# Lefschetz thimbles approach for 2+1D Hubbard model: study of saddle points and benchmark calculations 

arXiv: 1906.02726, 1906.07678, 1712.02188

Maksim Ulybyshev ${ }^{1}$, Savvas Zafeiropoulos², Christopher Winterowd ${ }^{3}$
${ }^{1}$ Universität Würzburg
${ }^{2}$ Universität Heidelberg
${ }^{3}$ University of Kent

## Hubbard model on hexagonal lattice

Nearest-neighbor hoppings + local interaction:

$$
\hat{H}=-\kappa \sum_{\langle x, y\rangle, \sigma}\left(\hat{c}_{x \sigma}^{\dagger} \hat{c}_{y \sigma}+h . c .\right)+U \sum_{x} \hat{n}_{x \uparrow} \hat{n}_{x \downarrow}-\left(\frac{U}{2}-\mu\right) \sum_{x}\left(\hat{n}_{x \uparrow}+\hat{n}_{x \downarrow}-1\right)
$$



## Quantum Monte Carlo

$$
\mathcal{Z}=\operatorname{Tr} e^{-\beta \hat{H}} \approx \operatorname{Tr}\left(e^{-\delta \hat{H}_{(2)}} e^{-\delta \hat{H}_{(4)}} e^{-\delta \hat{H}_{(2)}} e^{-\delta \hat{H}_{(4)}} \ldots\right)
$$

Discrete auxiliary fields (BSS-QMC):

$$
\begin{gathered}
e^{-\delta U \hat{n}_{\uparrow} \hat{n}_{\downarrow}}=\frac{1}{2} \sum_{\nu= \pm 1} e^{2 i \xi \nu\left(\hat{n}_{\uparrow}+\hat{n}_{\downarrow}-1\right)-\frac{1}{2} \delta U\left(\hat{n}_{\uparrow}+\hat{n}_{\downarrow}-1\right)} \\
\tan ^{2} \xi=\tanh \left(\frac{\delta U}{4}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{Z}_{d}=\sum_{\nu_{x, t}} \operatorname{det} D_{e l .}\left(\nu_{x . t}\right) \operatorname{det} D_{h .}\left(\nu_{x, t}\right) \\
& D_{e l .}\left(\nu_{x, t}\right)=I+\prod_{t=1}^{N_{t}}\left(e^{-\delta(h+\mu)} \operatorname{diag}\left(e^{2 i \xi \nu_{x, t}}\right)\right) \\
& D_{h .}\left(\nu_{x, t}\right)=I+\prod_{t=1}^{N_{t}}\left(e^{-\delta(h-\mu)} \operatorname{diag}\left(e^{-2 i \xi \nu_{x, t}}\right)\right)
\end{aligned}
$$

Continuous auxiliary fields:

$$
\begin{aligned}
\frac{U}{2}\left(\hat{n}_{e l .}-\hat{n}_{h .}\right)^{2}=\frac{\alpha U}{2}\left(\hat{n}_{e l .}-\hat{n}_{h .}\right)^{2} & -\frac{(1-\alpha) U}{2}\left(\hat{n}_{e l .}+\hat{n}_{h .}\right)^{2}+(1-\alpha) U\left(\hat{n}_{e l .}+\hat{n}_{h .}\right) \\
\alpha=0 \ldots 1 & e^{-\frac{\delta}{2} \sum_{x, y} U_{x, y} \hat{n}_{x} \hat{n}_{y}} \cong \int D \phi_{x} e^{-\frac{1}{2 \delta} \sum_{x, y} \phi_{x} U_{x y}^{-1} \phi_{y}} e^{i \sum_{x} \phi_{x} \hat{n}_{x}}, \\
e^{\frac{\delta}{2} \sum_{x, y} U_{x, y} \hat{n}_{x} \hat{n}_{y}} & \cong \int D \phi_{x} e^{-\frac{1}{2 \delta} \sum_{x, y} \phi_{x} U_{x y}^{-1} \phi_{y}} e^{\sum_{x} \phi_{x} \hat{n}_{x}}
\end{aligned}
$$

$$
\mathcal{Z}_{c}=\int \mathcal{D} \phi_{x, \tau} \mathcal{D} \chi_{x, \tau} e^{-S_{\alpha}} \operatorname{det} M_{\mathrm{el} .} \operatorname{det} M_{\mathrm{h} .}
$$

$$
M_{\mathrm{el} ., \mathrm{h} .}=I+\prod_{\tau=1}^{N_{\tau}}\left[e^{-\delta(h \pm \mu)} \operatorname{diag}\left(e^{ \pm i \phi_{x, \tau}+\chi_{x, \tau}}\right)\right]
$$

## Fierz identities

$$
\begin{gathered}
\frac{U}{2}\left(\hat{n}_{e l .}-\hat{n}_{h .}\right)^{2}=\frac{\alpha U}{2}\left(\hat{n}_{e l .}-\hat{n}_{h .}\right)^{2}-\frac{(1-\alpha) U}{2}\left(\hat{n}_{e l .}+\hat{n}_{h .}\right)^{2}+(1-\alpha) U\left(\hat{n}_{e l .}+\hat{n}_{h .}\right) \\
\delta_{b}^{a} \delta_{d}^{c}=\frac{1}{2} \delta_{d}^{a} \delta_{b}^{c}+\frac{1}{2} \sum_{i} \sigma^{(i)}{ }_{d}^{a} \sigma^{(i)}{ }_{b}^{c}+\text { global spin SU(2) symmetry }
\end{gathered}
$$

Similar identity for relativistic fermions:

$$
\left(\bar{a} O_{i} b\right)\left(\bar{c} O^{i} d\right)=\sum_{k} C_{i k}\left(\bar{a} O_{k} d\right)\left(\bar{c} O^{k} b\right)
$$

Applied for NJL model:

$$
\begin{gathered}
\mathcal{L}=\bar{\psi} i \gamma_{\mu} \partial^{\mu} \psi+G\left[(\bar{\psi} \psi)(\bar{\psi} \psi)-\left(\bar{\psi} \gamma_{5} \psi\right)\left(\bar{\psi} \gamma_{5} \psi\right)\right] \\
=\bar{\psi} i \gamma_{\mu} \partial^{\mu} \psi-\frac{G}{2}\left[\left(\bar{\psi} \gamma_{\mu} \psi\right)\left(\bar{\psi} \gamma^{\mu} \psi\right)-\left(\bar{\psi} \gamma_{5} \gamma^{\mu} \psi\right)\left(\bar{\psi} \gamma_{5} \gamma^{\mu} \psi\right)\right]
\end{gathered}
$$

$=\bar{\psi} i \gamma_{\mu} \partial^{\mu} \psi+\alpha G\left[(\bar{\psi} \psi)(\bar{\psi} \psi)-\left(\bar{\psi} \gamma_{5} \psi\right)\left(\bar{\psi} \gamma_{5} \psi\right)\right]-(1-\alpha) \frac{G}{2}\left[\left(\bar{\psi} \gamma_{\mu} \psi\right)\left(\bar{\psi} \gamma^{\mu} \psi\right)-\left(\bar{\psi} \gamma_{5} \gamma^{\mu} \psi\right)\left(\bar{\psi} \gamma_{5} \gamma^{\mu} \psi\right)\right]$

## Sign Problem

Reweighting:

$$
\mathcal{Z}_{\mathrm{pq}}=\int \mathcal{D} \Phi e^{-S_{R}[\Phi]}
$$

"optimal setup" for BSS-QMC: spin-coupled discrete auxiliary fields ( $4 \times 4$ lattice):

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \mathcal{O}[\Phi] e^{-S[\Phi]}=\frac{\int \mathcal{D} \Phi \mathcal{O}[\Phi] e^{-S[\Phi]}}{\int \mathcal{D} \Phi e^{-S[\Phi]}}
$$



$$
=\frac{\frac{1}{\mathcal{Z}_{\mathrm{pq}}} \int \mathcal{D} \Phi \mathcal{O}[\Phi] \frac{e^{-S[\Phi]}}{e^{-S_{R}[\Phi]}} e^{-S_{R}[\Phi]}}{\frac{1}{\mathcal{Z}_{\mathrm{pq}}} \int \mathcal{D} \Phi \frac{e^{-S \Phi]}}{e^{-S_{R}[\Phi]}} e^{-S_{R}[\Phi]}}=\frac{\left\langle\mathcal{O} e^{-i S_{I}}\right\rangle_{S_{R}}}{\left\langle e^{-i S_{I}}\right\rangle_{S_{R}}} ;
$$



## Lefschetz Thimbles decomposition

$$
\begin{gathered}
\mathcal{Z}(\beta, \mu, \ldots)=\int_{\mathbb{R}^{N}} d^{N} x e^{-S(\beta, \mu, \ldots, x)} \\
S=S_{\alpha}-\ln \left(\operatorname{det} M_{e l .} \operatorname{det} M_{h .}\right)
\end{gathered}
$$



Saddle points in complex space, with thimbles and anti-thimbles attached to them:
$x \in \mathcal{I}_{\sigma}: x(\tau)=x, x(\tau \rightarrow-\infty) \rightarrow z_{\sigma}$
$x \in \mathcal{K}_{\sigma}: x(\tau)=x, x(\tau \rightarrow+\infty) \rightarrow z_{\sigma}$

$$
\frac{d x}{d \tau}=\frac{\overline{\partial S}}{\partial x}
$$

Integral over thimble ( manifold in complex space defined by Gradient Flow equations)

Witten, arXiv: 1009.6032, 1001.2933

## Splitting of the Sign Problem

$$
\mathcal{Z}=\sum_{\sigma} k_{\sigma} e^{-i \operatorname{Im} S\left(z_{\sigma}\right)} \int_{\mathcal{I}_{\sigma}} d^{N} x e^{-\operatorname{Re} S(x)}
$$



How many relevant thimbles do we have ?


## Thimbles for one-site Hubbard model (one-field formalism)

$$
S(x)=\frac{x^{2}}{2 \beta U}-\ln \left(\left(1+e^{i x-\beta \mu}\right)\left(1+e^{-i x+\beta \mu}\right)\right)
$$



# Thimbles for one-site Hubbard model (two-field formalism, half-filling) 



Only trivial saddle point at $\alpha \approx 0.78 \ldots 0.88$

Irrelevant saddle embedded into relevant thimble

$$
\operatorname{dim}\left(\mathbb{R}^{N} \cap \mathcal{K}_{\sigma}\right)=\mathcal{N}_{\sigma}>0
$$

## Stokes phenomenon at half-filling

Relevant saddles points are the local minima of the action if we are bounded within $\mathrm{R}^{\mathrm{N}}$


Action for one-site model in two-field formalism at half-filling; $\alpha=0.95$


Action for one-site model in two-field formalism at half-filling; $\alpha=0.8$


What happens in thermodynamic and continuum limit?

## What do we need to go to large

## lattice?

$$
\begin{gathered}
\mathcal{Z}(\beta, \mu, \ldots)=\int_{\mathbb{R}^{N}} d^{N} x e^{-S(\beta, \mu, \ldots, x)} \\
\mathcal{Z}=\sum_{\sigma} k_{\sigma} e^{-i \operatorname{Im} S\left(z_{\sigma}\right)} \int_{\mathcal{I}_{\sigma}} d^{N} x e^{-\operatorname{Re} S(x)} \\
\left.\frac{\partial S}{\partial x}\right|_{x=z_{\sigma}(\beta, \mu, \ldots)}=0 \\
\frac{d x}{d \tau}=\frac{\overline{\partial S}}{\partial x} \\
S=S_{\alpha}-\ln \left(\operatorname{det} M_{e l .} \operatorname{det} M_{h .}\right)
\end{gathered}
$$

Fast solution of GF equations with fermionic determinants is essential.

$$
\operatorname{det} M^{\dagger} M=\int d \bar{Y} d Y e^{-\bar{Y}\left(M^{\dagger} M\right)^{-1} Y}
$$

Stochastic calculation of fermionic determinant doesn't work: not precise enough, the phase is not conserved.

## Exact fermionic forces (1)

General form of the fermionic operator:
$N_{s} \times N_{s}$ Blocks
$M=\left(\begin{array}{cccccc}I & D_{1} & & & & \\ & I & D_{2} & & & \\ & & I & D_{3} & & \\ & & & \ddots & \ddots & \\ & & & & I & D_{2 N_{t}-1} \\ D_{2 N_{t}} & & & & & I\end{array}\right)$
Also staggered fermions in axial gauge.

$$
D_{2 k}= \pm\left(\begin{array}{ccc}
e^{i \phi_{1}^{k}} & & \\
& \ddots & \\
& & e^{i \phi_{N_{s}}^{k}}
\end{array}\right) \longrightarrow
$$

Interaction with Hubbard fields
(antiperiodic boundary
conditions for fermions)
Exponential transfer matrix preserves the spin
symmetry (arXiv:1610.09855):

$$
D_{2 k-1}=-e^{-\Delta \tau h}
$$

Conventional discretization:

$$
D_{2 k-1}=-1+\Delta \tau h
$$

## Exact fermionic forces (2)

$$
\frac{\partial \ln \operatorname{det} M}{\partial \phi_{x, t}}=\operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \phi_{x, t}}\right)
$$



We need blocks of lattice propagator just below the main diagonal

Iterations for the blocks at the main

$$
g_{m+1}=D_{m}^{-1} g_{m} D_{m}
$$

The algorithm can be taken from BSS-QMC. See the description of ALF package (F. Assaad et al): arXiv:1704.00131

But: we can not go through the entire lattice: "stabilization" is needed

## Schur solver

Basic idea - highly specialized version of sparse LU decomposition.

$$
\begin{aligned}
& \begin{array}{c}
X \equiv X^{(1)}=\left(\begin{array}{c}
X_{1}^{(1)} \\
X_{2}^{(1)} \\
\vdots \\
X_{K_{l}-1}^{(1)} \\
X_{K_{1}}^{(1)}
\end{array}\right), \quad Y \equiv Y^{(1)}=\left(\begin{array}{c}
Y_{1}^{(1)} \\
Y_{2}^{(1)} \\
\vdots \\
Y_{K_{l}-1}^{(1)} \\
Y_{K_{1}}^{(1)}
\end{array}\right) \\
M^{(1)} X^{(1)}=Y^{(1)} \\
P_{K_{l}}^{\dagger} X^{(l)}=\binom{U_{X}(l)}{L_{X}(l)} \quad P_{K_{l}}^{\dagger} Y^{(l)}=\binom{U_{Y}(l)}{L_{Y}(l)} \\
P_{K_{K_{l}}}^{\dagger}\left(\begin{array}{c}
X_{1} \\
X_{1} \\
X_{2} \\
\vdots \\
X_{K_{-1}} \\
X_{K_{l}}
\end{array}\right)=\left(\begin{array}{c}
X_{1} \\
X_{K_{l}-1} \\
X_{2} \\
X_{4} \\
\vdots \\
X_{K_{l}}
\end{array}\right) \\
P_{K_{K_{l}}}\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{K_{l-1}} \\
X_{K_{l}}
\end{array}\right)=\left(\begin{array}{c}
X_{1} \\
X_{K_{l} / 2+1} \\
X_{2} \\
X_{K_{l} / 2+2} \\
\vdots \\
X_{K_{l} / 2} \\
X_{K_{l}}
\end{array}\right)
\end{array}
\end{aligned}
$$

## Schur solver for QCD

Staggered fermions (almost the same for Wilson fermions):

$$
\begin{aligned}
S=\sum_{x}\left\{\sum _ { \nu = 2 } ^ { 4 } \alpha _ { x , \nu } \left[\left(\bar{\psi}_{x} U_{x, \nu} \psi_{x+\hat{\nu}}\right)-\right.\right. & \left(\bar{\psi}_{x+\hat{\nu}} U_{x, \nu}^{\dagger} \psi_{x}\right] \\
& +\left[\left(\bar{\psi}_{x} U_{x, 1} e^{\mu} \psi_{x+\hat{1}}\right)-\left(\bar{\psi}_{x+\hat{1}} U_{x, 1}^{\dagger} e^{-\mu} \psi_{x}\right]+M(\bar{\psi} \psi)\right\}
\end{aligned}
$$

Unitary transformation + constant multiplier:

$$
M(U)=\left(\begin{array}{cccccc}
1 & \omega_{1} & 0 & 0 & 0 & \ldots \\
0 & 1 & \delta_{1} & 0 & 0 & \ldots \\
0 & 0 & 1 & \omega_{2} & 0 & \ldots \\
0 & 0 & 0 & 1 & \delta_{2} & \ldots \\
\vdots & & & & \ddots & \\
-\delta_{N_{t}} & 0 & 0 & & \ldots & 1
\end{array}\right)
$$

Additional complications:

$$
\begin{aligned}
& \bar{g}_{m}=D_{m}^{-1}\left(I-g_{m}\right) \\
& D_{k} \rightarrow \omega_{k}, \delta_{k} \\
& g_{m+1}=D_{m}^{-1} g_{m} D_{m}
\end{aligned}
$$

hoppings in k-th time slice + mass term

$$
\omega_{k}=\left(\begin{array}{cc}
B_{k} & 1 \\
1 & 0
\end{array}\right)
$$

$$
\delta_{k}=\left(\begin{array}{cc}
\operatorname{diag}\left(U_{x, 1}\right) e^{\mu} & 0 \\
0 & \operatorname{diag}\left(U_{x, 1}\right) e^{\mu}
\end{array}\right)
$$

$$
x=\{k, \vec{r}\}
$$

is needed for each time
$\omega_{k}^{-1} \quad$ slice. But it doesn't change the overall $\mathrm{N}_{\mathrm{s}}{ }^{3} \mathrm{~N}_{\mathrm{t}}$ scaling.

## Calculation of propagators



$$
\left(\begin{array}{c:c}
I & D_{0}^{D_{0}} \\
\hdashline D_{i}^{3,} & I
\end{array}\right)
$$

arXiv:1812.06435

Proceed with sparse LU decomposition and reverse iterations

## Schur solver vs CG



CG is advantageous only at very large lattices (e.g. we use it for $2 \times 102 \times 102 \times 160$ lattice to compute Fermi velocity renormalization)

## Saddle points at half-filling

2-site Hubbard model



## Continuum limit and $\alpha$-dependence





Continuum limit:



Ergodicity issues at $\alpha=0.0$ and $\alpha=1.0$. arXiv:1807.07025

## Dominant spin-coupled field


$6 \times 6$ lattice, $\alpha=0.01$

$6 \times 6$ lattice, $\alpha=0.01$

## Dominant charge-coupled field


$\alpha=0.9$


## Optimal regime: $\alpha=0.8$

| $\begin{array}{r} 1.1 \\ 1 \\ 0.9 \end{array}$ | - | $12 \times 12, a=0.8(b)$ |  |
| :---: | :---: | :---: | :---: |
| 0.9 0.8 |  |  |  |
| $\sim 0.7$ |  |  |  |
| 0.6 |  |  |  |
| $\bigcirc 0.5$ |  |  |  |
| 0.4 |  |  |  |
| 0.3 |  |  |  |
| 0.2 |  |  |  |
| 0.1 |  |  |  |
|  | -6880 | -6870 | -6860 |
|  |  | S |  |
|  |  | $\mathrm{J}=3.8$ |  |
|  |  | Summ |  |

1) Optimal regime with only 1 important saddle exists at intermediate values of alpha parameter.
2) If charge-coupled field dominates, it is possible to build complete semi-analytical saddle point approximation.


Flow examples


## Stokes phenomenon at half-filling

Relevant saddles points are the local minima of the action if we are bounded within $\mathrm{R}^{\mathrm{N}}$


Action for one-site model in two-field formalism at half-filling; $\alpha=0.95$


Action for one-site model in two-field formalism at half-filling; $\alpha=0.8$


## Saddles points away of half-filling



## Saddles points away of half-filling: convergence of iterations <br> $\partial^{2} \operatorname{Re} S / \partial \Phi_{i}^{(R)} \partial \Phi_{j}^{(R)}$ <br> $\partial^{2} \operatorname{Re} S / \partial \Phi_{i}^{(R)} \partial \Phi_{j}^{(I)}$

Hessian matrix at saddle point:

$$
\partial^{2} \operatorname{Re} S / \partial \Phi_{i}^{(R)} \partial \Phi_{j}^{(I)} \quad \quad \partial^{2} \operatorname{Re} S / \partial \Phi_{i}^{(I)} \partial \Phi_{j}^{(I)}
$$

A and (-B) should be positive-definite, also the eigenvalues of the matrix:

$$
A^{-1} C B^{-1} C
$$

should satisfy the condition:

$$
\left|\lambda_{i}\right|<1
$$

In 1D case in means:

$$
\left|\arg \partial^{2} S\right|_{z_{\sigma}} \mid<\pi / 4
$$

## $\alpha$-dependence at van Hove singularity




$$
U=3.8
$$



Search iterations are launched starting from
Gaussian thimble attached to vacuum:

The distribution is not exact!

## Dominant spin-coupled field


$6 \times 6$ lattice, $\mathrm{N}_{\mathrm{t}}=256, \mathrm{U}=3.8$, $\beta=20.0, \mu=1.0, \alpha=0.0001$

## Dominant charge-coupled field

## $\alpha=0.9,6 \times 6 \times 256$ lattice, $U=3.8, \beta=20.0, \mu=1.0$



Different classes of saddle points:
" 0 " and " $\downarrow$ "




Within the saddle point approximation, saddles with smaller phases will always dominate within the class with fixed weight: more variants with smaller phase ( $\uparrow \uparrow$ and $\downarrow \downarrow$ vs $\boldsymbol{\downarrow} \uparrow+\boldsymbol{\uparrow} \downarrow$ ).

## Saddle points and phase transitions

Dependence of saddle points on chemical potential:



Dependence of saddle points on interaction strength:


## Optimal regime: $\alpha=0.8$



Again decay in $\operatorname{Re} \mathrm{x}$ direction:



Non-vacuum saddles are either irrelevant or "vertically oriented"



## HMC with gradient flow

Approximates thimble with solution of Gradient Flow equations (following arXiv: 1609.01730):

$$
\mathcal{Z}=\int_{\mathbb{R}^{N}} \mathcal{D} \Phi e^{-S\left[\Phi+i \Phi_{0}\right]}=\int_{\mathbb{R}^{N}} \mathcal{D} \Phi e^{-S[\tilde{\Phi}]} \operatorname{det} J
$$

Zeros of determinant can cause ergodicity issues
 Gaussian thimble

$$
\langle\mathcal{O}\rangle=\frac{\left\langle\mathcal{O} e^{i \operatorname{lm}(-S+\ln \operatorname{det} J)+\operatorname{Re}(\ln \operatorname{det} J)}\right\rangle}{\left\langle e^{i \operatorname{Im}(-S+\ln \operatorname{det} J)+\operatorname{Re}(\ln \operatorname{det} J)}\right\rangle}
$$

## HMC with gradient flow: calculation of derivatives

$$
\partial \operatorname{Re} S\left[\tilde{\Phi}\left(\Phi+\Phi_{0}\right)\right] / \partial \Phi_{i}
$$




Gradient Flow equations are solved for all individual shifts of auxiliary fields, to compute derivatives of the final action with respect to initial fields. Molecular dynamics for initial fields uses these derivatives.

Scaling: $\mathrm{C}_{\mathrm{T}} \mathrm{C}_{\mathrm{MD}} \mathrm{N}_{\mathrm{s}}{ }^{4} \mathrm{~N}_{\mathrm{t}}{ }^{2}$ instead of $\mathrm{N}_{\mathrm{s}}{ }^{3} \mathrm{~N}_{\mathrm{t}}{ }^{1}$ in BSS-QMC

## HMC with gradient flow: examples



## HMC with gradient flow: benchmarks (1)

$2 \times 2 \times 256$ lattice, $U=2.0, \beta=20.0, \mu=1.0$


## HMC with gradient flow: benchmarks (2)



Also, recent tests on $2 \times 4 \times 2 \times 256$ lattice showed average sign>0.7
Possible problems due to growth of fluctuations of Jacobian:

$$
\begin{aligned}
& N_{t}=256:\langle\cos \operatorname{Arg} J\rangle=0.915+-0.008, D_{J}=1.115 \\
& N_{t}=384:\langle\cos \operatorname{Arg} J\rangle=0.823+-0.018, D_{J}=1.68
\end{aligned}
$$

## Summary

1) Set of algorithms for fast solution of GF equations was developed.
2) Using this set of algorithm we could find saddle points both at half-filling at non-zero chemical potential. Thus we could study the properties of saddle point decomposition approaching continuum and thermodynamic limit.
3) There is optimal regime at intermediate values of alpha around 0.8 , where only vacuum is important in overall sum (at half filling this result is numerically exact).
4) In optimal regime the ergodicity issues are weak enough for HMC-CG could reproduce exact diagonalization.
5) Further directions: Hubbard model on square lattice, QCD (?)
