Quantum phase transitions on the hexagonal lattice

Dominik Smith Justus-Liebig-Universität Gießen

30. Jan 2019

In collaboration with: Pavel Buividovich, Michael Körner, Maksim Ulybyshev, Lorenz von Smekal

Outline Hickor Fairs JUSTUS-LIEBIG UNIVERSITAT Helmholtz International Center

- I. Introduction
- II. Lattice simulations of graphene
- III. Phase diagram of extended Hubbard model
- IV. Conformal phase transition in graphene
- V. Lifshitz-transition at finite spin-density
- VI. Graphene with lattice defects
- VII. Outlook

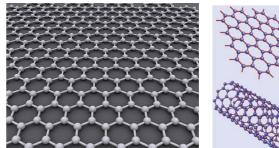
Graphene: Single layer of Carbon atoms on hexagonal lattice.

Building block of graphitic materials. (nano tubes, fullerenes etc.)

- Landau & Peierls, 1935: 2D crystals are thermodynamically unstable (transverse displacements).
- Novoselov & Geim, 2004: Experimental discovery of suspended graphene.
 - Nobel prize for physics 2010
- Reconciliation with theory: Stablized by slight crumbling in 3rd dimension, strong atomic bonds, ...

A. H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009)

(picture removed)



Helmholtz International

Helmholtz Internationa

(Gigaherz processors, solar panels...)

Why is graphene interesting? Many unusual properties!

Introduction

- Area density: 0.77 mg/m² (single layer blocks Helium atom)
- Breaking strength: 42 N/m ("carries weight of cat", nearly 15 times than steel film of equal mass)

Promising material for super strong structures.

www.spacelift.co

4/26

- **Optical conductivity:** Single sheet absorbs 2.3% of visible light.
- Thermal conductivity: At room temperature 10x better than copper.
- **Electric conductivity:** As good as copper. High carrier mobility even in doped devices!

Next generation electronic devices!

www.head.com

(picture removed)

(picture removed)

30. Jan 2019, Dominik Smith

Why are particle physicists interested?

Linear dispersion around corners of first Brillouin zone:

 $E = \pm \hbar v_F |\vec{k}| , \quad v_F \approx c/300$

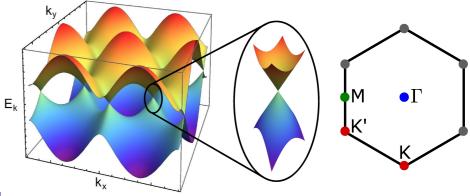
Dirac equation for low-energy dynamics!

- **Relativistic physics in condensed matter system!**
- Klein tunneling, Zitterbewegung, anomalous quantum Hall effect, Atiyah-Singer index theorem, ... $\alpha_{\rm eff} = \frac{e^2}{\hbar v_E} \approx 2.2$

Moreover: Strong electromagnetic interactions!

Quantum phase transitions, chiral symmetry breaking, ...

Use non-perturbative techniques: DSEs, FRG, lattice simulations!



Introduction

Early days: Simulate low-energy effective theories.

- "Reduced" QED₄ (Fermions in 2D, gauge fields in 3D).
- Thirring model in 2+1D.

Drut, Lähde, Phys.Rev.Lett. 102, 026802, (2009)

Hands, Strouthos, Phys.Rev. B 78, 165423 (2008)

Seminal work in 2011: Path integral for interacting tight-binding theory!

Brower, Rebbi, Schaich, PoS (Lattice 2011) 056

State of the art 2019: Hybrid-Monte-Carlo simulations of graphene with realistic inter-electron potential.

- Lattice action with exact "chiral" symmetry (\approx "Overlap", non-local).
- Non-iterative Schur complement solver (for dense matrices).
- Molecular-dynamics trajectories with exact Fermion forces.
- Highly-parallelized codes (GPUs, multi-core CPUs).
- Lattice size 24x24x128 on modern hardware.

Buividovich, Smith, Ulybyshev, von Smekal Phys. Rev. B 98, 235129 (2018) Buividovich, Smith, Ulybyshev, von Smekal ArXiv: 1812.06435

Lattice simulations of graphene

Starting point: Interacting tight-binding Hamiltonian on hexagonal lattice.

$$H = \sum_{\langle x,y\rangle,s} (-\kappa)(\hat{a}_{x,s}^{\dagger}\hat{a}_{y,s} + \hat{a}_{y,s}^{\dagger}\hat{a}_{x,s}) + \frac{1}{2}\sum_{x,y} \hat{q}_{x}V_{xy}\hat{q}_{y}$$
 V positive definite!

Anti-commutators: $\{\hat{a}_i^{\dagger}, \hat{a}_j^{\dagger}\} = 0, \ \{\hat{a}_i^{\dagger}, \hat{a}_j\} = \delta_{ij}$ Charge operator: $\hat{q}_x = \hat{a}_{x,1}^{\dagger} \hat{a}_{x,1} + \hat{a}_{x,-1}^{\dagger} \hat{a}_{x,-1} - 1$ Hopping energy: $\kappa \approx 2.8 \,\mathrm{eV}$

Goal: Simulate grand-canonical ensemble.

Usual strategy (field theory):

Spin directions: $s = \pm 1$

- $\mathcal{Z} = \operatorname{Tr} e^{-\beta \hat{H}}, \ \langle O \rangle = \frac{1}{\mathcal{Z}} \operatorname{Tr} \left[\widehat{O} e^{-\beta \hat{H}} \right]$
- Express Z as functional integral (replace operators by fields).
- Generate field configurations.
- Measure observables in field representation.

Differences for graphene:

- Fock space of non-relativistic QM.
- Spacelike lattice-spacing is physical.

Hexagonal geometry unusual but not problematic. Two triangular sublattices!

Lattice simulations of graphene

First step: Symmetric Suzuki-Trotter decomposition.

$$\mathcal{Z} = \operatorname{Tr}\left(e^{-\beta\hat{\mathcal{H}}}\right) = \operatorname{Tr}\left(e^{-\delta_{\tau}\hat{\mathcal{H}}_{0}}e^{-\delta_{\tau}\hat{\mathcal{H}}_{\mathrm{int}}}e^{-\delta_{\tau}\hat{\mathcal{H}}_{0}}\dots\right) + O(\delta_{\tau}^{2}) , \quad \delta_{\tau} = \beta/N_{\tau}$$

Fierz-transformation: Ensures ergocity of HMC without mass terms.

$$V_{xx}\hat{\rho}_{x}^{2} = \eta V_{xx}\hat{\rho}_{x}^{2} - (1-\eta)V_{xx}\hat{\sigma}_{x}^{2} + 2V_{xx}(1-\eta)\hat{\sigma}_{x}, \quad (\hat{\sigma}_{x} = \text{spin density})$$

Hubbard-Stratonovich: Replaces four-fermion terms with bilinears.

$$e^{-\frac{\delta_{\tau}}{2}\sum_{x,y}\widetilde{V}_{xy}\hat{\rho}_{x}\hat{\rho}_{y}} \cong \int D\phi e^{-\frac{1}{2\delta_{\tau}}\sum_{x,y}\phi_{x}\widetilde{V}_{xy}^{-1}\phi_{y}} e^{i\sum_{x}\phi_{x}\hat{\rho}_{x}} \qquad (\widetilde{V}_{xx} = \eta V_{xx})$$

$$e^{\frac{\delta_{\tau}}{2}(1-\eta)\sum_{x}V_{xx}\hat{\sigma}_{x}^{2}} \cong \int D\chi e^{-\frac{1}{2\delta_{\tau}}\sum_{x}\frac{\chi_{x}^{2}}{(1-\eta)V_{xx}}} e^{\sum_{x}\chi_{x}\hat{\sigma}_{x}}$$

$$\longrightarrow \text{ Complex bosonic auxiliary field!} \qquad \Phi_{x,t} = \chi_{x,t} + i\phi_{x,t}$$

30. Jan 2019, Dominik Smith

($|\cdot|^2$ from two spin components)

h: tight-binding matrix

JUSTUS-LIEBIG-

UNIVERSITÄT GIESSEN

R

Helmholtz International Center

Lattice simulations of graphene

$$\begin{aligned} \text{Last step: Integrate out fermionic operators.} & \text{Left: Bilinears} \\ \text{Tr} \left(e^{-\hat{A}_{1}} e^{-\hat{A}_{2}} \dots e^{-\hat{A}_{n}} \right) &= \det \begin{pmatrix} 1 & -e^{-A_{1}} & 0 & \dots \\ 0 & 1 & -e^{-A_{2}} & \dots \\ \vdots & \ddots & \vdots \\ e^{-A_{n}} & 0 & \dots & 1 \end{pmatrix} & \hat{A}_{k} &= (A_{k})_{xy} \hat{a}_{x}^{\dagger} \hat{a}_{y} \\ \text{Right: Matrices} \\ A_{k} &= (A_{k})_{xy} \end{aligned}$$

$$\begin{aligned} \text{Final result:} \quad \mathcal{Z} &= \int D\Phi \, |\det M(\Phi)|^{2} e^{-S_{\eta}(\Phi)} \\ \text{M}(\Phi) &= \begin{pmatrix} 1 & -e^{-\delta_{\tau}h} & 0 & 0 & \dots \\ 0 & 1 & -e^{i\Phi_{1}} & 0 & 0 & \dots \\ 0 & 0 & 1 & -e^{-\delta_{\tau}h} & 0 & \dots \\ 0 & 0 & 0 & 1 & -e^{i\Phi_{2}} & \dots \\ \vdots & & \ddots & \\ e^{i\Phi_{N_{\tau}}} & 0 & 0 & \dots & 1 \end{pmatrix} & S_{\eta}(\Phi) &= \frac{1}{2\delta_{\tau}} \sum_{x,y,t} \phi_{x,t} \widetilde{V}_{xy}^{-1} \phi_{y,t} \\ &+ \sum_{x,t} \frac{(\chi_{x,t} - (1 - \eta)\delta_{\tau} V_{xx})^{2}}{2(1 - \eta)\delta_{\tau} V_{xx}} \\ &e^{i\Phi_{t}} &\equiv \text{diag} \left(e^{\chi_{x,t} + i\phi_{x,t}} \right) \end{aligned}$$

Features:

- Measure is positive-definite. No sign problem!
- + η interpolates between real and imaginary fields.
- $0 \ll \eta \ll 1$: domain walls with det M = 0 cirumvented. Ergodicity!
- "Chiral" symmetry! (combination of spin and sublattice)
- M is dense. Invert with Schur solver!

Hybrid Monte-Carlo:

- Evolve fields in computer time with fictitious Hamiltonian process.
- Numerical integrator introduces stepsize error. Correct with Metropolis accept/reject step.
 Exact algorithm!

Buividovich, Smith, Ulybyshev, von Smekal Phys. Rev. B 98, 235129 (2018)

Lattice simulations of graphene

 $\mathcal{Z} = \int D\Phi \, |\det M(\Phi)|^2 e^{-S_{\eta}(\Phi)} \quad S_{\eta}(\Phi) = \frac{1}{2\delta_{\tau}} \sum_{x,y,t} \phi_{x,t} \widetilde{V}_{xy}^{-1} \phi_{y,t} + \sum_{x,t} \frac{(\chi_{x,t} - (1-\eta)\delta_{\tau} V_{xx})^2}{2(1-\eta)\delta_{\tau} V_{xx}}$

• Real graphene: Strongly coupled due to small Fermi velocity. $\alpha_{\text{eff}} = \frac{e^2}{\hbar v_F} \approx 2.2 \longrightarrow \text{Could be Mott insulator!}$

- Experiments and HMC: Suspended graphene is conductor. (interactions screened by σ -band electrons)
- However: Interaction parameters can be modified!
 (B-fields, substrates, strain, adatoms, other hexagonal materials, . . .)
- (Extended) Hubbard model: On-site (U), nearest neighbor (V₁), next-nearest neighbor (V₂) interactions only.

$$H = \sum_{\langle x,y\rangle,s} (-\kappa)(\hat{a}_{x,s}^{\dagger}\hat{a}_{y,s} + \hat{a}_{y,s}^{\dagger}\hat{a}_{x,s}) + \frac{1}{2}\sum_{x,y} \hat{q}_x V_{xy}\hat{q}_y$$

Study competition of ordered phases!

12

Ulybyshev, Buividovich et al., Phys. Rev. Lett. 111, 056801 (2013)

```
Smith, von Smekal,
Phys. Rev. B 89,
195429 (2014)
```

Semi-analytic methods: Renormalization group, random phase approximation, variational Hamiltonian approach, ...

> Qualitative phase diagram but large uncertainties (orders / locations of transitions, ...)

On-site potential (U) only: Well-studied with

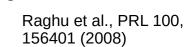
Do ab-initio simulations!

• Insulating spin-density-wave (SDW) phase for $U \gtrsim 3.8\kappa$.

2nd order phase-transition.

"BSS" Quantum-Monte-Carlo.

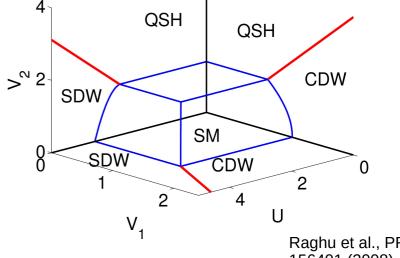
Universality class of 3D N=2 chiral Gross-Neveu model.



Blankenbecler, Scalapino, Sugar Phys. Rev. D 24, 2278 (1981)

> Assaad and Herbut. Phys. Rev. X. 3, 031010 (2013)

> > 12/26



BSS QMC: Faster than HMC for pure on-site Hubbard model.

Method of choice for contact interactions!

However: Additional auxiliary field for each interaction term. (cost quickly grows with off-site potentials)

HMC: Single complex auxiliary field!

Method of choice for non-diagonal interaction matrices!

In 2017/18: Hybrid-Monte-Carlo study of extended Hubbard model with on-site (U) and nearest neighbor potential (V).

- Unbiased study of spin-density-wave (SDW) and charge-density-wave (CDW) order parameters.
- Phase diagram in U-V plane in region
 V<U/3 (restriction of positive-definite interaction).

Buividovich, Smith, Ulybyshev, von Smekal Phys. Rev. B 98, 235129 (2018)

V=U/3, β/v=0.970

Order parameters:

$$\langle S^2 \rangle = \sum_{SL} \left\langle \frac{1}{L^4} \left(\sum_{x \in SL} \hat{S}_x \right)^2 \right\rangle$$

$$\langle q^2 \rangle = \sum_{SL} \left\langle \frac{1}{L^4} \left(\sum_{x \in SL} \hat{q}_x \right)^2 \right\rangle$$

(squared spin/charge per sublattice)

Analysis:

- Extrapolate to infinite volume.
 Use confidence level of non-zero signal!
- Finite-size scaling for U=const. / V=const. lines.
 Use optimal intersection and critical exponents.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

L=6

L=12

L=18

4.2

4.4

4.6

4.8

5

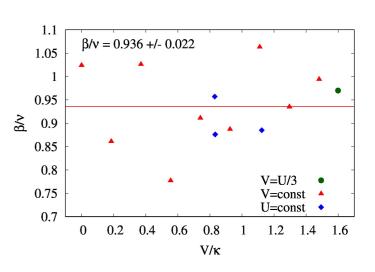
U/ĸ

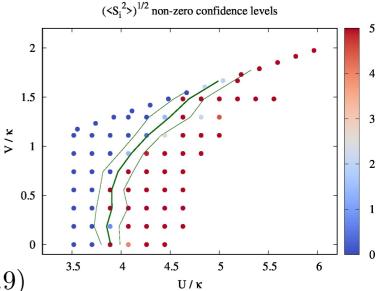
5.2

5.4 5.6 5.

Conclusions:

- Extended region with SDW order. No CDW!
- 2nd order boundary stretches up to U=3V line.
- Chiral Gross-Neveu class confirmed! $(\beta/\nu \approx 0.9)$

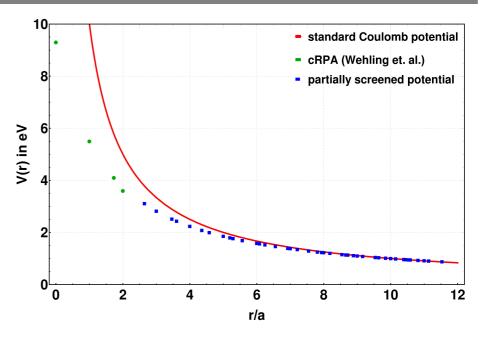




- Graphene: Long-range potential!
- Wehling et al.: cRPA calculation of screened short-range potential. Thin-film model for long-range part.

Wehling, Şaşıoğlu, Friedrich, Lichtenstein, Katsnelson, Blügel Phys. Rev. Lett. 106, 236805 (2011)

 Renormalization group: Coulomb tail is marginally irrelevant.



But does it matter? Perhaps...

Herbut, Juričić, Vafek Phys. Rev. B 80, 075432 (2009) Juričić, Herbut, Semenoff Phys. Rev. B 80, 081405 (2009)

 Strong-coupling expansion: On-site potential drives transition. (critical properties = Hubbard model)

G. W. Semenoff, Physica Scripta 2012 , 014016.

But short-range potential is strongly screened...

Dyson-Schwinger: "Reduced" QED₄ exhibits conformal phase transition!

Gamayun, Gorbar, Gusynin, Phys. Rev. B 81, 075429 (2010)

Reduced QED₄: Low-energy effective field theory of graphene.

- Electron fields in 2D plane. Gauge fields in 3D bulk.
- Strongly coupled due to small Fermi velocity.
- Describes long-range physics. Insensitive to short-range physics.

CPT: Phase transition "of infinite order".

- Observables exhibit exponential "Miransky" scaling.
- Formal limit $\beta, \nu \to \infty, \delta = 1$ of 2nd order transition.
- In 2D: Kosterlitz-Thouless transition.
- "Conformal window" in QCD, "Walking technicolor", …

2nd order: $M \sim |\lambda - \lambda_c|^{\beta}, \ \xi \sim |\lambda - \lambda_c|^{-\nu}, \ M_{\lambda = \lambda_c} \sim H^{1/\delta}$

But which applies to graphene?

 $M(\lambda) \sim \exp\left(\frac{-c}{\sqrt{\lambda - \lambda}}\right)$

HIC for FAIF

In 2018: Hybrid-Monte-Carlo study of competing order in graphene.

Study order $\langle S^2 \rangle = \sum_{SL} \left\langle \frac{1}{L^4} \left(\sum_{x \in SL} \hat{S}_x \right)^2 \right\rangle$ parameters:

$$\langle q^2 \rangle = \sum_{SL} \left\langle \frac{1}{L^4} \left(\sum_{x \in SL} \hat{q}_x \right)^2 \right\rangle$$

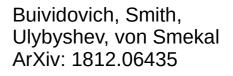
Rescale potential: $V_{xy} \rightarrow \lambda V_{xy}$

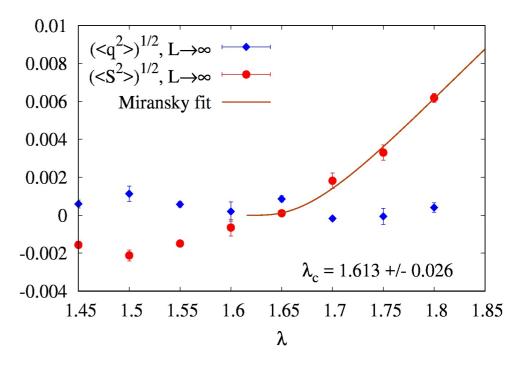
First conclusions:

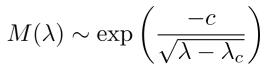
- Potential must be scaled up by
 $\lambda \approx 1.6$ for phase transition.
- SDW favored over CDW order.

Fit to Miransky function works but doesn't mean much. (powerlaw just as good)

Study critical properties!







0.6

0.5

0.4

0.3

0.2

0.1

-0.1

0

3.5

3.6

3.7

3.8

3.9

4.1

4

4.2

4.3

 $< S^2 > L^{2\beta/v}$

L=6 L=12

L=18

L=24

 $N_t=128$, T=0.0625eV, $\beta/\nu=0.812$, $U_c/\kappa=3.942$

On-site potential, benchmark (new BSS-study):

- $U_c \approx 3.9$ and $\beta/\nu \approx 0.8$ (finite-size scaling).
- $\nu \approx 0.9$ from optimized collapse.
- χ^2 of collapse very sensitive. Exponents tighly constrained!
- Difference to old results: Finite-size effects.

U/ĸ $N_t=128$, T=0.0625eV, $\beta/\nu=0.812$, $\nu=0.928$, $U_c/\kappa=3.944$ $\beta/\nu = 0.812, U_c = 3.944$ 0.8 L=6140 0.7 L = 12120 L=18 0.6 L=24100 $< S^2 > L^{2\beta/v}$ 0.5 χ^2 / d.o.f 80 0.4 60 0.3 0.2 40 12.18 0.1 20 = 12.18.24L = 18.240 0 -2 -8 0 2 -6 0.5 1.5 2.5 2 3 3.5 0 $L^{1/v}(U-U_c)/U_c$ ν

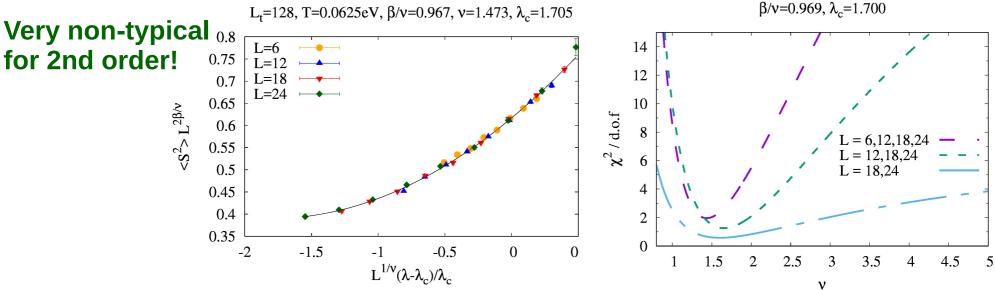
30. Jan 2019, Dominik Smith

Graphene:

- $\beta/\nu \approx 1.0$ but not tightly constrained. (FSS intersections possible for 0.95...1.0)
- $\lambda_c \approx 1.7$ but can move in range $1.6 \dots 1.7$.
- $\nu \gtrsim 1.5$ but very weakly constrained on large lattices! (drift towards larger values)
- Hubbard model exponents fail entirely!



 $L_t=128$, T=0.0625eV, $\beta/\nu=0.967$, $\lambda_c=1.701$



nv. Slope

Ω

0.05

QED2+1, reduced QED4, many-flavor QCD:

 CPT sensitive to infrared cutoff, receives powerlaw corrections.

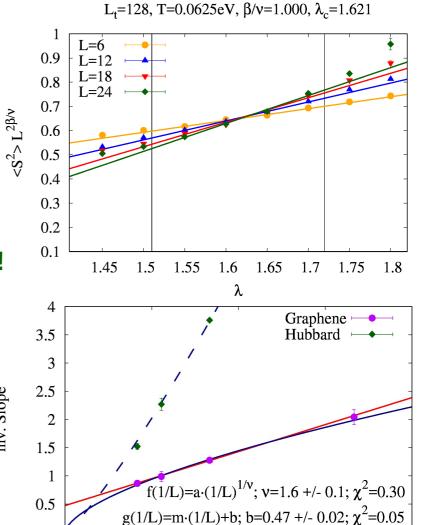
(Braun, Fischer, Gies, Goecke, Williams, Gusynin, Reenders, Liu, Li, Cheng)

Mimics 2nd order in finite volume!

Proposition: Hyperscaling relation (Gusynin et al, 2010) **on finite lattices!**

 $\beta, \nu \rightarrow \infty$ in infinite volume! **In 2+1D:** $\frac{\beta}{\nu} = \frac{d}{\delta + 1} = 1$

Good FSS intersection! Inverse slopes extrapolate to finite value! Collapse without rescaling coupling! $\nu \to \infty$, $N^{1/\nu} \to 1$



0.1

1/L

0.15

0.2

Results III: Lifshitz-transition at finite spin-density

Graphene bands:

 Topology of Fermi "surface" changes when Fermi level crosses saddle points (charge doping).

> "Neck-disrupting Lifshitz- transition"

 Density of states diverges! ("Van-Hove singularity") $\int_{K_{r}} \int_{K_{r}} \int_{K$

Electron interactions should produce ordered phase!

Chubukov et al.: Nature Physics 8, 158163 (2012) Chiral superconductivity in doped graphene. (maybe: twisted bilayer)

Monte-Carlo
$$\mathcal{Z}(\mu) = \int D\Phi \det M(\mu, \Phi) \widetilde{M}(\mu, \Phi) e^{-S_{\eta}(\Phi)}$$

simulation:
 $M(\mu, \Phi) = M(0, \Phi) - \mu \frac{\beta}{N_t} \mathbf{I}$, $\widetilde{M}(\mu, \Phi) = M^{\dagger}(0, \Phi) + \mu \frac{\beta}{N_t} \mathbf{I}$ Sign problem!

Results III: Lifshitz-transition at finite spin-density

2017: HMC study of graphene at finite spin density.

Körner, Smith, Buividovich, Ulybyshev, von Smekal Phys. Rev. B 96, 195408 (2017)

$$M(\mu_s, \Phi) = M(0, \Phi) - \mu_s \frac{\beta}{N_t} \mathbf{I} , \quad \widetilde{M}(\mu_s, \Phi) = M^{\dagger}(0, \Phi) - \mu_s \frac{\beta}{N_t} \mathbf{I}$$
 No sign problem!

(In-plane B-field. Fermi-level shifted in opposite directions for spin orientations)

VHS at finite T (no interactions):

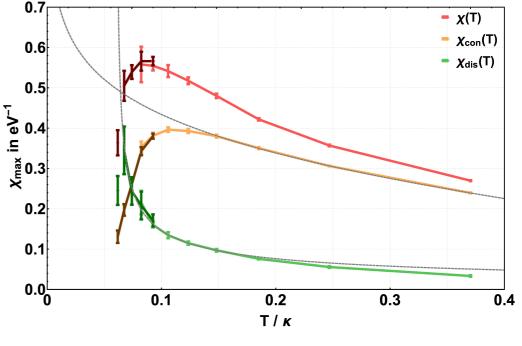
• Log-divergence of connected part of particle-hole susceptibility for $T \rightarrow 0$.

$$\chi_{\rm con.} \sim -\ln\left(\pi T/\kappa\right) + \mathcal{O}(T)$$

With interactions:

Powerlaw-divergence of
 disconnected part at finite T_c.

$$\chi_{\rm dis.} \sim |T - T_c|^{\gamma} , \quad \gamma \approx 1/2$$



To do: Cooper pair condensates!

Results IV: Graphene with lattice defects

2017: Inter-electron interactions and the RKKY potential between H adatoms in graphene

Buividovich, Smith, Ulybyshev, von Smekal Phys. Rev. B 96, 165411 (2017)

Hydrogen adatoms:

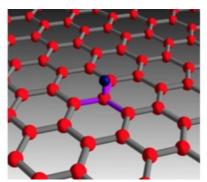
Can be modelled as vacant lattice sites (hoppings to site set zero)

Adatom at z:
$$H = -\sum_{\langle x,y \rangle,s} \kappa(x,y) (\hat{a}_{x,s}^{\dagger} \hat{a}_{y,s} + \hat{a}_{y,s}^{\dagger} \hat{a}_{x,s})$$
, $\kappa(x,z) = 0 \forall x$
"Instantons"

- Interact via fermionic Casimir / Van-der-Waals force:
 Free energy of electrons is modified! ("Ruderman-Kittel-Kasuya-Yosida")
- RKKY interaction affected by inter-electron interactions!

Our HMC study:

- Interaction of H-adatom pairs.
- Stability of H-adatom superlattices.



Picture: Jyioti Katoch Synthetic Metals, Vol. 210, Part A, 68-79 (2015)

Results IV: Graphene with lattice defects

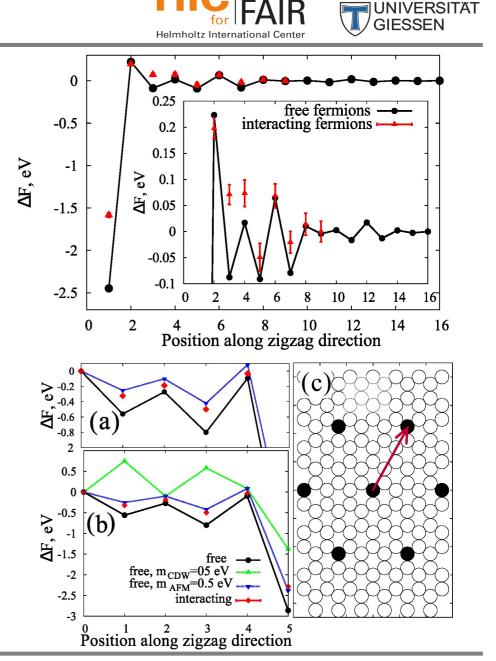
Pairwise interaction:

- Alternating sign on different sublattices. Order-of-magnitude enhancement at some distances.
- With interactions: Local minimum at 3-bond distance disappears! (suppression of dimer formation)

Superlattices (example):

- System with 5.56% coverage on one sublattice shown!
- SDW (AFM) has only weak effect.
 Stabilized by CDW!

Also: Dynamic stability of different superlattices considered! (not shown here)



JUSTUS-LIEBIG-



Ongoing:

 Hubbard model at finite charge density using generalized density of states method (Körner, Langfeld, von Smekal).

Future:

Attractive (U < 0) Hubbard model has no sign problem at finite charge density!</p>

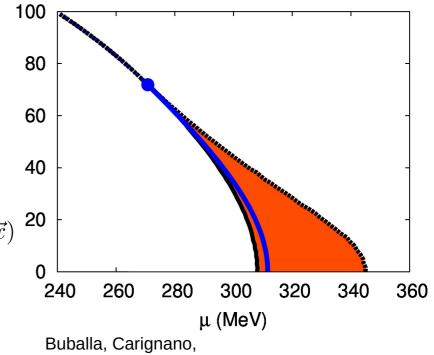
(MeV)

- $\widehat{=} \text{ discretized Nambu-Jona-Lasinio}$ model: $\mathcal{L}_{\text{NJL}} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} m)\psi$ $+ G_{S}\left((\bar{\psi}\psi)^{2} + (\bar{\psi}i\gamma^{5}\vec{\tau}\psi)^{2}\right)$
- NJL in 3+1D (D. Nickel): Inhomogeneous "chiral density wave" in mean field.

$$\langle \bar{\psi}\psi \rangle = -\frac{\Delta}{2G_S} \cos(\vec{q} \cdot \vec{x}) , \ \langle \bar{\psi}i\gamma^5 \vec{\tau}\psi \rangle = -\frac{\Delta}{2G_S} \sin(\vec{q} \cdot \vec{x})^2$$

($\widehat{=}$ "spin spiral" in Hubbard model)

Verified in 2+1D. Test beyond mean field!



Prog. Part. Nucl. Phys. 81, 39–96 (2015)

Literature:

- 1)Monte-Carlo simulation of the tight-binding model of graphene with partially screened Coulomb interactions, Smith, von Smekal, Phys. Rev. B 89, 195429 (2014)
- 2) Interelectron interactions and the RKKY potential between H adatoms in graphene, Buividovich, Smith, Ulybyshev, von Smekal, Phys. Rev. B 96, 165411 (2017)
- 3)*Hybrid Monte Carlo study of monolayer graphene with partially screened Coulomb interactions at finite spin density,* Körner, Smith, Buividovich, Ulybyshev, von Smekal, Phys. Rev. B 96, 195408 (2017)
- 4)*Hybrid Monte Carlo study of competing order in the extended fermionic Hubbard model on the hexagonal lattice*, Buividovich, Smith, Ulybyshev, von Smekal, Phys. Rev. B 98, 235129 (2018)
- 5)Numerical evidence of conformal phase transition in graphene with long-range interactions, Buividovich, Smith, Ulybyshev, von Smekal, arXiv:1812.06435

Thanks for coming!