaré invariance
- spectral condition : positive-definiteness of $P^\mu P_\mu$ and P^0
- completeness of the state space: $1 = \sum_n \ket{n} ra{n}$

The spectral function

$$\rho(\sigma^2) = \frac{1}{\pi} \operatorname{Im} D(\sigma^2 + i\epsilon).$$

contains "kinematic information".

Introduction: complex poles

A confined particle can have other analytic structure e.g. Gribov-Zwanziger model predicts the gluon propagator with a pair of complex conjugate poles

$$D(k^2) = -rac{k^2}{k^4 + \gamma^4}$$

In contrary, such "one-gluon state" should be excluded from a physical subspace via *some* confinement mechanism, since existence of complex poles invalidates the Källén-Lehmann spectral representation. The existence of complex poles can be a signal of confinement.

 \rightarrow Consider the possibility of complex poles!

Introduction Spectral representation from analyticity Spectral function and the number of complex poles Example: massive Yang-I

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Plan

Introduction

Spectral representation from analyticity

Spectral function and the number of complex poles

Example: massive Yang-Mills model

Related topics and summary

Spectral representation from analyticity

The Källén-Lehmann spectral representation can be rederived by the following assumptions

1. D(z) is holomorphic except singularities on the positive real axis.

2.
$$D(z) \rightarrow 0$$
 as $|z| \rightarrow \infty$.

3. D(z) is real on the negative real axis.

$$D(k^{2}) = \frac{1}{2\pi i} \oint_{C} d\zeta \frac{D(\zeta)}{\zeta - k^{2}}$$
$$= \int_{0}^{\infty} d\sigma^{2} \frac{\rho(\sigma^{2})}{\sigma^{2} - k^{2}},$$
$$\rho(\sigma^{2}) := \frac{1}{\pi} \text{Im } D(\sigma^{2} + i\epsilon).$$

Generalization

Generalization to the case in the presence of complex simple poles²

- 1. D(z) is holomorphic except singularities on the positive real axis and a finite number of simple poles.
- 2. $D(z) \rightarrow 0$ as $|z| \rightarrow \infty$.
- 3. D(z) is real on the negative real axis.

²F. Siringo, EPJ Web Conf. **137**, 13017 (2017) arXiv:1606.03769 [hep-ph]

Note: a generalized sum rule for the gluon propagator with complex poles

In the presence of complex poles, the superconvergence relation³

$$\int_0^\infty d\sigma^2 \rho(\sigma^2) = 0$$

does not hold generically. Instead, the RG analysis from the asymptotic freedom and the negativity of the gluon anomalous dimension yields

$$\lim_{|k^2|\to\infty}k^2D(k^2)=0$$

and therefore,

$$\sum_{\ell=1}^n Z_\ell + \int_0^\infty d\sigma^2 \rho(\sigma^2) = 0.$$

³R. Oehme and W. Zimmermann, Phys. Rev. D **21**, 471±484 (±980) → Ξ ∽۹۹0

Note: a generalized sum rule for the gluon propagator with complex poles

In particular, for the gluon propagator with one pair of complex conjugate poles,

$$D(k^{2}) = \int_{0}^{\infty} d\sigma^{2} \frac{\rho(\sigma^{2})}{\sigma^{2} - k^{2}} + \frac{Z}{(v + iw) - k^{2}} + \frac{Z^{*}}{(v - iw) - k^{2}},$$

we obtain the modified sum rule,

$$2\operatorname{Re} Z + \int_0^\infty d\sigma^2 \rho(\sigma^2) = 0.$$

Conversely, the violation of the Oehme-Zimmermann superconvergence relation indicates the existence of complex poles or other singularities.

Introduction

Spectral representation from analyticity

Spectral function and the number of complex poles

Example: massive Yang-Mills model

Related topics and summary

Spectral function and the number of complex poles

Argument principle for a propagator $D(k^2)$:

$$N_W(C) := rac{1}{2\pi i} \oint_C dk^2 rac{D'(k^2)}{D(k^2)} = N_Z - N_P.$$

etc.

 \rightarrow relations between the spectral function, $\rho(\sigma^2) = \frac{1}{\pi} \operatorname{Im} D(\sigma^2 + i\epsilon)$, and the number of complex poles. (with suitable assumptions)

- (I) Positive spectral function $\rightarrow N_P = N_Z$,
- (II) Negative spectral function $\rightarrow N_P = 2 + N_Z$: $2 + N_Z$ complex poles

Case (I) Positive spectral function

Suppose that a propagator exhibits the following behaviors.

1. The propagator has the leading asymptotic behavior: $D(z) \sim -\frac{1}{z}\tilde{D}(z)$ as $|z| \to \infty$, where $\tilde{D}(z)$ is a real and positive function $\tilde{D}(z) > 0$ for large |z|.

2.
$$\rho(\sigma^2) > 0$$
, *i.e.*, Im $D(\sigma^2 + i\epsilon) > 0$ for $\sigma^2 > 0$.
3. $D(k^2 = 0) > 0$.

Assumption (1) \rightarrow $N_W(C_1) := \frac{1}{2\pi i} \int_{C_1} dk^2 \frac{D'(k^2)}{D(k^2)}$ = -1.

Case (I) Positive spectral function

Assumption (1) :

$$D(k^2 \rightarrow +\infty) \rightarrow -0$$
,
Assumption (3) :
 $D(k^2 = 0) > 0$, and
Assumption (2) :
 $\rho(\sigma^2) = \operatorname{Im} D(\sigma^2 + i\epsilon) > 0$
Then, the winding number of the
phase reads

$$N_W(C_2) := \frac{1}{2\pi i} \int_{C_2} dk^2 \frac{D'(k^2)}{D(k^2)}$$

= +1.

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Case (I) Positive spectral function

- 1. The propagator has the leading asymptotic behavior: $D(z) \sim -\frac{1}{z}\tilde{D}(z)$ as $|z| \to \infty$, where $\tilde{D}(z)$ is a real and positive function $\tilde{D}(z) > 0$ for large |z|.
- 2. $\rho(\sigma^2) > 0$, *i.e.*, Im $D(\sigma^2 + i\epsilon) > 0$ for $\sigma^2 > 0$.

3.
$$D(k^2 = 0) > 0$$
.

$$\implies N_Z - N_P = N_W(C)$$
$$= N_W(C_1) + N_W(C_2)$$
$$= -1 + 1 = 0$$

It is consitent with the physical case, where $N_Z = N_P = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Case (II) Negative spectral function

Suppose

 The propagator has the leading asymptotic behavior: D(z) ~ -¹/_z D̃(z) as |z| → ∞, where D̃(z) is a real and positive function D̃(z) > 0 for large |z|.
 2. ρ(σ²) < 0, *i.e.*, Im D(σ² + iε) < 0 for σ² > 0.

3.
$$D(k^2 = 0) > 0$$
.

Then, as before,

$$N_W(C_1) = -1,$$
but, due to $ho(\sigma^2) < 0,$ $N_W(C_2) = -1.$

leads to

$$N_Z - N_P = N_W(C) = -2$$

Note: "negativity in a weak sense"

To have $N_W(C) = -2$, the following "negativity in a weak sense" is enough instead of the assumption (2) $\rho(\sigma^2) < 0$ for $\sigma^2 > 0$: $\rho(k_0^2) < 0$ for all real positive zeros $k_0^2 > 0$ of Re $D(k^2)$, Re $D(k_0^2) = 0$

Generalization

We define "positivity and negativity in a weak sense" as follows.

• quasi-positive

A spectral function $\rho(\sigma^2)$ is quasi-positive if and only if $k^2 > 0 \land \operatorname{Re} D(k^2) = 0 \implies \rho(k^2) > 0$, i.e., the spectral function is positive at all time-like zeros of $\operatorname{Re} D$.

quasi-negative

A spectral function $\rho(\sigma^2)$ is quasi-negative if and only if $k^2 > 0 \land \operatorname{Re} D(k^2) = 0 \implies \rho(k^2) < 0$, i.e., the spectral function is negative at all time-like zeros of Re D.

Although they are sufficient, not necessary, assumption to establish the generalized claim, the classification covers many spectral functions.

e.g. If $\operatorname{Re} D(k^2)$ has one zero on $k^2 > 0$, a spectral function is quasi-positive or quasi-negative.

Case (I') Quasi-positive spectral function

- 1. The propagator has the leading asymptotic behavior: $D(z) \sim -\frac{1}{z}\tilde{D}(z)$ as $|z| \to \infty$, where $\tilde{D}(z)$ is a real and positive function $\tilde{D}(z) > 0$ for large |z|.
- 2. The spectral function $\rho(\sigma^2)$ is quasi-positive, *i.e.*, Im $D(\sigma^2 + i\epsilon) > 0$ for any $\sigma^2 > 0$ satisfying Re $D(\sigma^2) = 0$.

3.
$$D(k^2 = 0) > 0$$
.

- *N*_W(*C*₁) = −1 as before,
- $N_W(C_2) = 1$, because the trajectory on the phase S^1 : $D(k^2)/|D(k^2)|$ can be continuously deformed into one of the positive case.

$$N_Z - N_P = N_W(C) = 0.$$

Example?: the numerical solution of DSE on complex k^2 plane⁴ ⁴S. Strauss, C. S. Fischer, and C. Kellermann, Phys. Rev. Lett. **109**, 252001 (2012) Introduction Spectral representation from analyticity Spectral function and the number of complex poles Example: massive Yang-I

Case (I') Quasi-positive spectral function: $N_W(C_2) = 1$

Let us look into the upper part of C_2 , from Q ($k^2 = 0$, D/|D| = +1) to R ($k^2 = +\infty + i\epsilon$, $D/|D| \rightarrow -1$). Since the spectral function is quasi-positive, the trajectory of D/|D| never passes through D/|D| = -i. The trajectory can then be continuously deformed into one of the positive case.

$$\implies N_W(C_2) = 1.$$

Case (II') Quasi-negative spectral function

- 1. The propagator has the leading asymptotic behavior: $D(z) \sim -\frac{1}{z}\tilde{D}(z)$ as $|z| \to \infty$, where $\tilde{D}(z)$ is a real and positive function $\tilde{D}(z) > 0$ for large |z|.
- 2. The spectral function $\rho(\sigma^2)$ is quasi-negative, *i.e.*, Im $D(\sigma^2 + i\epsilon) < 0$ for any $\sigma^2 > 0$ satisfying Re $D(\sigma^2) = 0$.

3.
$$D(k^2 = 0) > 0$$
.

• $N_W(C_2) = -1$, because the trajectory $D(k^2)/|D(k^2)|$ can be continuously deformed into one of the negative case.

$$N_Z - N_P = N_W(C) = -2.$$

Example: massive Yang-Mills model and its related models⁵ ⁵M. Tissier and N. Wschebor, Phys.Rev. D**84**, 045018 (2011);M. Peláez, M. Tissier, and N. Wschebor, Phys. Rev. D**90**, 065031 (2014); F. Siringo, Nucl.Phys. B **907**, 572 (2016)

Note: scaling behavior yields negative contribution to $N_W(C)$

If the propagator has the scaling behavior $D(k^2) \rightarrow Z(-k^2)^{\alpha-1}$ (1 > α - 1 > 0), the integration around $k^2 = 0$ gives **negative** contribution to the winding number $N_W(C) = N_Z - N_P$. *C* encloses $k^2 = 0$ **clockwise**

 \rightarrow the zero at $k^2=0$ gives negative contribution to the winding number

$$N_W(C) = \frac{1}{2\pi i} \oint_C dk^2 \frac{D'(k^2)}{D(k^2)}$$

 k^2

Scaling behavior

For example, we can obtain the following proposition

- 1. The propagator has the leading asymptotic behavior: $D(z) \sim -\frac{1}{z}\tilde{D}(z)$ as $|z| \to \infty$, where $\tilde{D}(z)$ is a real and positive function $\tilde{D}(z) > 0$ for large |z|.
- 2. The spectral function $\rho(\sigma^2)$ is quasi-negative or quasi-positive.

3.
$$D(k^2) \rightarrow Z(-k^2)^{\alpha-1}$$
, where $Z > 0$ and $2 > \alpha > 1$.

Then,

$$N_Z - N_P = \begin{cases} 0 & (1 < \alpha < 1.5, \ \rho \text{ is quasi-positive}) \\ -2 & (1 < \alpha < 1.5, \ \rho \text{ is quasi-negative}) \\ -2 & (1.5 < \alpha < 2, \ \rho \text{ is quasi-negative}) \\ -2 & (1.5 < \alpha < 2, \ \rho \text{ is quasi-negative}). \end{cases}$$

Example: Gribov propagator

"Negative" spectral function \rightarrow complex poles

Argument principle for a propagator $D(k^2)$:

$$N_W(C) := rac{1}{2\pi i} \oint_C dk^2 rac{D'(k^2)}{D(k^2)} = N_Z - N_P.$$

- Negative spectral function $ightarrow N_W(C) = -2$, $N_P = 2 + N_Z$
- "Negativity of the spectral function in a weak sense": $N_W(C) = -2$ yields the existence of complex poles in $D(k^2)$.
- The Landau-gauge gluon propagator has a negative spectral function in UV: $\rho(\sigma^2) \rightarrow \rho_{UV}(\sigma^2) < 0, \sigma^2 \rightarrow \infty.^6$ \rightarrow This relation, arising from the argument principle, implies the existence of complex poles in the Landau-gauge gluon propagator.

⁶R. Oehme and W. Zimmermann, Phys. Rev. D **21**, 471–484 (1980). ► E ∽૧৫.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

Spectral representation from analyticity

Spectral function and the number of complex poles

Example: massive Yang-Mills model

Related topics and summary

Massive Yang-Mills model: an effective theory of the Landau-gauge pure Yang-Mills theory

To capture the decoupling feature, we add the naive mass term to the Landau-gauge Yang-Mills theory (lpha
ightarrow0),

$$\mathcal{L}_{mYM} = -\frac{1}{4} F^{A}_{\mu\nu} F^{A\mu\nu} - \frac{1}{2\alpha} (\partial^{\mu} A^{A}_{\mu})^{2} + i \bar{c}^{A} \partial^{\mu} \mathcal{D}_{\mu} [A]^{AB} c^{B} + \frac{1}{2} M^{2} A^{A}_{\mu} A^{A\mu}$$

The origin of the effective mass term can be related with Gribov ambiguity ⁷, $A_{\mu}A_{\mu}$ condensation⁸, or other non-perturbative effects.

⁷In the absolute Landau gauge, the functional along a gauge orbit

$$F_A[U] := \int d^D x \operatorname{tr}(A^U_\mu A^U_\mu)$$

is minimized to pick up one configuration from a gauge orbit.

Massive Yang-Mills model: an effective theory of the Landau-gauge pure Yang-Mills theory

- Good accordance with the lattice results
- For some renormalization conditions and parameters, the running coupling has **no Landau pole in all scales**⁹
- Finite-temperature applications¹⁰
- It can reproduce both decoupling and (Gribov-type) scaling solution¹¹
- also can be a probe to the radially-fixed gauge-scalar model¹²

⁹M. Tissier and N. Wschebor, Phys.Rev. D**84**, 045018 (2011). arXiv:1105.2475 [hep-th]

¹⁰U. Reinosa, J. Serreau, M. Tissier and N. Wschebor, Phys. Rev. D **89** 105016 (2014); Phys. Lett. B **742** (2015) 61; Phys. Rev. D **91** 045035 (2015); Phys. Rev. D **93** 105002 (2016).

¹¹U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor, Phys. Rev. D**96**, 014005 (2017). arXiv:1703.04041 [hep-th]

¹²K.-I. Kondo, Eur. Phys. J. C 78, 577 (2018). arXiv:1804.03279 [hep-th] - 9 a

Massive Yang-Mills model: an effective theory of the Landau-gauge pure Yang-Mills theory

Good accordance with the lattice results in the strict one-loop $\mathsf{level}:^{13}$

¹³SU(3) Yang-Mills, $\beta = 6.3$, L = 128, rescaled due to some renormalization factor, A.G. Duarte, O. Oliveira, and P.J. Silva, Phys. Rev. D**94** (2016) 014502. arXiv:1605.00594 [hep-lat]; fitting parameters:g = 4.1, M = 0.45 GeV

Introduction Spectral representation from analyticity Spectral function and the number of complex poles Example: massive Yang-I

Massive Yang-Mills model: Infrared-safety

In the renormalization condition respecting the non-renormalization theorems, $^{\rm 14}$

$$\begin{cases} Z_A Z_C Z_{M^2} = 1 \\ \Gamma_A^{(2)}(k_E = \mu) = \mu^2 + M^2 \\ \Gamma_{gh}^{(2)}(k_E = \mu) = \mu^2 \\ Z_g \sqrt{Z_A} Z_C = 1 \end{cases}$$

this model has trajectories without Landau pole in all scale, especially the flow of the fitting parameters (red line).¹⁵

¹D. Dudal, H. Verschelde and S. P. Sorella, Phys. Lett. B 555 126 (2003). N. Wschebor, Int. J. Mod. Phys. A **23** 2961 (2008) J. C. Taylor, Nucl. Phys. B **33** 436 (1971)

²M. Tissier and N. Wschebor, Phys.Rev. D**84**, 045018 (2011). arXiv:1105.2475 [hep-th]

Massive Yang-Mills model: decoupling and scaling

The infrared-safe trajectories exhibits the decoupling features. On the separatrix(green), the flow has non-trivial IR fixed point, and behave as Gribov-type scaling solution.¹⁶

¹⁶U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor, Phys. Rev. D**96**, 014005 (2017). arXiv:1703.04041 [hep-th]

Analytic structure of the propagators in massive Yang-Mills model

In this model, for any parameters (g^2, M^2) ,

• the gluon propagator has a **negative spectral function**, and therefore **one pair of complex conjugate poles**, or

"tachyonic" (real negative) poles with multiplicity two,

• the ghost propagator has no complex poles.

The RG improvement for a flow without Landau pole does not change these consequences.

Negative spectral function and one pair of complex conjugate poles of the transverse gluon propagator

At one-loop, we find for any (g^2, M^2) ,

$$\begin{split} \rho(\sigma^2) &= \frac{1}{\pi} \operatorname{Im} D(\sigma^2 + i\epsilon) \\ &= -\frac{1}{\pi} \frac{\operatorname{Im} \Pi(\sigma^2 + i\epsilon)}{(M^2 - \sigma^2 + \operatorname{Re} \Pi)^2 + (\operatorname{Im} \Pi)^2} < 0. \end{split}$$

and $\Gamma_A^{(2)}(k^2) = \frac{1}{D(k^2)}$ is regular on the complex k^2 plane. Then $N_P - N_Z = 2$ and $N_Z = 0$, thus $N_P = 2$: one pair of complex conjugate poles, or "tachyonic" (real negative) poles with multiplicity two.

The two properties of Im $D(\sigma^2 + i\epsilon) < 0$ and regularity of $\Gamma_A^{(2)}(k^2)$ still hold after the RG improvement in one-loop level, if the flow has no Landau pole.

Origin of the negativity

Why $\rho(\sigma^2) < 0$ in this model?

- In UV region: the negativity arises from the negativity of the gluon anomalous dimension, as in the pure Yang-Mills theory.
- In IR region: from the ghost-loop contribution.

イロト イ押ト イヨト イヨト

Related topic: Violation of Reflection Positivity

If we consider Euclidean formulation as a starting point, the reconstruction of QFT requires the **Osterwalder-Schrader axioms**. One of the axioms is **reflection positivity**. The reflection positivity is violated in this model even in the transverse gluon sector, which is a signal of gluon confinement.

The reflection positivity for a 2-point Green function reads,

$$\int d^D x \int d^D y \ f^*(\vec{x}, -x_D) D(x-y) f(\vec{y}, y_D) \geq 0,$$

for any f, where $f(\vec{x}, x_D)$ is a complex valued test function with support in $\{(\vec{x}, x_D); x_D > 0\}$. Some limit of this inequality requires the positivity of the **Schwinger function** $\Delta(t)$,

$$\Delta(t) \ge 0,$$

$$\Delta(t) := \int d^{D-1}\vec{x} D(\vec{x}, t) = \int \frac{dk^D}{2\pi} e^{ik^D t} D(\vec{k} = 0, k^D)$$

Related topic: Violation of Reflection Positivity

The gluon propagator in the massive Yang-Mills model has a negative spectral function $\rho(\sigma^2) < 0$ and one pair of complex poles,

$$D(k^{2}) = \int_{0}^{\infty} d\sigma^{2} \frac{\rho(\sigma^{2})}{\sigma^{2} - k^{2}} + \frac{Z}{(v + iw) - k^{2}} + \frac{Z^{*}}{(v - iw) - k^{2}},$$

This leads to violation of the reflection positivity, by simply evaluating the Schwinger function.¹⁷

$$\Delta(t) = \int \frac{dk_D}{2\pi} e^{ik_D t} D(\vec{k} = 0, k_D)$$

Since the contribution from the spectral function is negative for any t, and the one from the poles oscillates, the Schwinger function $\Delta(t) < 0$ for some t > 0.

Massive Yang-Mills model in the parameter space

Since the gluon propagator has one pair of complex conjugate poles, we focus on the position of the complex conjugate poles $k^2 = v \pm iw$, $w \ge 0$ in the parameter space (g^2, M^2) .

- No physical poles : gluons are always confined in this model
- Confinement-Higgs crossover
 v ≫ w: particle-like gluon
 ("Higgs-like");
 otherwise no particle picture
 ("Confinement-like").
- Similar structure can appear in the radially-fixed (strong scalar self-coupling) gauge-scalar model
 - cf.) Fradkin-Shenker continuity

Summary

- We have found the general relationships between the number of complex poles of a propagator and the sign of the spectral function by applying the **argument principle** to the propagator.
- In particular, "Negativity of the spectral function in a weak sense" yields the existence of complex poles. It is well-known that the Landau-gauge gluon propagator has a negative spectral function in UV.
- In the effective (massive Yang-Mills) model of the Landau-gauge Yang-Mills theory, the gluon propagator has a negative spectral function and one pair of complex conjugate poles.

 \rightarrow Our results implies the existence of complex poles in the Landau-gauge gluon propagator, signaling gluon confinement.

Related topics and future works

- Quark loop contribution seems not to affect the conclusion $N_P = 2$ in the gluon propagator if $N_f < \frac{13}{4}C_2(G)$. Detailed analyses including the quark propagator: future work.
- Thermal contribution also seems not to affect the conclusion $N_P = 2$. Some analytic feature from the gluon propagator near the deconfinement temperature?
- Relation with center vortices?
- Kinematic origin of complex poles, the violation of the Källén-Lehmann spectral representation?
- Confinement mechanism eliminating states yielding complex poles?