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Introduction

Color Confinement: the central feature of the strong interactions
Colored particles, especially quarks and gluons, are absent in the
observed spectrum.

To investigate the gluon confinement, we consider the
Landau-gauge gluon propagator.
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Introduction: decoupling solution

In the Landau gauge, the gluon and ghost propagators
D(k2),∆gh(k

2) take the forms,

DAB
µν (k) = δAB

(
δµν −

kµkν
k2

)
D(k2), ∆AB

gh (k) = δAB∆gh(k
2)

Recent lattice studies support the decoupling solution: massive
gluon and massless ghost.1
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1Figures: SU(3) Yang-Mills, β = 6.3, L = 128, A.G. Duarte, O. Oliveira,
and P.J. Silva, Phys. Rev. D94 (2016) 014502. arXiv:1605.00594 [hep-lat]
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Introduction: spectral representation

A physical particle: Källén-Lehmann spectral representation,
having singularities only on the time-like momentum (if analytically
continued to k2 complex plane),

D(k2) =

∫ ∞

0
dσ2 ρ(σ2)

σ2 − k2
,

follows from

• Poincaré invariance

• spectral condition : positive-definiteness of PµPµ and P0

• completeness of the state space: 1 =
∑

n |n⟩ ⟨n|
The spectral function

ρ(σ2) =
1

π
ImD(σ2 + iϵ).

contains “kinematic information”.
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Introduction: complex poles

A confined particle can have other analytic structure
e.g. Gribov-Zwanziger model predicts the gluon propagator with a
pair of complex conjugate poles

D(k2) = − k2

k4 + γ4

In contrary, such “one-gluon state” should be excluded from a
physical subspace via some confinement mechanism, since
existence of complex poles invalidates the Källén-Lehmann spectral
representation. The existence of complex poles can be a signal of
confinement.
→ Consider the possibility of complex poles!
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Spectral representation from analyticity

The Källén-Lehmann spectral representation can be rederived by
the following assumptions

1. D(z) is holomorphic except singularities on the positive real
axis.

2. D(z) → 0 as |z | → ∞.

3. D(z) is real on the negative real axis.

D(k2) =
1

2πi

∮
C
dζ

D(ζ)

ζ − k2

=

∫ ∞

0
dσ2 ρ(σ2)

σ2 − k2
,

ρ(σ2) :=
1

π
Im D(σ2 + iϵ).

Im k2

Re k2

k2

C

C2

C1
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Generalization

Generalization to the case in the presence of complex simple poles2

1. D(z) is holomorphic except singularities on the positive real
axis and a finite number of simple poles.

2. D(z) → 0 as |z | → ∞.

3. D(z) is real on the negative real axis.

D(k2) =

∫ ∞

0
dσ2 ρ(σ2)

σ2 − k2

+
n∑

ℓ=1

Zℓ

zℓ − k2
,

ρ(σ2) :=
1

π
Im D(σ2 + iϵ),

Zℓ :=

∮
γℓ

dζ

2πi
D(ζ).

Im k2

Re k2

k2

C

γ1

γ2

C1

C2

2F. Siringo, EPJ Web Conf. 137, 13017 (2017) arXiv:1606.03769 [hep-ph]
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Note: a generalized sum rule for the gluon
propagator with complex poles

In the presence of complex poles, the superconvergence relation3∫ ∞

0
dσ2ρ(σ2) = 0

does not hold generically. Instead, the RG analysis from the
asymptotic freedom and the negativity of the gluon anomalous
dimension yields

lim
|k2|→∞

k2D(k2) = 0,

and therefore,

n∑
ℓ=1

Zℓ +

∫ ∞

0
dσ2ρ(σ2) = 0.

3R. Oehme and W. Zimmermann, Phys. Rev. D 21, 471–484 (1980).
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Note: a generalized sum rule for the gluon
propagator with complex poles

In particular, for the gluon propagator with one pair of complex
conjugate poles,

D(k2) =

∫ ∞

0
dσ2 ρ(σ2)

σ2 − k2

+
Z

(v + iw)− k2
+

Z ∗

(v − iw)− k2
,

we obtain the modified sum rule,

2 ReZ +

∫ ∞

0
dσ2ρ(σ2) = 0.

Conversely, the violation of the Oehme-Zimmermann
superconvergence relation indicates the existence of complex poles
or other singularities.
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Spectral function and the number of complex poles

Argument principle for a propagator D(k2):

NW (C ) : =
1

2πi

∮
C
dk2

D ′(k2)

D(k2)
= NZ − NP .

→ relations between the spectral
function, ρ(σ2) = 1

π ImD(σ2 + iϵ),
and the number of complex poles.
(with suitable assumptions)

• (I) Positive spectral function
→ NP = NZ ,

• (II) Negative spectral function
→ NP = 2 + NZ :
2 + NZ complex poles

etc.

Im k2

Re k2

k2

C

C2

C1
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Case (I) Positive spectral function

Suppose that a propagator exhibits the following behaviors.

1. The propagator has the leading asymptotic behavior:
D(z) ∼ − 1

z D̃(z) as |z | → ∞, where D̃(z) is a real and

positive function D̃(z) > 0 for large |z |.
2. ρ(σ2) > 0, i.e., ImD(σ2 + iϵ) > 0 for σ2 > 0.

3. D(k2 = 0) > 0.

Assumption (1) →

NW (C1) : =
1

2πi

∫
C1

dk2
D ′(k2)

D(k2)

= −1.

Im k2

Re k2

k2

C

C2

C1
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Case (I) Positive spectral function

Assumption (1) :
D(k2 → +∞) → −0,
Assumption (3) :
D(k2 = 0) > 0, and
Assumption (2) :
ρ(σ2) = ImD(σ2 + iϵ) > 0
Then, the winding number of the
phase reads

NW (C2) : =
1

2πi

∫
C2

dk2
D ′(k2)

D(k2)

= +1.

D
|D| = −1

D
|D| = +1

C−
2

C+
2

Im
D
|D|

Re
D
|D|

D
|D|

P

R

Q

k2

Re k2

Im k2

P

Q

R

C−
2

C+
2
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Case (I) Positive spectral function

1. The propagator has the leading asymptotic behavior:
D(z) ∼ − 1

z D̃(z) as |z | → ∞, where D̃(z) is a real and

positive function D̃(z) > 0 for large |z |.
2. ρ(σ2) > 0, i.e., ImD(σ2 + iϵ) > 0 for σ2 > 0.

3. D(k2 = 0) > 0.

=⇒ NZ − NP = NW (C )

= NW (C1) + NW (C2)

= −1 + 1 = 0

It is consitent with the physical case, where NZ = NP = 0.
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Case (II) Negative spectral function

Suppose

1. The propagator has the leading asymptotic behavior:
D(z) ∼ − 1

z D̃(z) as |z | → ∞, where D̃(z) is a real and

positive function D̃(z) > 0 for large |z |.
2. ρ(σ2) < 0, i.e., ImD(σ2 + iϵ) < 0 for σ2 > 0.

3. D(k2 = 0) > 0.

Then, as before,

NW (C1) = −1,

but, due to ρ(σ2) < 0,

NW (C2) = −1,

leads to

NZ − NP = NW (C ) = −2

Im k2

Re k2

k2

C

C2

C1
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Note: “negativity in a weak sense”

To have NW (C ) = −2, the following “negativity in a weak sense”
is enough instead of the assumption (2) ρ(σ2) < 0 for σ2 > 0:
ρ(k20 ) < 0 for all real positive zeros k20 > 0 of ReD(k2),
ReD(k20 ) = 0

k0
2

O
k

2

Re DHk2
+iΕL, Im D Hk2

+iΕL



Introduction Spectral representation from analyticity Spectral function and the number of complex poles Example: massive Yang-Mills model Related topics and summary

Generalization

We define “positivity and negativity in a weak sense” as follows.

• quasi-positive
A spectral function ρ(σ2) is quasi-positive if and only if
k2 > 0 ∧ ReD(k2) = 0 ⇒ ρ(k2) > 0, i.e., the spectral
function is positive at all time-like zeros of ReD.

• quasi-negative
A spectral function ρ(σ2) is quasi-negative if and only if
k2 > 0 ∧ ReD(k2) = 0 ⇒ ρ(k2) < 0, i.e., the spectral
function is negative at all time-like zeros of ReD.

Although they are sufficient, not necessary, assumption to establish
the generalized claim, the classification covers many spectral
functions.
e.g. If ReD(k2) has one zero on k2 > 0, a spectral function is
quasi-positive or quasi-negative.
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Case (I’) Quasi-positive spectral function

1. The propagator has the leading asymptotic behavior:
D(z) ∼ − 1

z D̃(z) as |z | → ∞, where D̃(z) is a real and

positive function D̃(z) > 0 for large |z |.
2. The spectral function ρ(σ2) is quasi-positive, i.e.,

ImD(σ2 + iϵ) > 0 for any σ2 > 0 satisfying ReD(σ2) = 0.

3. D(k2 = 0) > 0.

• NW (C1) = −1 as before,

• NW (C2) = 1, because the trajectory on the phase
S1 : D(k2)/|D(k2)| can be continuously deformed into one of
the positive case.

NZ − NP = NW (C ) = 0.

Example?: the numerical solution of DSE on complex k2 plane4
4S. Strauss, C. S. Fischer, and C. Kellermann, Phys. Rev. Lett. 109,

252001 (2012)
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Case (I’) Quasi-positive spectral function:
NW (C2) = 1

Let us look into the upper part of
C2, from Q (k2 = 0,
D/|D| = +1) to R
(k2 = +∞+ iϵ, D/|D| → −1).
Since the spectral function is
quasi-positive, the trajectory of
D/|D| never passes through
D/|D| = −i . The trajectory can
then be continuously deformed
into one of the positive case.

=⇒ NW (C2) = 1.

C+
2

Im
D
|D|

Re
D
|D|

D
|D|

R Q

k2

Re k2

Im k2

Q

RC+
2
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Case (II’) Quasi-negative spectral function

1. The propagator has the leading asymptotic behavior:
D(z) ∼ − 1

z D̃(z) as |z | → ∞, where D̃(z) is a real and

positive function D̃(z) > 0 for large |z |.
2. The spectral function ρ(σ2) is quasi-negative, i.e.,

ImD(σ2 + iϵ) < 0 for any σ2 > 0 satisfying ReD(σ2) = 0.

3. D(k2 = 0) > 0.

• NW (C1) = −1 as before,

• NW (C2) = −1, because the trajectory D(k2)/|D(k2)| can be
continuously deformed into one of the negative case.

NZ − NP = NW (C ) = −2.

Example: massive Yang-Mills model and its related models5
5M. Tissier and N. Wschebor, Phys.Rev. D84, 045018 (2011);M. Peláez,

M. Tissier, and N. Wschebor, Phys. Rev. D90, 065031 (2014); F. Siringo,
Nucl.Phys. B 907, 572 (2016)
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Note: scaling behavior yields negative contribution
to NW (C )

If the propagator has the scaling behavior D(k2) → Z (−k2)α−1

(1 > α− 1 > 0), the integration around k2 = 0 gives negative
contribution to the winding number NW (C ) = NZ − NP .
C encloses k2 = 0 clockwise

→ the zero at k2 = 0 gives negative contribution to the
winding number

NW (C ) =
1

2πi

∮
C
dk2

D ′(k2)

D(k2)

D

|D| = 1

D

|D| = ei(α−1) D

|D| = −1

C2

k2

D

|D|
= e−i(α−1)
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Scaling behavior

For example, we can obtain the following proposition

1. The propagator has the leading asymptotic behavior:
D(z) ∼ − 1

z D̃(z) as |z | → ∞, where D̃(z) is a real and

positive function D̃(z) > 0 for large |z |.
2. The spectral function ρ(σ2) is quasi-negative or quasi-positive.

3. D(k2) → Z (−k2)α−1, where Z > 0 and 2 > α > 1.

Then,

NZ − NP =


0 (1 < α < 1.5, ρ is quasi-positive)

−2 (1 < α < 1.5, ρ is quasi-negative)

−2 (1.5 < α < 2, ρ is quasi-positive)

−2 (1.5 < α < 2, ρ is quasi-negative).

Example: Gribov propagator
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“Negative” spectral function → complex poles

Argument principle for a propagator D(k2):

NW (C ) : =
1

2πi

∮
C
dk2

D ′(k2)

D(k2)
= NZ − NP .

• Negative spectral function → NW (C ) = −2, NP = 2 + NZ

• “Negativity of the spectral function in a weak sense”:
NW (C ) = −2 yields the existence of complex poles in D(k2).

• The Landau-gauge gluon propagator has a negative spectral
function in UV: ρ(σ2) → ρUV (σ

2) < 0, σ2 → ∞.6

→ This relation, arising from the argument principle, implies
the existence of complex poles in the Landau-gauge gluon
propagator.

6R. Oehme and W. Zimmermann, Phys. Rev. D 21, 471–484 (1980).
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Massive Yang-Mills model: an effective theory of
the Landau-gauge pure Yang-Mills theory

To capture the decoupling feature, we add the naive mass term to
the Landau-gauge Yang-Mills theory (α → 0),

LmYM = −1

4
FA
µνF

Aµν − 1

2α
(∂µAA

µ)
2 + i c̄A∂µDµ[A]

ABcB +
1

2
M2AA

µA
Aµ

The origin of the effective mass term can be related with Gribov
ambiguity 7 , AµAµ condensation8, or other non-perturbative
effects.

7In the absolute Landau gauge, the functional along a gauge orbit

FA[U] :=

∫
dDx tr(AU

µA
U
µ)

is minimized to pick up one configuration from a gauge orbit.
8H. Verschelde, K. Knecht, K. Van Acoleyen and M. Vanderkelen, Phys.

Lett. B 516 307 (2001) [arXiv:hep-th/0105018].
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Massive Yang-Mills model: an effective theory of
the Landau-gauge pure Yang-Mills theory

• Good accordance with the lattice results

• For some renormalization conditions and parameters, the
running coupling has no Landau pole in all scales9

• Finite-temperature applications10

• It can reproduce both decoupling and (Gribov-type) scaling
solution11

• also can be a probe to the radially-fixed gauge-scalar model12

9M. Tissier and N. Wschebor, Phys.Rev. D84, 045018 (2011).
arXiv:1105.2475 [hep-th]

10U. Reinosa, J. Serreau, M. Tissier and N. Wschebor, Phys. Rev. D 89
105016 (2014); Phys. Lett. B 742 (2015) 61; Phys. Rev. D 91 045035 (2015);
Phys. Rev. D 93 105002 (2016).

11U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor, Phys. Rev. D96,
014005 (2017). arXiv:1703.04041 [hep-th]

12K.-I. Kondo, Eur. Phys. J. C 78, 577 (2018). arXiv:1804.03279 [hep-th]
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Massive Yang-Mills model: an effective theory of
the Landau-gauge pure Yang-Mills theory

Good accordance with the lattice results in the strict one-loop
level:13
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13SU(3) Yang-Mills, β = 6.3, L = 128, rescaled due to some renormalization
factor, A.G. Duarte, O. Oliveira, and P.J. Silva, Phys. Rev. D94 (2016)
014502. arXiv:1605.00594 [hep-lat]; fitting parameters: g = 4.1,M = 0.45 GeV
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Massive Yang-Mills model: Infrared-safety
In the renormalization condition
respecting the non-renormalization
theorems,14

ZAZCZM2 = 1

Γ
(2)
A (kE = µ) = µ2 +M2

Γ
(2)
gh (kE = µ) = µ2

Zg
√
ZAZC = 1

this model has trajectories without
Landau pole in all scale, especially
the flow of the fitting parameters
(red line).15
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1D. Dudal, H. Verschelde and S. P. Sorella, Phys. Lett. B 555 126 (2003).
N. Wschebor, Int. J. Mod. Phys. A 23 2961 (2008)J. C. Taylor, Nucl. Phys. B
33 436 (1971)

2M. Tissier and N. Wschebor, Phys.Rev. D84, 045018 (2011).
arXiv:1105.2475 [hep-th]
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Massive Yang-Mills model: decoupling and scaling

The infrared-safe trajectories exhibits the decoupling features. On
the separatrix(green), the flow has non-trivial IR fixed point, and
behave as Gribov-type scaling solution.16
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16U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor, Phys. Rev. D96,
014005 (2017). arXiv:1703.04041 [hep-th]
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Analytic structure of the propagators in massive
Yang-Mills model

In this model, for any parameters (g2,M2),
• the gluon propagator has a negative spectral function, and
therefore one pair of complex conjugate poles, or
“tachyonic”(real negative) poles with multiplicity two,

• the ghost propagator has no complex poles.

The RG improvement for a flow without Landau pole does not
change these consequences.

-4 -2 2 4
k

2@GeV
2D

-1

1
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4

Re DHk2
+iΕL, Im DHk2

+iΕL@GeV
-2D
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Negative spectral function and one pair of complex
conjugate poles of the transverse gluon propagator

At one-loop, we find for any (g2,M2),

ρ(σ2) =
1

π
ImD(σ2 + iϵ)

= − 1

π

ImΠ(σ2 + iϵ)

(M2 − σ2 + ReΠ)2 + (ImΠ)2
< 0.

and Γ
(2)
A (k2) = 1

D(k2)
is regular on the complex k2 plane. Then

NP − NZ = 2 and NZ = 0, thus NP = 2: one pair of complex
conjugate poles, or “tachyonic”(real negative) poles with multiplicity two.

The two properties of ImD(σ2 + iϵ) < 0 and regularity of Γ
(2)
A (k2)

still hold after the RG improvement in one-loop level, if the flow
has no Landau pole.
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Origin of the negativity

Why ρ(σ2) < 0 in this model?

• In UV region: the negativity arises from the negativity of the
gluon anomalous dimension, as in the pure Yang-Mills theory.

• In IR region: from the ghost-loop contribution.



Introduction Spectral representation from analyticity Spectral function and the number of complex poles Example: massive Yang-Mills model Related topics and summary

Related topic: Violation of Reflection Positivity

If we consider Euclidean formulation as a starting point, the
reconstruction of QFT requires the Osterwalder-Schrader
axioms. One of the axioms is reflection positivity. The reflection
positivity is violated in this model even in the transverse gluon
sector, which is a signal of gluon confinement.
The reflection positivity for a 2-point Green function reads,∫

dDx

∫
dDy f ∗(x⃗ ,−xD)D(x − y)f (y⃗ , yD) ≥ 0,

for any f , where f (x⃗ , xD) is a complex valued test function with
support in {(x⃗ , xD); xD > 0}. Some limit of this inequality requires
the positivity of the Schwinger function ∆(t),

∆(t) ≥ 0,

∆(t) :=

∫
dD−1x⃗ D(x⃗ , t) =

∫
dkD

2π
e ik

D tD(k⃗ = 0, kD)
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Related topic: Violation of Reflection Positivity

The gluon propagator in the massive Yang-Mills model has a
negative spectral function ρ(σ2) < 0 and one pair of complex poles,

D(k2) =

∫ ∞

0
dσ2 ρ(σ2)

σ2 − k2

+
Z

(v + iw)− k2
+

Z ∗

(v − iw)− k2
,

This leads to violation of the reflection positivity, by simply
evaluating the Schwinger function.17

∆(t) =

∫
dkD
2π

e ikD tD(k⃗ = 0, kD)

Since the contribution from the spectral function is negative for
any t, and the one from the poles oscillates, the Schwinger
function ∆(t) < 0 for some t > 0.

17K.-I. Kondo, M. Watanabe, Y.H., R. Matsudo, Y. Suda, arXiv:1902.08894
[hep-th]
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Massive Yang-Mills model in the parameter space

Since the gluon propagator has one pair of complex conjugate
poles, we focus on the position of the complex conjugate poles
k2 = v ± iw , w ≥ 0 in the parameter space (g2,M2).

• No physical poles : gluons are
always confined in this model

• Confinement-Higgs crossover
v ≫ w : particle-like gluon
(“Higgs-like”);
otherwise no particle picture
(“Confinement-like”).

• Similar structure can appear in
the radially-fixed (strong scalar
self-coupling) gauge-scalar
model
cf.) Fradkin-Shenker continuity
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Summary

• We have found the general relationships between the number
of complex poles of a propagator and the sign of the spectral
function by applying the argument principle to the
propagator.

• In particular, “Negativity of the spectral function in a weak
sense” yields the existence of complex poles.
It is well-known that the Landau-gauge gluon propagator has
a negative spectral function in UV.

• In the effective (massive Yang-Mills) model of the
Landau-gauge Yang-Mills theory, the gluon propagator has a
negative spectral function and one pair of complex
conjugate poles.
→ Our results implies the existence of complex poles in the
Landau-gauge gluon propagator, signaling gluon confinement.
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Related topics and future works

• Quark loop contribution seems not to affect the conclusion
NP = 2 in the gluon propagator if Nf < 13

4 C2(G ). Detailed

analyses including the quark propagator: future work.

• Thermal contribution also seems not to affect the conclusion
NP = 2. Some analytic feature from the gluon propagator
near the deconfinement temperature?

• Relation with center vortices?

• Kinematic origin of complex poles, the violation of the
Källén-Lehmann spectral representation?

• Confinement mechanism eliminating states yielding complex
poles?
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