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Hubbard	model	on	hexagonal	lattice	
Nearest-neighbor	hoppings	+	local	interaction:	
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ĉx,", ĉ
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†
x
,
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FIG. 4. Staggered moment extrapolated to the thermody-
namic limit (see Fig. 3) for two values of the pinning field.
We have equally plotted the single particle gap in units of U .
The inset plots the staggered magnetization as obtained from
a mean-field spin density wave Ansatz.

where we do not detect magnetic ordering but we
do detect a small single particle gap.

• The QMC data in Fig. 4 shows that over a wide pa-
rameter range, the single particle gap measured in
units of the Hubbard U, tracks the staggered mag-
netization. We take this as a strong indication, that
the magnetization provides the only relevant scale
in the problem, determining directly the single par-
ticle gap. We will see below, that this conclusion,
based here on a simple, polynomial extrapolation
of the finite size data, is also obtained, if a more
refined data analysis is performed.

• The data in Fig. 4 exhibits an unusual inflection
point at approximately U/t = 4.1. Such an inflec-
tion point is clearly absent at the mean-field level
(see inset of Fig. 4). We will discuss the impli-
cations of this inflection point in the next section.
Let us finally note, that in previous calculations [1]
we were unable to resolve staggered moments lesser
than m ' 0.03. We thereby missed this inflection
point in the polynomially extrapolated magnetiza-
tion curve and concluded the presence of an inter-
mediate phase [21].

C. Finite size scaling

As mentioned above, one of the particularities of the
data presented in Fig. 4 is the occurrence of an inflec-
tion point at U/t = 4.1. It is a natural question to ask
if this rather peculiar feature may be an artifact of using
a simple polynomial fitting procedure, which one would
indeed expect to fail close to criticality. This could result
in an overestimation of the magnetization in the vicinity
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FIG. 5. Data collapse for the magnetization presented in Fig.
3. The exponents are taken for the ✏-expansion of Ref. 6. (a)
The crossing point pins down the value of Uc. (b) The data
collapse, using Uc/t = 3.78.

of the critical point between the semi-metallic and the
insulating phase of the Hubbard model. As we explain
next, arguments in favor of this conjecture are provided
by the large-N treatment of the Gross-Neveu model [5],
and the ✏-expansion around three spatial dimensions in
the equivalent Gross-Neveu-Yukawa field theory, formu-
lated in Ref. 6. Given the order parameter exponent, �,
as well as the correlation length exponent, ⌫, the stag-
gered magnetization scales as

m ' |U � Uc|
�
' ⇠��/⌫ . (9)

Using the standard scaling laws [22], the exponent �/⌫
may conveniently be expressed in terms of the anomalous
dimension for the order parameter ⌘, as

�

⌫
⌘

1

2
([d+ z]� 2 + ⌘) , (10)

where d+ z is the e↵ective dimensionality of the system.
If we assume that the Lorentz invariance is emergent at
the critical point, as it indeed is close to the upper criti-
cal dimension dup = 3 of the Gross-Neveu-Yukawa theory
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Abstract

Graphene is a well-known two-dimensional material which has a set of unique properties. Due to massless electronic excitations 
and very strong Coulomb inter-electron interaction, various phase transitions with spontaneous generation of mass gap can occur 
in graphene. The situation resembles the chiral symmetry breaking in QCD. Recently the Hybrid Monte-Carlo method was applied 
for a studying of graphene electronic properties. Several types of mass term are possible due to several kinds of phase 
transitions. Sign problem appears in fermionic determinant in case of mass term which corresponds to the excitonic phase 
transition. A brief discussion concerning ways to solve this problem is presented.

- creation operator for the electron at the site x with spin s=±1, 

Dispersion relation contains «Dirac cones» in the vicinity of K and K' points in Brillouine zone. Due to this fact the low-
energy excitations can be described by two flavours of 4-component massless Dirac fermions:

Chiral (sublattice) symmetry breaking in graphene

There are several possible channels of the «chiral symmetry» breaking in graphene. These 
channels correspond to appearance of different condensates. The following condensate are in 
the focus of research at the moment:

- antiferromagnetic condensate

- excitonic condensate

From microscopic point of view, antiferromagnetic condensate corresponds to opposite spins of electrons at different sublattices. 
Excitonic condensate corresponds to opposite charge excess at different sublattices. 

V
F
 ~ 1/300 c. So the effective coupling constant is 

α = 300/137 ~ 2. We have a theory with very 

strong instantaneous Coulomb interaction 

Hybrid Monte-Carlo simulations of graphene

We introduce «electrons» and «holes»:

After it the Hamiltonian takes the form:

where is electric charge at site x.

Interaction takes the form:

After the standart Suzuki-Trotter decomposition we arrive at the following representation of the euclidean 
partition function:

We need to introduce artificial mass gap in fermionic operator in order to make it invertible. Usually this mass term should 
correspond to the condensate which behaviour we want to study.  Crucial point in the calculations is that fermionic 
operators for electrons Mel.  and holes  Mh.    are comlex conjugated to each other  only in the case of 
antiferromagnetic mass term. 

Therefore, if we want to study excitonic condensate, the sign problem appears due to the corresponding mass term in fermionic operator.

Possible ways to solve the problem

We may use rational Hybrid Monte-Carlo.  In this case, we artificially increase number of 
fermionic flavoours up to 4 (two «electrons» and two «holes»):

Ф is a phase of the det (Mel. Mh.) . It can be transferred to observable quantity.

We may simulate the theory without any artificial 
mass term. Mass gap can be introduced 
«geometrically» by special boundary conditions or 
special lattice sizes. This method is based on two 
facts:
1) Dirac points in graphene are not at zero 
momentum but at two special points (K and K') in 
the Brillouine zone.
2) Any finite size lattice allows only the discrete set 
of particle's momentum. The allowed values of 
momentum can or can not cover the K-points 
depending on the geometry of the lattice.

This gap is controlled by the size of the lattice. The larger is 
the lattice, the smaller is the gap.

The problem is that «geometrical» mass gap doesn't 
inroduce the primer for the symmetry breaking. So we still are 
unable to detect the formation of any condensates. 

The figure demonstrates the arrangement of possible momentum values inside the Brillouine 
zone. If the lattice sizes are not equal to 6x, the K-points are not covered by latice momentum 
values therefore, we have a «geometrical» mass gap.

But we can use fluctuations of order parameter:

to detect the phase transition.

At the transition point, the spatial correlation radius of the order parameter should tend to infinity. 
Also It is possible to search for the existence of the Goldstone bosons.
Therefore, one should measure the time:                                                    or spatial:

correlators to detect the phase transition

Graphene electronic properties: 

We start from the tight-binding Hamiltonian for the electrons at p
z
 orbitals:

This figure demonstates the distribution of 
the phase Ф for several values of mass. 
Mass term corresponds to the excitonic 
phase transition.

This concept is especially appropriate for this situation, because we are always interested in 
the limit of the zero artificial mass. So the mass term in fermionic operator is realtively small 
and phase of the fermionic operator doesn't fluctuate too huge., 

Here the dependence of the distbution 
width on the mass is shown. The 
distribution width rapidly grows with  the 
mass increases. We should work with 
as small masses as possible.  

Free	fermions	with	only	nearest-neighbor	hoppings:	
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Quantum	Monte	Carlo	
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â
†
x,s
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Ĥint =
U

2

X

x

(n̂e � n̂h)
2 (2)

â
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†
y,s
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3

over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:
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2 �U(n̂"+n̂#�1), (5)

tan2 ⇠ = tanh(
�U

4
).

Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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ĉ†
x�
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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†
x,# ! ±b̂†x,±b̂x

, (9)

where the sign in the second line alternates depending on
the sublattice. The Hamiltonian (8) acquires the follow-
ing form after the transition to the new variables :
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x
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number operators for electrons and holes respectively.
Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
both cases. In the case of the discrete transformation (5),
we arrive at the following representation of the partition
function (1) as a sum over all possible values of ⌫x,t:
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of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns
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iliary fields belonging to a given Euclidean time slice t.
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both real (7) and complex (6) exponents:

U

2
(n̂el. � n̂h.)

2 =
↵U

2
(n̂el. � n̂h.)

2 �

� (1� ↵)U

2
(n̂el. + n̂h.)

2 + (1� ↵)U(n̂el. + n̂h.). (13)

Parameter ↵ 2 [0, 1] defines the balance between real
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fermionic term can be transformed into bilinear using

3

over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
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Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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(â†
x
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FIG. 1. Average sign in BSS-QMC algorithm, taken from
the ALF (Algorithm for lattice fermions) package [41]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.

sition:

e��Ĥ
⇡ ...e��K̂e��ĤU e��K̂e��ĤU ...+O(�2) (9)

where K̂ is the collection of all bilinear fermionic terms
in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term
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where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.

The details of the construction of the path integral are
straightforward and can be found in [43, 45, 46]. Here
we simply state the explicit form of the partition function
which we have used in our calculations:
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where the fermionic operators are given by
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In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle
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in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term

U

2
q̂2
x
=

↵U

2
q̂2
x
�

(1� ↵)U

2
ŝ2
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we simply state the explicit form of the partition function
which we have used in our calculations:
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where the fermionic operators are given by

Mel.,h. = I +
N⌧Y

⌧=1

h
e��(h±µ)diag
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e±i�x,⌧+�x,⌧

�i
. (14)

In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle
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Fierz	identities	
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Cik (āOkd)
�
c̄Okb

�
(2)
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Ĥtb = �
X

<x,y>

⇣
â†
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ây + b̂†

x
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y,s
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Ĥ = Ĥtb + Ĥint (12)
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Similar	identity	for	relativistic	fermions:		
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â†
x,s
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FIG. 1. Average sign in BSS-QMC algorithm, taken from the
ALF (Algorithm for lattice fermions) package [42, 43]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.

sition:

e��Ĥ
⇡ ...e��K̂e��ĤU e��K̂e��ĤU ...+O(�2) (9)

where K̂ is the collection of all bilinear fermionic terms
in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term

U

2
q̂2
x
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↵U

2
q̂2
x
�

(1� ↵)U

2
ŝ2
x
+ (1� ↵)Uŝx, (10)

where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),

e
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P
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [44] and was
also used in the recent papers [45, 46]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.

The details of the construction of the path integral are
straightforward and can be found in [45, 47, 48]. Here
we simply state the explicit form of the partition function
which we have used in our calculations:
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Z
D�x,⌧ D�x,⌧ e
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where the fermionic operators are given by

Mel.,h. = I +
N⌧Y

⌧=1

h
e��(h±µ)diag

�
e±i�x,⌧+�x,⌧

�i
. (14)

In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle

“optimal	setup”	for	BSS-QMC:	spin-coupled	
discrete	auxiliary	fields	(4x4	lattice):	Reweighting:	

2

identity

hOi =
1

Z

Z
D�O[�] e�S[�] =

R
D�O[�] e�S[�]

R
D� e�S[�]

=
1

Zpq
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D�O[�] e
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e
�SR[�] e
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1
Zpq

R
D� e�S[�]

e
�SR[�] e�SR[�]

=
hOe�iSI iSR

he�iSI iSR

,

(1)

where S = SR + iSI , the ratio e
�S[�]/e�SR[�] is the

reweighting factor, and

Zpq =

Z
D� e�SR[�] (2)

is the phase quenched partition function. The angular
brackets in (1) denote an ensemble average with respect
to the measure D� e�SR . Although this sequence of
expressions is nothing more than a rewriting of the stan-
dard thermal ensemble average, the practical calculation
of observables using reweighting is exponentially di�cult
due to the sign problem. The technical issue at hand
is the overlap of the ensemble sampled according to SR

and the original ensemble that involves the entire action.
A physical meaning can be attached to this di�culty by
considering the average sign, he�iSI iSR , which can be
understood as a ratio of two partition functions

Z

Zpq
= e��V�f . (3)

In (3) we have introduced the spatial volume V , inverse
temperature �, and �f , which is the free energy density
di↵erence between the two ensembles. Although �f is
formulation dependent, one cannot cure the exponential
scaling using naive reweighting. In any Monte Carlo cal-
culation, the error on the mean scales with the computa-
tional time, TCPU , as 1/

p
TCPU . Thus, in order to have

the error on the average sign less than the value of the
average sign itself, we must require that TCPU � e2�V�f .

Recently, much progress has been made by complexify-
ing the fields of systems su↵ering from the sign problem.
For some systems, it has been demonstrated that this
approach can alleviate or even eliminate the severe sign
problem of the original formulation. This idea, which can
easily be demonstrated in simple, one-dimensional inte-
grals, has found nice applications in several non-trivial
physical systems. One successful approach along the pre-
viously mentioned lines is complex Langevin dynamics[9–
16]. Another method, which we use in this study is the
method of Lefschetz thimbles.

Originally introduced in [17, 18], it was not long after
that lattice gauge theory practitioners sought to apply
these methods to QCD at finite baryon density [19]. Pio-
neering studies using Lefschetz thimbles were performed
on the relativistic Bose gas for lattices volumes up to
V = 84, showing good agreement with complex Langevin
simulations [20–22]. Several other studies have investi-
gated a variety of other systems displaying a sign problem

including O(n) sigma models [23], chiral random matrix
ensembles [24], and the U(1) one-link model using tech-
niques borrowed from reweighting [25]. A significant hur-
dle was overcome as several groups extended the method
of Lefschetz thembles to interacting fermions in 0+ 1 di-
mensions as well as at a single site [26–31]. The successful
application of these methods was then subsequently ex-
tended to field theories of strongly interacting fermions
in both 1 + 1 as well as 2 + 1 dimensions [32–35]. A
short description of the results presented in this article
originally appeared in our previous letter [36]. In a subse-
quent preprint [37] an alternative approach to deal with
ergodicity issues was applied to Hubbard model simula-
tions within the thimbles formalism. Albeit, there is a
big di↵erence in the regimes studied by the two groups.
In [36] and in this paper, the low temperature limit of the
Hubbard model was studied, while the authors of [37] re-
ported results for significantly higher temperatures and
thus of milder sign problem for which BSS-QMC has an
average sign greater than 0.6 in the whole range of pa-
rameters studied in their paper. On the other hand, both
in [36] as well as in this article, we are addressing the re-
gion of strong sign problem where BSS-QMC, even with
an optimal setup, experiences an exponential decay of
the average sign.

We start with a short introduction to the formalism,
and proceed with a detailed general study of the saddle
points, which is an essential ingredient of the method. In
this section, we extend the previous study and explore
the dependence of these saddles on volume, the Hubbard
coupling U , and chemical potential. We then discuss
at length the algorithm used to generate configurations
away from half-filling. Finally, we report on the results of
our Monte Carlo calculations over manifolds in complex
space and show the average sign problem can be substan-
tially increased even in comparison with BSS-QMC.

II. LEFSCHETZ THIMBLES FORMALISM

Let us first consider the complexification of the fields
appearing in the functional integral (1), � 2 CN . This
amounts to a shift of the contour of integration into com-
plex space. We are allowed to do so, as Cauchy’s theorem
tells us that one can choose any appropriate contour in
complex space as long as the integral still converges and
no poles of the integrand are crossed during this shift. As
we will demonstrate, both of these conditions are satis-
fied. We now introduce one particularly useful represen-
tation, known as the Lefschetz thimble decomposition of
the partition function [17, 18],
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reweighting factor, and
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is the phase quenched partition function. The angular
brackets in (1) denote an ensemble average with respect
to the measure D� e�SR . Although this sequence of
expressions is nothing more than a rewriting of the stan-
dard thermal ensemble average, the practical calculation
of observables using reweighting is exponentially di�cult
due to the sign problem. The technical issue at hand
is the overlap of the ensemble sampled according to SR

and the original ensemble that involves the entire action.
A physical meaning can be attached to this di�culty by
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Z

Zpq
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p
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gated a variety of other systems displaying a sign problem
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in [36] as well as in this article, we are addressing the re-
gion of strong sign problem where BSS-QMC, even with
an optimal setup, experiences an exponential decay of
the average sign.

We start with a short introduction to the formalism,
and proceed with a detailed general study of the saddle
points, which is an essential ingredient of the method. In
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Ĥ = �

X

hx,yi

(â†
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help of Morse theory (or Picard-Lefschetz theory) and is
known as Lefschetz thimble decomposition of the path
integral [6, 7]:

Z (�, µ, . . . ) =
X

�

k� (�, µ, . . . )Z� (�, µ, . . . ) , (20)

Z� (�, µ, . . . ) =

Z

I�(�,µ,... )
dNxe�S(�,µ,...,x), (21)

where � labels all complex saddle points z� (�, µ, . . . ) 2 C
of the action:

@S

@x

����
x=z�(�,µ,... )

= 0, (22)

integer-valued coe�cients k� (�, µ, . . . ) are so-called in-
tersection numbers and I� (�, µ, . . . ) are steepest descent
(Lefschetz thimble) manifolds. Here we have emphasized
dependence of all important quantities and objects on
parameters for clarity and will omit this in what follows.
This relation is valid if saddle points are non-degenerate
and isolated (for generalization in the case of gauge the-
ory see [6]). Degenerate saddle points can appear due to
spontaneous breaking of some continuous symmetry, and
in this case, the symmetry should be explicitly broken by
some small term in Hamiltonian and all results should be
extrapolated to the limit where the symmetry is restored.

In order to construct the Lefschetz thimble manifold
I� corresponding to a given complex saddle point z� we
use the gradient flow equation:

dx

d⌧
=

@S

@x
, (23)

with the following boundary conditions:

x 2 I� : x(⌧) = x, x(⌧ ! �1) ! z�. (24)

This equation defines the evolution of the complex vari-
able x with respect to the fictitious flow time ⌧ , and all
such solutions constitute the thimble manifold.

Analogously, we define another important type of man-
ifold, the so-called anti-thimble K� which consist of all
possible solution of the flow equations (23) which end up
at a given saddle point z�:

x 2 K� : x(⌧) = x, x(⌧ ! +1) ! z�. (25)

With the help of anti-thimbles one can compute integer-
valued coe�cients k� in the expression (20) by counting
the number of intersection of K� with original integration
contour RN :

k� = hK�,RN i. (26)

Both thimbles and anti-thimbles are N -dimensional
real manifolds in CN . Two basic properties which make
them useful are the following. First of all, the real part of
the action ReS monotonically increases along the thim-
ble and monotonically decreases along the anti-thimble

if we start from the saddle point. Secondly, the imagi-
nary part of the action ImS stays constant along both of
them. It follows that neither thimbles nor anti-thimbles
can intersect each other, neither of saddle points can be
connected by some thimble in a general situation (with a
very important exception which is discussed below) and
all integrals on the r.h.s. of the expression (20) are con-
vergent.
It is due to constant complex phases on thimbles this

method became attractive for studying the sign problem
in QMC simulations. There is nevertheless a residual
sign problem due to non-trivial complex-valued volume
element on the thimble which is however soft and can be
overcome. In practice, thimbles can be constructed us-
ing their tangent spaces in the vicinity of saddle points.
Namely, at each saddle point we can compute 2N ⇥ 2N
matrix of the second derivatives of ReS over real and
imaginary part of complex variable x. This matrix has
exactly N positive and N negative eigenvalues. The cor-
responding eigenvectors define the tangent space for the
thimble and the anti-thimble respectively and provide us
with initial conditions for the flow equations.
The main subtlety in this theory is a Stokes phe-

nomenon which happens when at some values of param-
eters (so-called Stokes rays) there exist two or more dis-
tinct saddle points connected by some thimble. This
can only happen when the imaginary part of actions
at these saddle points coincide: ImS(z�) = ImS(z�0).
Then thimble integrals Z� associated with these sad-
dle points exhibit jumps which should be compensated
by the jump in coe�cients k� in order to ensure valid-
ity of Cauchy theorem. Jumps in intersection numbers
appear due to change in the structure of anti-thimbles.
Consequently, some coe�cients k� might become zero or
non-zero and the structure of the sum (20) can change
dramatically, thus any reasonable QMC algorithm based
on the thimble decomposition should correctly account
for them. This makes direct application of the thimble
decomposition very impractical, however the very exis-
tence of such decomposition motivates development of
algorithms which will approximate thimbles in some au-
tomatic manner and minimize sign problem, like those
mentioned in the introduction.

The general sign problem generated by the fluctuating
phase in (19) is substituted by the sign problem gener-
ated by di↵erent phase factors appeared in the sum over
thimbles (20):

Z =
X

�

k�e
�i ImS(z�)

Z

I�

dNxe�ReS(x), (27)

where we write down complex factors associated with
di↵erent saddle points explicitly. We say that thimble is
“relevant” if it has a nonzero intersection number k� and
thus participates in this sum. The number of relevant
thimbles, their weight, and the distribution of imaginary
part of action at corresponding (relevant) saddle points
define the remaining complexity of the sign problem. The
smaller the number of relevant saddle points, the less
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ây + h.c.

⌘
(7)
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FIG. 2: Average number of particles hn̂i = hâ†âi for the one-
site Hubbard model. U� = 15.0.

if we want to make calculations without this bias, some
intermediate value of ↵ should be used. First, we analyze
both cases of ↵ = 1 and ↵ = 0 in order to give a com-
prehensive picture of the sign problem. Then we study
intermediate values of ↵ where the situation smoothly
evolves between these too limits.

2. LEFSCHETZ THIMBLES AND GAUSSIAN
HUBBARD-STRATONOVICH

TRANSFORMATION

Now we are going to explore how the Lefschetz thim-
bles approach works for di↵erent variants of Gaussian
HS transformation. In order to estimate the complexity
of the sign problem, we estimate the number or relevant
thimbles, calculate their phases and estimate their weight
in the sum (20). We use built-in routine FindRoot from
Mathematica in order to find saddle points and routine
NDSolve in order to solve the flow equations (23). In this
exploratory study we restrict ourselves to quite small lat-
tice sizes because we use explicit expressions for fermionic
determinants in computations. After finding the saddle
points we estimate the absolute value of the integrals over
thimbles in order to identify their real contribution to the
overall sum (20). We base on the first approximation for
the action in the vicinity of saddle points:

S ⇡ S|x0 +
1

2
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j � xj
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Thus the integral over thimble can be estimated as the
Gaussian one and the weight of thimble is defined by
exp (�W ), where

W = ReS|x0 +
1

2
log detD2. (32)

D2 is the matrix of the second derivatives of the real
part of the action calculated over coordinates within the

thimble (denoted as ti) in the vicinity of saddle point:

D2 =
@ReS

@ti@tj

����
t=t(x0)

. (33)

For real saddles it coincides with the matrix of the sec-
ond derivatives of the action within RN . For complex
saddles we calculate the 2N ⇥ 2N matrix D2 of the sec-
ond derivatives of ReS over real and imaginary parts of
complex variable x and compute the log detD2 as the
sum of logarithms of positive eigenvalues of this matrix.

2.1. Gaussian HS transformation with only
complex exponents

Following [24], we start from the one-site Hubbard
model because it allows to illustrate some basic concepts
by plotting thimbles and anti-thimbles in simple 2D fig-
ures. According to definitions in Section (1), the action
in the path integral representation for the partition func-
tion (14) of this model can be written as:

S(x) =
x2

2�U
� ln

�
(1 + eix��µ)(1 + e�ix+�µ)

�
. (34)

We used ↵ = 0 thus only complex exponents are left in
the action. The model is exactly solvable: at low tem-
peratures (�U � 1) there is sharp transition in the num-
ber of particles hn̂i = hâ†âi when the absolute value of
chemical potential becomes comparable to the interac-
tion strength U . The number of particles as a function
of chemical potential is plotted in the figure 2.
Saddle points, thimbles and anti-thimbles for this

model are shown in the figure 3 for four di↵erent situ-
ations. The first case (fig. 3a) corresponds to half-filling
(µ = 0); the second case (fig. 3b) corresponds to interme-
diate chemical potential (µ = U/3) and the last two plots
(fig. 3c and 3d) correspond to the case of large chemical
potential (µ > U) which is comparable to the interaction
strength and causes the transition in the average number
of particles hn̂i. These figures illustrate the key proper-
ties of thimbles and anti-thimbles which are important for
further consideration. Both thimbles and anti-thimbles
start from saddle points. Since the real part of the action
monotonically increases along thimbles, they can end up
either at infinity or at the points where the fermionic de-
terminant is equal to zero, because ReS tends to infinity
in both cases. Anti-thimbles should end up in the re-
gion where ReS monotonically decreases. In this model
it corresponds to some direction at infinity. We will show
further that there are also other possibilities.
At small and intermediate chemical potential (µ < U)

there is an infinite number of anti-thimbles crossing the
real axis. Thus, there are an infinitely large amount of
relevant saddle points which should be included into the
sum (20). The relative importance of the di↵erent terms
in the sum (20) was estimated for this model in [24]
within the saddle points approximation, where the whole

8

FIG. 3: Thimbles and anti-thimbles for one-site Hubbard model in the Gaussian representation at various values of chemical
potential.The action is written in (34), U� = 15.0. (a) Half filling (µ = 0). The real axis is divided by “zeros” of fermionic
determinant into infinite number of thimbles. Corresponding anti-thimbles end up at infinity Im z ! ±1. (b) �µ = 5.0. The
number of relevant thimbles is still infinite but all relevant saddles are shifted in the complex plane from the real axis. (c)
�µ = 15.0. There is still infinite number of relevant saddles, but the Stokes phenomenon is very close to appearance. (d)
�µ = 20.0. The Stokes phenomenon is occurred. Only one relevant thimble remained.

integral over the thimble is substituted by the value of
the exponent at the corresponding saddle point e�S(z�).
The zeroth saddle at x = 0 is of course dominant but one
should take into account ⇡ 5 thimbles to reach reasonable
precision at intermediate chemical potential around the
transition point. This hierarchy is illustrated in the figure
4 using the approximations described in eq. (31-33). This
is the typical plot which we will use for the estimation of
the relative importance of thimbles in various situations.
The lower plot is the histogram showing the number of
thimbles which have their values of weight W� (see eq.
(32)) within the given interval with respect to the thim-
ble with the largest weight W0. The upper plot is the
“weighted” histogram. It means that the height of each
bar increases by the relative weight exp (�(W� �W0))
of the thimble with respect to the vacuum one if W� of
the thimble belongs to the given interval. The weighted
histogram (fig. 4a) clearly shows that the “vacuum” sad-
dle at zero x still dominates. The weight of all further
thimbles (there are two of them contributing to each bar,

these thimbles are symmetrical with respect to x = 0)
rapidly decreases with increased distance from the vac-
uum x = 0.

The main question is how this situation scales when the
overall lattice size N = NsNt increases. A full derivation
of the exact scaling law for the number of relevant thim-
bles is probably unfeasible in the general case. Thus, our
task is to find, empirically, whether the number of impor-
tant saddles increases with increasing lattice size. We will
study the region µ < U , since the chemical potential is
usually smaller than the typical scale of the on-site inter-
action in reality. For instance, in graphene, new physical
phenomena emerge if the chemical potential crosses the
van Hove singularity [41] which is of the order of the hop-
ping (2.7 eV), while on-site interaction is of the order of
10 eV [42]. We will consider the two-site Hubbard model
on the lattice with Nt = 1, 2, 3 and the four-site Hubbard
model with Nt = 1. Action is constructed according to
(14) and (15) with the single-particle Hamiltonian de-
fined in (17) and (18) and ↵ = 1. The general form of
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the exponent at the corresponding saddle point e�S(z�).
The zeroth saddle at x = 0 is of course dominant but one
should take into account ⇡ 5 thimbles to reach reasonable
precision at intermediate chemical potential around the
transition point. This hierarchy is illustrated in the figure
4 using the approximations described in eq. (31-33). This
is the typical plot which we will use for the estimation of
the relative importance of thimbles in various situations.
The lower plot is the histogram showing the number of
thimbles which have their values of weight W� (see eq.
(32)) within the given interval with respect to the thim-
ble with the largest weight W0. The upper plot is the
“weighted” histogram. It means that the height of each
bar increases by the relative weight exp (�(W� �W0))
of the thimble with respect to the vacuum one if W� of
the thimble belongs to the given interval. The weighted
histogram (fig. 4a) clearly shows that the “vacuum” sad-
dle at zero x still dominates. The weight of all further
thimbles (there are two of them contributing to each bar,

these thimbles are symmetrical with respect to x = 0)
rapidly decreases with increased distance from the vac-
uum x = 0.

The main question is how this situation scales when the
overall lattice size N = NsNt increases. A full derivation
of the exact scaling law for the number of relevant thim-
bles is probably unfeasible in the general case. Thus, our
task is to find, empirically, whether the number of impor-
tant saddles increases with increasing lattice size. We will
study the region µ < U , since the chemical potential is
usually smaller than the typical scale of the on-site inter-
action in reality. For instance, in graphene, new physical
phenomena emerge if the chemical potential crosses the
van Hove singularity [41] which is of the order of the hop-
ping (2.7 eV), while on-site interaction is of the order of
10 eV [42]. We will consider the two-site Hubbard model
on the lattice with Nt = 1, 2, 3 and the four-site Hubbard
model with Nt = 1. Action is constructed according to
(14) and (15) with the single-particle Hamiltonian de-
fined in (17) and (18) and ↵ = 1. The general form of
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rapidly decreases with increased distance from the vac-
uum x = 0.

The main question is how this situation scales when the
overall lattice size N = NsNt increases. A full derivation
of the exact scaling law for the number of relevant thim-
bles is probably unfeasible in the general case. Thus, our
task is to find, empirically, whether the number of impor-
tant saddles increases with increasing lattice size. We will
study the region µ < U , since the chemical potential is
usually smaller than the typical scale of the on-site inter-
action in reality. For instance, in graphene, new physical
phenomena emerge if the chemical potential crosses the
van Hove singularity [41] which is of the order of the hop-
ping (2.7 eV), while on-site interaction is of the order of
10 eV [42]. We will consider the two-site Hubbard model
on the lattice with Nt = 1, 2, 3 and the four-site Hubbard
model with Nt = 1. Action is constructed according to
(14) and (15) with the single-particle Hamiltonian de-
fined in (17) and (18) and ↵ = 1. The general form of
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FIG. 3: Thimbles and anti-thimbles for one-site Hubbard model in the Gaussian representation at various values of chemical
potential.The action is written in (34), U� = 15.0. (a) Half filling (µ = 0). The real axis is divided by “zeros” of fermionic
determinant into infinite number of thimbles. Corresponding anti-thimbles end up at infinity Im z ! ±1. (b) �µ = 5.0. The
number of relevant thimbles is still infinite but all relevant saddles are shifted in the complex plane from the real axis. (c)
�µ = 15.0. There is still infinite number of relevant saddles, but the Stokes phenomenon is very close to appearance. (d)
�µ = 20.0. The Stokes phenomenon is occurred. Only one relevant thimble remained.

integral over the thimble is substituted by the value of
the exponent at the corresponding saddle point e�S(z�).
The zeroth saddle at x = 0 is of course dominant but one
should take into account ⇡ 5 thimbles to reach reasonable
precision at intermediate chemical potential around the
transition point. This hierarchy is illustrated in the figure
4 using the approximations described in eq. (31-33). This
is the typical plot which we will use for the estimation of
the relative importance of thimbles in various situations.
The lower plot is the histogram showing the number of
thimbles which have their values of weight W� (see eq.
(32)) within the given interval with respect to the thim-
ble with the largest weight W0. The upper plot is the
“weighted” histogram. It means that the height of each
bar increases by the relative weight exp (�(W� �W0))
of the thimble with respect to the vacuum one if W� of
the thimble belongs to the given interval. The weighted
histogram (fig. 4a) clearly shows that the “vacuum” sad-
dle at zero x still dominates. The weight of all further
thimbles (there are two of them contributing to each bar,

these thimbles are symmetrical with respect to x = 0)
rapidly decreases with increased distance from the vac-
uum x = 0.

The main question is how this situation scales when the
overall lattice size N = NsNt increases. A full derivation
of the exact scaling law for the number of relevant thim-
bles is probably unfeasible in the general case. Thus, our
task is to find, empirically, whether the number of impor-
tant saddles increases with increasing lattice size. We will
study the region µ < U , since the chemical potential is
usually smaller than the typical scale of the on-site inter-
action in reality. For instance, in graphene, new physical
phenomena emerge if the chemical potential crosses the
van Hove singularity [41] which is of the order of the hop-
ping (2.7 eV), while on-site interaction is of the order of
10 eV [42]. We will consider the two-site Hubbard model
on the lattice with Nt = 1, 2, 3 and the four-site Hubbard
model with Nt = 1. Action is constructed according to
(14) and (15) with the single-particle Hamiltonian de-
fined in (17) and (18) and ↵ = 1. The general form of
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FIG. 12: Examples of configurations on the lattice with Ns =
4, Nt = 2, with only real exponents in the action. The scheme
shows three configurations, two of them have positive weight
((a) and (c)) and one has negative weight (b). Both time slices
are shown in each case. Circles correspond to the Hubbard
field � ⇡ �U� and crosses correspond to � ⇡ U�, � = �/2.

lattices and two highest saddles with Hubbard fields uni-
form in entire lattice. In between of them we have a set
of saddles where Hubbard fields fluctuate between sub-
lattices. Their weight is very close to each other, only
small splitting appears for Nt = 4. Thus their overall
number can be estimated as 2Nt � 2, taking into account
all possible reflections and translations. The competition
arises between exponentially increased amount of these
thimbles and their exponentially decreasing weight (this
fact can be also noticed from the figure 9). It means that
in continuous limit Nt ! 1 these non-uniform saddles
can still make significant contribution in the sum (20).

The case with non-zero chemical potential is shown
in the figure 11. Unlike the previous study for complex
exponents, where we could not directly find relevant com-
plex saddles thus we just tracked the evolution of former
real saddles, here we can find all relevant saddles exactly,
because all of them are lying within RN even for µ 6= 0.
The figure 11 shows the situation for µ� = 3. It shows
three di↵erent cases: 1) Ns = 2, Nt = 1; 2) Ns = 2,
Nt = 2; 3) Ns = 4, Nt = 1. Thus we can trace both
trends: increasing Nt and increasing Ns. Comparison
with the figures 9 and 10 shows that there are only small
changes in the distribution of relevant thimbles.

Importantly, all relevant saddles still have positive
weight. This is not surprising taking into account that
the absence of the sign problem for the two-site model
with Hamiltonian (17) can be proven analytically even
in the continuous limit Nt ! 1. It means that the
sign problem for the path integral representation with
purely real exponents appears only if we increase Nt

and Ns further. In order to give a short overview how
the sign problem looks like in this case, we studied the
lattice with Ns = 4 and Nt = 2. Indeed, the saddle
points with negative sign appear in this case. There
is, of course, very large amount of various non-uniform
saddles on this lattice, so we just give some examples.
The two saddle points with auxiliary fields being uni-

FIG. 13: The action for the one-site Hubbard model in
the Gaussian representation: (a) ↵ = 0.95, (b) ↵ = 0.8, (c)
↵ = 0.5. U� = 10.0, the action is written according to (14),
(16). Horizontal axis corresponds to the field � and vertical
axis corresponds to the field �. Relevant saddle points looks
like local minima on the current plots which show only the
behaviour of action within RN . All “negative” directions for
those saddle points are pointing out in complex space.

form across sublattices are again the lowest ones and they
still have positive weight. However, the non-uniform sad-
dles with smaller weight can change the sign. Typically,
those saddle points which are non-uniform only in space
but uniform in the Euclidean time direction have positive
weight. On the other hand, the saddle points, which are
non-uniform both in space and time, can have both pos-
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form across sublattices are again the lowest ones and they
still have positive weight. However, the non-uniform sad-
dles with smaller weight can change the sign. Typically,
those saddle points which are non-uniform only in space
but uniform in the Euclidean time direction have positive
weight. On the other hand, the saddle points, which are
non-uniform both in space and time, can have both pos-

Only	trivial	saddle	point	at	α	≈	0.78…0.88	
α=0.95	 α=0.8	 α=0.5	
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FIG. 8. The dependence of the saddle points for mostly
charge-coupled auxiliary field on the interaction strength at
half filling (↵ = 0.9, 6⇥ 6 lattice with N⌧ = 256 at � = 20.0).
Each subsequent point is obtained via GF from the previous
one (moving from larger U). If the saddle point becomes ir-
relevant, the flow shows decays into the vacuum saddle. Due
to the localized structure of the field configurations at saddle
points, they remain equidistant in action. However, at small
interaction strength non trivial saddles decay into the vacuum
one. This illustrates the influence of non-trivial saddle points
on the physics in the strongly-coupled regime.

FIG. 9. Example of the Stokes phenomenon at half-filling if
there are only two auxiliary fields. We display the isolines of
the action for the case when the relevant saddle point (local
minima, denoted by the star) is accompanied by the irrelevant
one and the zero of determinant (top part of the plot, denoted
by the open circle).

trated around Sn = S0 + n�S, with the width of the
distribution steadily widening with increasing n. This is
due to that fact that as the density of blobs increases,
they are no longer well-separated and start to interact
with each other.

These single and multi-blob configurations have con-
sequences for the fermions, as we attempt to illustrate
in Fig. 7. We first define the equal-time fermion Green’s
function in position-time representation

g(x, y, ⌧) = �h âx(⌧)â
†
y
(⌧) i, (16)

where we have written the expression for particles and an
analogous expression exists for the holes. We compute
this expression on a given saddle point configuration, for
fixed spatial positions x and y as a function of ⌧ . This

quantity forms a closed curve in the complex plane due
to periodic boundary conditions for the auxiliary fields.
Furthermore, for certain locations of the source and sink,
this curve exhibits a non-trivial winding around the ori-
gin in the complex plane. We define the winding number
of the propagator for a given source and sink location as
follows

W (x, y) ⌘
1

2⇡i

I

�

dz

z
(17)

=
1

2⇡i

Z
�

0

1

g(x, y, ⌧)

@g(x, y, ⌧)

@⌧
d⌧,

where in the first equality we have used z = g(x, y, ⌧) and
� refers to the closed curve swept out by the propagator
in the complex plane. For the one-blob configuration in
Fig. 7, we have plotted the Green’s function contour for
two di↵erent sinks, with the source fixed at the center
of the blob. In Fig. 7-1(b), the sink is located on the
opposite sublattice of the source and shows a non-trivial
winding number of +1, while in Fig. 7-1(c) the sink is
located on the same sublattice of the source and shows
a trivial winding of 0. We thus see that there exists
a correlation between fermion winding number, saddle
points, and sublattice symmetry.
We have observed that, for the multi-blob configura-

tions, blobs with the same sign lie on the same sublattice
while blobs with opposite signs lie on opposite sublat-
tices. The latter is depicted in Fig. 7-2(a) where we have
a configuration containing a blob-anti-blob pair, and in
Fig. 7-2(b) and 7-2(c) we observe the same correlation be-
tween sublattice symmetry and fermion winding number
that was observed for one-blob configuration. However,
in 7-2(d), we see a non-trivial winding number of +2
where the sink and source were taken to be the centers
of the two blobs. A two-blob configuration is depicted
in 7-3(a), where again, the winding number is trivial for
source and sink on the same sublattice (Fig. 7-3(b)). The
winding number is non-trivial and equal to �1 for source
and sink on di↵erent sublattices (Fig. 7-3(c)). We note
that winding number ±2 was not observed for the two-
blob configuration. We assume that a similar correlation
exists between the winding number and the construction
of saddle point configurations with a larger number of
(anti-)blobs, and thus the winding number can be used
for the classification of saddle points. However, we have
left the detailed study of this point to future work.
One expects that the dependence of the thimbles de-

composition on the Hubbard coupling should reflect the
changing physics in the strong-coupled phase. The de-
pendence of the real part of the action of the various sad-
dles on the coupling U at half-filling is shown in Fig. 8 for
the case where the charge-coupled Hubbard field domi-
nates (↵ = 0.9). In order to track the location of the sad-
dles in a continuous manner we have used the GF in the
downwards direction after small shifts of the on-site in-
teraction U . This means that we start from saddle points
at large U , then slightly decrease U ! U��U and search
for the new locations of the local minima by starting GF

Irrelevant	saddle	embedded	into	relevant	
thimble	
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FIG. 12: Examples of configurations on the lattice with Ns =
4, Nt = 2, with only real exponents in the action. The scheme
shows three configurations, two of them have positive weight
((a) and (c)) and one has negative weight (b). Both time slices
are shown in each case. Circles correspond to the Hubbard
field � ⇡ �U� and crosses correspond to � ⇡ U�, � = �/2.

lattices and two highest saddles with Hubbard fields uni-
form in entire lattice. In between of them we have a set
of saddles where Hubbard fields fluctuate between sub-
lattices. Their weight is very close to each other, only
small splitting appears for Nt = 4. Thus their overall
number can be estimated as 2Nt � 2, taking into account
all possible reflections and translations. The competition
arises between exponentially increased amount of these
thimbles and their exponentially decreasing weight (this
fact can be also noticed from the figure 9). It means that
in continuous limit Nt ! 1 these non-uniform saddles
can still make significant contribution in the sum (20).

The case with non-zero chemical potential is shown
in the figure 11. Unlike the previous study for complex
exponents, where we could not directly find relevant com-
plex saddles thus we just tracked the evolution of former
real saddles, here we can find all relevant saddles exactly,
because all of them are lying within RN even for µ 6= 0.
The figure 11 shows the situation for µ� = 3. It shows
three di↵erent cases: 1) Ns = 2, Nt = 1; 2) Ns = 2,
Nt = 2; 3) Ns = 4, Nt = 1. Thus we can trace both
trends: increasing Nt and increasing Ns. Comparison
with the figures 9 and 10 shows that there are only small
changes in the distribution of relevant thimbles.

Importantly, all relevant saddles still have positive
weight. This is not surprising taking into account that
the absence of the sign problem for the two-site model
with Hamiltonian (17) can be proven analytically even
in the continuous limit Nt ! 1. It means that the
sign problem for the path integral representation with
purely real exponents appears only if we increase Nt

and Ns further. In order to give a short overview how
the sign problem looks like in this case, we studied the
lattice with Ns = 4 and Nt = 2. Indeed, the saddle
points with negative sign appear in this case. There
is, of course, very large amount of various non-uniform
saddles on this lattice, so we just give some examples.
The two saddle points with auxiliary fields being uni-

FIG. 13: The action for the one-site Hubbard model in
the Gaussian representation: (a) ↵ = 0.95, (b) ↵ = 0.8, (c)
↵ = 0.5. U� = 10.0, the action is written according to (14),
(16). Horizontal axis corresponds to the field � and vertical
axis corresponds to the field �. Relevant saddle points looks
like local minima on the current plots which show only the
behaviour of action within RN . All “negative” directions for
those saddle points are pointing out in complex space.

form across sublattices are again the lowest ones and they
still have positive weight. However, the non-uniform sad-
dles with smaller weight can change the sign. Typically,
those saddle points which are non-uniform only in space
but uniform in the Euclidean time direction have positive
weight. On the other hand, the saddle points, which are
non-uniform both in space and time, can have both pos-

Action	for	one-site	model	
in	two-field	formalism	at	

half-filling;	α=0.95	

Relevant	saddles	points	are	the	local	minima	of	the	action	if	we	are	
bounded	within	RN	
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FIG. 12: Examples of configurations on the lattice with Ns =
4, Nt = 2, with only real exponents in the action. The scheme
shows three configurations, two of them have positive weight
((a) and (c)) and one has negative weight (b). Both time slices
are shown in each case. Circles correspond to the Hubbard
field � ⇡ �U� and crosses correspond to � ⇡ U�, � = �/2.

lattices and two highest saddles with Hubbard fields uni-
form in entire lattice. In between of them we have a set
of saddles where Hubbard fields fluctuate between sub-
lattices. Their weight is very close to each other, only
small splitting appears for Nt = 4. Thus their overall
number can be estimated as 2Nt � 2, taking into account
all possible reflections and translations. The competition
arises between exponentially increased amount of these
thimbles and their exponentially decreasing weight (this
fact can be also noticed from the figure 9). It means that
in continuous limit Nt ! 1 these non-uniform saddles
can still make significant contribution in the sum (20).

The case with non-zero chemical potential is shown
in the figure 11. Unlike the previous study for complex
exponents, where we could not directly find relevant com-
plex saddles thus we just tracked the evolution of former
real saddles, here we can find all relevant saddles exactly,
because all of them are lying within RN even for µ 6= 0.
The figure 11 shows the situation for µ� = 3. It shows
three di↵erent cases: 1) Ns = 2, Nt = 1; 2) Ns = 2,
Nt = 2; 3) Ns = 4, Nt = 1. Thus we can trace both
trends: increasing Nt and increasing Ns. Comparison
with the figures 9 and 10 shows that there are only small
changes in the distribution of relevant thimbles.

Importantly, all relevant saddles still have positive
weight. This is not surprising taking into account that
the absence of the sign problem for the two-site model
with Hamiltonian (17) can be proven analytically even
in the continuous limit Nt ! 1. It means that the
sign problem for the path integral representation with
purely real exponents appears only if we increase Nt

and Ns further. In order to give a short overview how
the sign problem looks like in this case, we studied the
lattice with Ns = 4 and Nt = 2. Indeed, the saddle
points with negative sign appear in this case. There
is, of course, very large amount of various non-uniform
saddles on this lattice, so we just give some examples.
The two saddle points with auxiliary fields being uni-

FIG. 13: The action for the one-site Hubbard model in
the Gaussian representation: (a) ↵ = 0.95, (b) ↵ = 0.8, (c)
↵ = 0.5. U� = 10.0, the action is written according to (14),
(16). Horizontal axis corresponds to the field � and vertical
axis corresponds to the field �. Relevant saddle points looks
like local minima on the current plots which show only the
behaviour of action within RN . All “negative” directions for
those saddle points are pointing out in complex space.

form across sublattices are again the lowest ones and they
still have positive weight. However, the non-uniform sad-
dles with smaller weight can change the sign. Typically,
those saddle points which are non-uniform only in space
but uniform in the Euclidean time direction have positive
weight. On the other hand, the saddle points, which are
non-uniform both in space and time, can have both pos-

Action	for	one-site	model	
in	two-field	formalism	at	

half-filling;	α=0.8	
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FIG. 12: Examples of configurations on the lattice with Ns =
4, Nt = 2, with only real exponents in the action. The scheme
shows three configurations, two of them have positive weight
((a) and (c)) and one has negative weight (b). Both time slices
are shown in each case. Circles correspond to the Hubbard
field � ⇡ �U� and crosses correspond to � ⇡ U�, � = �/2.

lattices and two highest saddles with Hubbard fields uni-
form in entire lattice. In between of them we have a set
of saddles where Hubbard fields fluctuate between sub-
lattices. Their weight is very close to each other, only
small splitting appears for Nt = 4. Thus their overall
number can be estimated as 2Nt � 2, taking into account
all possible reflections and translations. The competition
arises between exponentially increased amount of these
thimbles and their exponentially decreasing weight (this
fact can be also noticed from the figure 9). It means that
in continuous limit Nt ! 1 these non-uniform saddles
can still make significant contribution in the sum (20).

The case with non-zero chemical potential is shown
in the figure 11. Unlike the previous study for complex
exponents, where we could not directly find relevant com-
plex saddles thus we just tracked the evolution of former
real saddles, here we can find all relevant saddles exactly,
because all of them are lying within RN even for µ 6= 0.
The figure 11 shows the situation for µ� = 3. It shows
three di↵erent cases: 1) Ns = 2, Nt = 1; 2) Ns = 2,
Nt = 2; 3) Ns = 4, Nt = 1. Thus we can trace both
trends: increasing Nt and increasing Ns. Comparison
with the figures 9 and 10 shows that there are only small
changes in the distribution of relevant thimbles.

Importantly, all relevant saddles still have positive
weight. This is not surprising taking into account that
the absence of the sign problem for the two-site model
with Hamiltonian (17) can be proven analytically even
in the continuous limit Nt ! 1. It means that the
sign problem for the path integral representation with
purely real exponents appears only if we increase Nt

and Ns further. In order to give a short overview how
the sign problem looks like in this case, we studied the
lattice with Ns = 4 and Nt = 2. Indeed, the saddle
points with negative sign appear in this case. There
is, of course, very large amount of various non-uniform
saddles on this lattice, so we just give some examples.
The two saddle points with auxiliary fields being uni-

FIG. 13: The action for the one-site Hubbard model in
the Gaussian representation: (a) ↵ = 0.95, (b) ↵ = 0.8, (c)
↵ = 0.5. U� = 10.0, the action is written according to (14),
(16). Horizontal axis corresponds to the field � and vertical
axis corresponds to the field �. Relevant saddle points looks
like local minima on the current plots which show only the
behaviour of action within RN . All “negative” directions for
those saddle points are pointing out in complex space.

form across sublattices are again the lowest ones and they
still have positive weight. However, the non-uniform sad-
dles with smaller weight can change the sign. Typically,
those saddle points which are non-uniform only in space
but uniform in the Euclidean time direction have positive
weight. On the other hand, the saddle points, which are
non-uniform both in space and time, can have both pos-
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What	do	we	need	to	go	to	large	
lattice?		
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ây + b̂

†
x
b̂y + h.c.) +

U

2

X

x

(n̂x,el. � n̂x,h.)
2 + µ

X

x

(n̂x,el. � n̂x,h.)

U

2
(n̂el. � n̂h.)

2 =
↵U

2
(n̂el. � n̂h.)

2 � (1� ↵)U

2
(n̂el. + n̂h.)

2 + (1� ↵)U(n̂el. + n̂h.)

Z =

Z
D�x,t�x,te

�S↵ detMel. detMh.

S↵(�x,t,�x,t) =
X

x,t

�
2
x,t

2↵�U
+
X

x,t

(�x,t � (1� ↵)�U)2

2(1� ↵)�U
(14)

Mel. = I +
NtY

t=1

�
e
��(h+µ)diag

�
e
i�x,t+�x,t

��

Mh. = I +
NtY

t=1

�
e
��(h�µ)diag

�
e
�i�x,t+�x,t

��
(15)

S = S↵ � ln(detMel. detMh.) (16)

Z (�, µ, . . . ) =

Z

RN

d
N
xe

�S(�,µ,...,x) (17)

x 2 CN

Z (�, µ, . . . ) =
X

�

k� (�, µ, . . . )Z� (�, µ, . . . )

Z� (�, µ, . . . ) =

Z

I�(�,µ,... )
d
N
xe

�S(�,µ,...,x)

�

z� (�, µ, . . . ) 2 C

2

@S

@x

����
x=z�(�,µ,... )

= 0 (18)

k� (�, µ, . . . )

I� (�, µ, . . . )

dx

d⌧
=

@S

@x
(19)

x 2 I� : x(⌧) = x, x(⌧ ! �1) ! z� (20)

x 2 K� : x(⌧) = x, x(⌧ ! +1) ! z� (21)

⌧

K�

z�

k� = hK�,RNi (22)

Z =
X

�

k�e
�i ImS(z�)

Z

I�
d
N
xe

�ReS(x) (23)

detMel.(�x,t) = F (�x,t)e
i
2

P
x,t �x,t (24)

F (�x,t)

detMel. detMh. = F (�x,t)
2 (25)

↵ = 0...1

↵ = 1

↵ = 0

3

@S

@x

����
x=z�(�,µ,... )

= 0 (18)

k� (�, µ, . . . )

I� (�, µ, . . . )

dx

d⌧
=

@S

@x
(19)

x 2 I� : x(⌧) = x, x(⌧ ! �1) ! z� (20)

x 2 K� : x(⌧) = x, x(⌧ ! +1) ! z� (21)

⌧

K�

z�

k� = hK�,RNi (22)

Z =
X

�

k�e
�i ImS(z�)

Z

I�
d
N
xe

�ReS(x) (23)

detMel.(�x,t) = F (�x,t)e
i
2

P
x,t �x,t (24)

F (�x,t)

detMel. detMh. = F (�x,t)
2 (25)

↵ = 0...1

↵ = 1

↵ = 0

3

@S

@x

����
x=z�(�,µ,... )

= 0 (18)

k� (�, µ, . . . )

I� (�, µ, . . . )

dx

d⌧
=

@S

@x
(19)

x 2 I� : x(⌧) = x, x(⌧ ! �1) ! z� (20)

x 2 K� : x(⌧) = x, x(⌧ ! +1) ! z� (21)

⌧

K�

z�

k� = hK�,RNi (22)

Z =
X

�

k�e
�i ImS(z�)

Z

I�
d
N
xe

�ReS(x) (23)

detMel.(�x,t) = F (�x,t)e
i
2

P
x,t �x,t (24)

F (�x,t)

detMel. detMh. = F (�x,t)
2 (25)

↵ = 0...1

↵ = 1

↵ = 0

3
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Fast	solution	of	GF	equations	with	fermionic	determinants	is	essential.	
	
	

Stochastic	calculation	of	fermionic	determinant	doesn’t	work:	not	precise	
enough,	the	phase	is	not	conserved.	

	
		

of some special structure, and its treatment is usually the most computationally
intensive and algorithmically complex part of QMC algorithms.

A popular QMC algorithm is the Hybrid Monte-Carlo (HMC) algorithm,
which is routinely used for lattice QCD simulations [1, 2]. Recently HMC has
also proven to be e�cient for QMC simulations of condensed matter systems
with non-local inter-electron interactions [3, 4, 5, 6], for which the standard
Blankenbecler-Scalapino-Sugar (BSS) QMC scheme [7] requires a large number
of auxiliary fields which grows with the number of non-zero potentials at di↵er-
ent distances. Furthermore, sometimes local updates of auxiliary fields in the
BSS QMC scheme become ine�cient in the vicinity of phase transitions [6].

The HMC algorithm is most e�cient for models with two “flavours” of
fermionic fields, such as lattice QCD with Nf = 2 flavours of light quarks,
or tight-binding models with spin-1/2 fermions on bipartite lattices at half fill-
ing. In such cases the fermionic determinant appears only in the combination
det (M) det

�
M†� = det

�
MM†�, which can be represented in terms of the Gaus-

sian integral over auxiliary “pseudo-fermion” fields Y :

detM†M =

Z
dȲ dY e�Ȳ (M†

M)�1
Y . (1)

This representation of the fermionic determinant within the HMC algorithm
requires the multiplication of the source vector Y by the inverse of the fermionic
operator M�1, which is equivalent to solving the linear system of equations

MX = Y. (2)

In practice, the solution of this linear system takes the largest fraction of CPU
time (up to 99%) in HMC simulations.

Yet another situation in which one needs to solve system (2) a large number
of times is the stochastic estimation of fermionic observables. For example,
the calculation of the trace of a fermionic propagator in determinantal QMC
includes a Gaussian stochastic estimator which is the average of the inverse
fermionic operator over the set of Gaussian random vectors Y :

Tr
�
M�1

�
= hȲ M�1 Y iY . (3)

Thus the development of e�cient solvers for the linear system (2) is an im-
portant task relevant for di↵erent fields of computational physics. At present
HMC codes mostly use iterative solvers, such as various versions of precondi-
tioned Conjugate Gradient, GMRes and BiCGStab algorithms. While iterative
solvers are very e�cient for well-conditioned sparse matrices, in the vicinity of
phase transitions the fermionic matrix M in (2) typically tends to become badly
conditioned, which results in the significant growth of the number of iterations
and slows down the simulations.

Here we propose an e�cient non-iterative solver for the system (2) which
is based on the Schur complement method [8, 9, 10]. In essence, this solver is
a tailored implementation of LU decomposition which takes into account the

2



Exact	fermionic	forces	(1)	

are in one-to-one correspondence with the fermionic creation and annihilation
operators ĉ†

i
, ĉi [2]. We insert the identity decomposition I =

R
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between all the exponentials in (7) and use the relation

h⇠|e��⌧
P

ij hij ĉ
†
i ĉj |⇠0i = e(

P
ij ⇠i(e

��⌧ h)ij⇠
0
j). (10)

After integrating out the Grassmann variables
Z

D⇠̄⇠e(
P

ij ⇠̄iMij⇠j) = detM (11)

we arrive at the following form of the fermionic matrix M :
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. . .
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I D2Nt�1

D2Nt I

1

CCCCCCCA

, (12)

where the blocks Di are Ns ⇥Ns matrices, similarly to the one-particle Hamil-
tonian hij . As follows from the Suzuki-Trotter decomposition (7), the matrix
M contains 2Nt ⇥ 2Nt such blocks. Even blocks are diagonal matrices which
contain exponents with auxiliary Hubbard-Stratonovich fields

D2k = ±

0

B@
ei�

k
1

. . .

ei�
k
Ns

1

CA , (13)

where we take plus sign for the last block with k = Nt and minus sign otherwise.
For odd blocks which correspond to the exponents of the fermionic bilinear

term in the Hamiltonian (6) one can use two di↵erent forms. First, one can use
the matrix exponent of a one-particle hamiltonian h, as suggested by (10):

D2k�1 = �e��⌧ h. (14)

This form can be advantageous for preserving some symmetries of the original
Hamiltonian (6) at the level of the discretized path integral [13]. However, since
the Trotter decomposition anyway introduces a discretization error of order
O
�
�⌧2

�
in the partition function (4) and observables (5), one can also expand

the exponential in (14) to the leading order in �⌧ :

D2k�1 = �1 +�⌧ h. (15)

The advantage of this form is that the blocks D2k�1 are sparse matrices, which
allows to significantly speed-up matrix-matrix and matrix-vector operations.
In practice, we have found that also many elements of the non-sparse matrix
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i
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General	form	of	the	fermionic	operator:	
Blocks	

Interaction	with	Hubbard	fields	
(antiperiodic	boundary	
conditions	for	fermions)	

Conventional	discretization:	
Exponential	transfer	matrix	preserves	the	spin	
symmetry	(arXiv:1610.09855):	

Also	staggered	fermions	in	
axial	gauge.	
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We	need	blocks	of	
lattice	propagator	just	
below	the	main	
diagonal		

Iterations	for	the	
blocks	at	the	main	
diagonal	
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The	algorithm	can	be	
taken	from	BSS-QMC.	See	
the	description	of	ALF	
package	(F.	Assaad	et	al):	
arXiv:1704.00131	

Exact	fermionic	forces	(2)	

But:	we	can	not	go	through	the	entire	lattice:	“stabilization”	is	needed	



Schur	solver	
Basic	idea	–	highly	specialized	version	of	sparse	LU	decomposition.	

(14) are numerically very small, of order 10�5 and smaller, and can be set
to zero without introducing any noticeable error in the results of Monte-Carlo
simulations. This allows to use sparse linear algebra to speed up the algorithm
even for the exponential representation (14).

However, the algorithm which we describe in this work does not depend on
the particular form of the blocks Di, thus in what follows we will work with a
general form of the blocks Di which is valid both for (14) and (15).

Here we took as an example the Gaussian Hubbard-Stratonovich transfor-
mation with only one Hubbard field. In principle, more general decompositions
of the interaction term H(4) are also useful [14], but they do not lead to sig-
nificant changes in the structure of the matrix (12) and all further derivations
still remain valid. A detailed discussion of the structure of the fermionic matrix
(12) can be found in [3, 4] for the Hubbard-Coulomb model on the hexagonal
lattice, and in [5, 6] for more general cases.

The band form of the fermionic matrix (12) is not unique to the interacting
tight-binding models in condensed matter physics. Fermionic matrices (Dirac
operators) which are commonly used for lattice QCD simulations can be also
represented in the band form (12), which is especially useful for lattice QCD
simulations based on the canonical partition functions at fixed particle number
[15, 16, 17]. The transformation to the band form (12) is particularly simple
for staggered fermions [11], and requires additional matrix transformations on
the blocks Di for Wilson-Dirac fermions [12] due to nontrivial dependence on
time-like link variables.

3. Description of the Schur complement solver

The main idea of the Schur complement solver is the iterative contraction of
the number of Euclidean time steps. At each iteration we e↵ectively decrease Nt

by a factor of two. In the end we arrive at the matrix of size
�
Ns dNt/2lmaxe

�
⇥�

Ns dNt/2lmaxe
�
, where lmax is the number of iterations and dxe is the ceiling

function. For this much smaller matrix we can already use LU decomposition
of sparse matrices in order to solve the remaining linear system.

Similarly to the matrix M we divide the vectors X and Y in (2) into the
blocks of the size Ns.

X ⌘ X(1) =

0

BBBBBB@

X(1)
1

X(1)
2
...

X(1)
K1�1

X(1)
K1

1

CCCCCCA
, Y ⌘ Y (1) =

0

BBBBBB@

Y (1)
1

Y (1)
2
...

Y (1)
K1�1

Y (1)
K1

1

CCCCCCA
. (16)

In here, the upper index denotes the Schur iteration. At lth iteration the number
of blocks Kl decreases as Kl+1 = dKl/2e, where K1 = 2Nt corresponds to the
original system (2), which is now written as

M (1)X(1) = Y (1), (17)

6

(14) are numerically very small, of order 10�5 and smaller, and can be set
to zero without introducing any noticeable error in the results of Monte-Carlo
simulations. This allows to use sparse linear algebra to speed up the algorithm
even for the exponential representation (14).

However, the algorithm which we describe in this work does not depend on
the particular form of the blocks Di, thus in what follows we will work with a
general form of the blocks Di which is valid both for (14) and (15).
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nificant changes in the structure of the matrix (12) and all further derivations
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the blocks Di for Wilson-Dirac fermions [12] due to nontrivial dependence on
time-like link variables.

3. Description of the Schur complement solver

The main idea of the Schur complement solver is the iterative contraction of
the number of Euclidean time steps. At each iteration we e↵ectively decrease Nt

by a factor of two. In the end we arrive at the matrix of size
�
Ns dNt/2lmaxe

�
⇥�

Ns dNt/2lmaxe
�
, where lmax is the number of iterations and dxe is the ceiling

function. For this much smaller matrix we can already use LU decomposition
of sparse matrices in order to solve the remaining linear system.

Similarly to the matrix M we divide the vectors X and Y in (2) into the
blocks of the size Ns.

X ⌘ X(1) =

0

BBBBBB@

X(1)
1

X(1)
2
...

X(1)
K1�1

X(1)
K1

1
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, Y ⌘ Y (1) =

0

BBBBBB@

Y (1)
1

Y (1)
2
...

Y (1)
K1�1

Y (1)
K1

1

CCCCCCA
. (16)

In here, the upper index denotes the Schur iteration. At lth iteration the number
of blocks Kl decreases as Kl+1 = dKl/2e, where K1 = 2Nt corresponds to the
original system (2), which is now written as

M (1)X(1) = Y (1), (17)
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where J (l) = I,

R(l) =

0

BBBB@

D(l)
1

D(l)
3

. . .

D(l)
Kl�1

1

CCCCA
, (23)

and

Q(l) =

0

BBBBB@

0 D(l)
2
. . .

. . .

. . . D(l)
Kl�2

D(l)
Kl

0

1

CCCCCA
. (24)

After similar division of permuted vectors into upper and lower components

X̄(l) ⌘ P †
Kl

X(l) =

✓
UX

(l)

LX
(l)

◆
, Ȳ (l) ⌘ P †

Kl
Y (l) =

✓
UY

(l)

LY
(l)

◆
, (25)

where each component contains Kl/2 blocks of size Ns, the system (19) takes
the form (

U (l)
X

+R(l)L(l)
X

= U (l)
Y

,

Q(l)U (l)
X

+ J (l)L(l)
X

= L(l)
Y
.

(26)

Expressing U (l)
X

from the first equation in (26) as

U (l)
X

= U (l)
Y

�R(l)L(l)
X

(27)

we can rewrite the second equation in (26) as

⇣
J (l) �Q(l)R(l)

⌘
L(l)
X

= L(l)
Y

�Q(l)U (l)
Y

. (28)

Once we solve equation (28) and find LX
(l), the upper part U (l)

X
of the vector

X̄(l) can be immediately found using the first equation in (26). Thus we have
e↵ectively reduced the size of the linear system (19) by a factor of two.

An important observation is that the Schur complement of M̄ (l), i.e., the
matrix

�
J (l) �Q(l)R(l)

�
, which appears in the equation (28) has exactly the

same form as the original matrix M ⌘ M (1) in (12):

⇣
J (l) �Q(l)R(l)

⌘
=

0

BBBBBBB@

I D(l+1)
1

I D(l+1)
2
. . .

. . .

I D(l+1)
Kl+1�1

D(l+1)
Kl+1

I

1

CCCCCCCA

(29)

9

with

D(l+1)
k

:= �D(l)
2kD

(l)
2k+1, k = 1 . . .Kl+1 � 1,

D(l+1)
Kl+1

:= �D(l)
Kl

D(l)
1 . (30)

Now we can repeat the same steps (19) - (28) with the following substitution:

M (l+1) := J (l) �Q(l)R(l),

X(l+1) := LX
(l),

Y (l+1) := LY
(l) �Q(l)UY

(l). (31)

The case mod (Kl, 2) = 1 is treated as follows. We first artificially increase
the size of the system M (l)X(l) = Y (l) by the blocksize Ns and thus consider

M 0(l)X 0(l) = Y 0(l) (32)

which is now a system of blocksize K 0
l
⇥K 0

l
, K 0

l
= Kl + 1 with

M 0(l) =

✓
I 0
0 M (l)

◆
and Y 0(l) =

✓
0

Y (l)

◆
. (33)

We then proceed by applying the steps (19) - (28) to the modified system (32).
The permutation of M 0(l) leads to

P †
K

0
l
M 0(l)PK

0
l
⌘ M̄ 0(l) =

✓
I R0(l)

Q0(l) J 0(l)

◆
, (34)

where again I, J 0(l), R0(l) and Q0(l) are of the same blocksize K 0
l
/2⇥K 0

l
/2 with

J 0(l) =

0

B@

I
. . .

D(l)
Kl

I

1

CA , R0(l) =

0

BBBBBB@

0

D(l)
2

D(l)
4

. . .

D(l)
Kl�1

1

CCCCCCA
, (35)

and

Q0(l) =

0

BBBB@

0 D(l)
1
. . .

. . .

. . . D(l)
Kl�2

0

1

CCCCA
. (36)

The Schur complement
�
J 0(l) �Q0(l)R0(l)� has again the same structure as in

(29) with

D(l+1)
k

:= �D(l)
2k�1D

(l)
2k , k = 1 . . .Kl+1 � 1,

D(l+1)
Kl+1

:= D(l)
Kl

. (37)
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with
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k
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(l). (31)

The case mod (Kl, 2) = 1 is treated as follows. We first artificially increase
the size of the system M (l)X(l) = Y (l) by the blocksize Ns and thus consider

M 0(l)X 0(l) = Y 0(l) (32)

which is now a system of blocksize K 0
l
⇥K 0

l
, K 0

l
= Kl + 1 with

M 0(l) =

✓
I 0
0 M (l)

◆
and Y 0(l) =

✓
0

Y (l)

◆
. (33)

We then proceed by applying the steps (19) - (28) to the modified system (32).
The permutation of M 0(l) leads to

P †
K

0
l
M 0(l)PK

0
l
⌘ M̄ 0(l) =

✓
I R0(l)

Q0(l) J 0(l)

◆
, (34)

where again I, J 0(l), R0(l) and Q0(l) are of the same blocksize K 0
l
/2⇥K 0

l
/2 with

J 0(l) =

0

B@

I
. . .

D(l)
Kl

I

1

CA , R0(l) =

0

BBBBBB@

0

D(l)
2

D(l)
4

. . .

D(l)
Kl�1

1

CCCCCCA
, (35)

and

Q0(l) =

0

BBBB@

0 D(l)
1
. . .

. . .

. . . D(l)
Kl�2

0

1

CCCCA
. (36)

The Schur complement
�
J 0(l) �Q0(l)R0(l)� has again the same structure as in

(29) with

D(l+1)
k

:= �D(l)
2k�1D

(l)
2k , k = 1 . . .Kl+1 � 1,

D(l+1)
Kl+1

:= D(l)
Kl

. (37)
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with
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(l),
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(l). (31)

The case mod (Kl, 2) = 1 is treated as follows. We first artificially increase
the size of the system M (l)X(l) = Y (l) by the blocksize Ns and thus consider

M 0(l)X 0(l) = Y 0(l) (32)

which is now a system of blocksize K 0
l
⇥K 0

l
, K 0
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= Kl + 1 with

M 0(l) =

✓
I 0
0 M (l)

◆
and Y 0(l) =

✓
0

Y (l)

◆
. (33)

We then proceed by applying the steps (19) - (28) to the modified system (32).
The permutation of M 0(l) leads to

P †
K

0
l
M 0(l)PK

0
l
⌘ M̄ 0(l) =

✓
I R0(l)

Q0(l) J 0(l)

◆
, (34)

where again I, J 0(l), R0(l) and Q0(l) are of the same blocksize K 0
l
/2⇥K 0

l
/2 with

J 0(l) =

0

B@

I
. . .

D(l)
Kl

I

1

CA , R0(l) =

0

BBBBBB@

0

D(l)
2

D(l)
4

. . .

D(l)
Kl�1

1

CCCCCCA
, (35)

and

Q0(l) =

0

BBBB@

0 D(l)
1
. . .

. . .

. . . D(l)
Kl�2

0

1

CCCCA
. (36)

The Schur complement
�
J 0(l) �Q0(l)R0(l)� has again the same structure as in

(29) with

D(l+1)
k

:= �D(l)
2k�1D

(l)
2k , k = 1 . . .Kl+1 � 1,

D(l+1)
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:= D(l)
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. (37)
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Thus, M̄ (l) can be then divided into four large blocks of the same size:

M̄ (l) =

✓
I R(l)

Q(l) J (l)

◆
, (22)

where J (l) = I,

R(l) =

0

BBBB@

D(l)
1

D(l)
3

. . .

D(l)
Kl�1

1

CCCCA
, (23)

and

Q(l) =

0

BBBBB@

0 D(l)
2
. . .

. . .

. . . D(l)
Kl�2

D(l)
Kl

0

1

CCCCCA
. (24)

After similar division of permuted vectors into upper and lower components

X̄(l) ⌘ P †
Kl

X(l) =

✓
UX

(l)

LX
(l)

◆
, Ȳ (l) ⌘ P †

Kl
Y (l) =

✓
UY

(l)

LY
(l)

◆
, (25)

where each component contains Kl/2 blocks of size Ns, the system (19) takes
the form (

U (l)
X

+R(l)L(l)
X

= U (l)
Y

,

Q(l)U (l)
X

+ J (l)L(l)
X

= L(l)
Y
.

(26)

Expressing U (l)
X

from the first equation in (26) as

U (l)
X

= U (l)
Y

�R(l)L(l)
X

(27)

we can rewrite the second equation in (26) as
⇣
J (l) �Q(l)R(l)

⌘
L(l)
X

= L(l)
Y

�Q(l)U (l)
Y

. (28)

Once we solve equation (28) and find LX
(l), the upper part U (l)

X
of the vector

X̄(l) can be immediately found using the first equation in (26). Thus we have
e↵ectively reduced the size of the linear system (19) by a factor of two.

An important observation is that the Schur complement of M̄ (l), i.e., the
matrix

�
J (l) �Q(l)R(l)

�
, which appears in the equation (28) has exactly the

same form as the original matrix M ⌘ M (1) in (12):

⇣
J (l) �Q(l)R(l)

⌘
=

0

BBBBBBB@

I D(l+1)
1

I D(l+1)
2
. . .

. . .

I D(l+1)
Kl+1�1

D(l+1)
Kl+1

I

1

CCCCCCCA

(29)
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Thus, M̄ (l) can be then divided into four large blocks of the same size:

M̄ (l) =

✓
I R(l)

Q(l) J (l)

◆
, (22)

where J (l) = I,

R(l) =

0

BBBB@

D(l)
1

D(l)
3

. . .

D(l)
Kl�1

1

CCCCA
, (23)

and

Q(l) =

0

BBBBB@

0 D(l)
2
. . .

. . .

. . . D(l)
Kl�2

D(l)
Kl

0

1

CCCCCA
. (24)

After similar division of permuted vectors into upper and lower components

X̄(l) ⌘ P †
Kl

X(l) =

✓
UX

(l)

LX
(l)

◆
, Ȳ (l) ⌘ P †

Kl
Y (l) =

✓
UY

(l)

LY
(l)

◆
, (25)

where each component contains Kl/2 blocks of size Ns, the system (19) takes
the form (

U (l)
X

+R(l)L(l)
X

= U (l)
Y

,

Q(l)U (l)
X

+ J (l)L(l)
X

= L(l)
Y
.

(26)

Expressing U (l)
X

from the first equation in (26) as

U (l)
X

= U (l)
Y

�R(l)L(l)
X

(27)

we can rewrite the second equation in (26) as
⇣
J (l) �Q(l)R(l)

⌘
L(l)
X

= L(l)
Y

�Q(l)U (l)
Y

. (28)

Once we solve equation (28) and find LX
(l), the upper part U (l)

X
of the vector

X̄(l) can be immediately found using the first equation in (26). Thus we have
e↵ectively reduced the size of the linear system (19) by a factor of two.

An important observation is that the Schur complement of M̄ (l), i.e., the
matrix

�
J (l) �Q(l)R(l)

�
, which appears in the equation (28) has exactly the

same form as the original matrix M ⌘ M (1) in (12):

⇣
J (l) �Q(l)R(l)

⌘
=

0

BBBBBBB@

I D(l+1)
1

I D(l+1)
2
. . .

. . .

I D(l+1)
Kl+1�1

D(l+1)
Kl+1

I

1

CCCCCCCA

(29)
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We start with the iteration l = 1, for which

mod (Kl, 2) = mod (2Nt, 2) = 0

and the matrix M in (2) has the form (12). At the beginning of each iteration,
we first perform a permutation of blocks of size Ns inside the vector X:

PKl

0

BBBBB@

X1

X2
...

XKl�1

XKl

1

CCCCCA
=

0

BBBBBBBBB@

X1

XKl/2+1

X2

XKl/2+2
...

XKl/2

XKl

1

CCCCCCCCCA

. (18)

We also apply this permutation both to all entities (matrix, vectors) in (17):

P †
Kl

M (l)PKl P
†
Kl

X(l) = P †
Kl

Y (l). (19)

The inverse permutation P †
Kl

looks like:

P †
Kl

0

BBBBB@

X1

X2
...

XK�1

XKl

1

CCCCCA
=

0

BBBBBBBBBBBB@

X1

X3
...

XKl�1

X2

X4
...

XKl

1

CCCCCCCCCCCCA

. (20)

After the permutation of columns and rows is applied to the matrix M (l), it
takes the following form:

P †
Kl

M (l)PKl ⌘ M̄ (l) =

=

0

BBBBBBBBBBBBBBB@

I D(l)
1

I D(l)
3

. . .
. . .

I D(l)
Kl�1

0 D(l)
2 I
. . . D(l)

4 I
. . .

. . .
. . .

D(l)
Kl

0 I

1

CCCCCCCCCCCCCCCA

. (21)
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We start with the iteration l = 1, for which

mod (Kl, 2) = mod (2Nt, 2) = 0

and the matrix M in (2) has the form (12). At the beginning of each iteration,
we first perform a permutation of blocks of size Ns inside the vector X:

PKl

0

BBBBB@

X1

X2
...

XKl�1

XKl

1

CCCCCA
=

0

BBBBBBBBB@

X1

XKl/2+1

X2

XKl/2+2
...

XKl/2

XKl

1

CCCCCCCCCA

. (18)

We also apply this permutation both to all entities (matrix, vectors) in (17):

P †
Kl

M (l)PKl P
†
Kl

X(l) = P †
Kl

Y (l). (19)

The inverse permutation P †
Kl

looks like:

P †
Kl

0

BBBBB@

X1

X2
...

XK�1

XKl

1

CCCCCA
=

0

BBBBBBBBBBBB@

X1

X3
...

XKl�1

X2

X4
...

XKl

1

CCCCCCCCCCCCA

. (20)

After the permutation of columns and rows is applied to the matrix M (l), it
takes the following form:

P †
Kl

M (l)PKl ⌘ M̄ (l) =

=

0

BBBBBBBBBBBBBBB@

I D(l)
1

I D(l)
3

. . .
. . .

I D(l)
Kl�1

0 D(l)
2 I
. . . D(l)

4 I
. . .

. . .
. . .

D(l)
Kl

0 I

1

CCCCCCCCCCCCCCCA

. (21)
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Thus we can proceed with iterations switching between eq. (30) and (37) if
necessary.

If the number of Euclidean time slices Nt is some power of two, i.e., Nt = 2m,
the matrix M (m+1) takes the form

M (m+1) =

 
I (�1)m

Q
Nt

k=1 D
(1)
k

(�1)m
Q

Nt

k=1 D
(1)
k+Nt

I

!
. (38)

The final linear system (the second equation in the system (28)) which we need
to solve involves the matrix:

I �Q(m+1) R(m+1) = I �
2NtY

k=1

D(1)
k

. (39)

In contrast to the original system of linear equations (2) with (NsNt)⇥ (NsNt)
matrixM , the system (39) involves only much smallerNs⇥Ns matrices and thus
can be solved using non-iterative (exact) methods such as the LU decomposition.

The solution X(lmax) is finally obtained in the last iteration, after the LU
decomposition of the M (lmax) matrix. Subsequently, we can revert all iterations
using the following relations:

X(l�1) = Pl�1

✓
UY

(l�1) �R(l�1)X(l)

X(l)

◆
. (40)

In the case of odd blocksize mod (Kl�1, 2) = 1, this step yields X 0(l�1) because
of the artificial enlargement of the linear system described by equation (32).
Thus in order to obtain X(l�1) we have to omit the first block of size Ns from
X 0(l�1). In the end we restore the initial vector X ⌘ X(1).

Algorithm 1 summarizes the above description of the iterative Schur com-
plement solver in terms of pseudocode, where all permutations Pl and P †

l
are

made explicit.

In practice the condition number of the matrices D(l)
k

grows exponentially
with l. As a result, we found a hard limit of lmax = 6� 8 Schur iterations using

double precision due to the fact that the matrices D(l)
k

with l > lmax cannot be
calculated and expressed in this floating-point format. lmax can be increased by
a small number of iterative refinement steps [18] as described in the Algorithm 2.
For l  lmax, the iterative refinement can be used for suppression of round-o↵
error in the bare Schur complement solver.

Note that, if we work with initially sparse above-diagonal blocks D(1)
k

of the

form (15), the blocks D(l)
k

become less and less sparse as the number of Schur
iterations l increases. As a result, sparse matrix multiplications become less and
less e�cient.

Clearly, one needs to store the matrix blocks D(l)
k

in memory in order to per-
form backward iterations which reconstruct X(l�1) from X(l). Thus the method
is rather memory consuming. On the other hand, once all matrix blocks D(l)

k
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are
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In practice the condition number of the matrices D(l)
k

grows exponentially
with l. As a result, we found a hard limit of lmax = 6� 8 Schur iterations using

double precision due to the fact that the matrices D(l)
k

with l > lmax cannot be
calculated and expressed in this floating-point format. lmax can be increased by
a small number of iterative refinement steps [18] as described in the Algorithm 2.
For l  lmax, the iterative refinement can be used for suppression of round-o↵
error in the bare Schur complement solver.

Note that, if we work with initially sparse above-diagonal blocks D(1)
k

of the

form (15), the blocks D(l)
k

become less and less sparse as the number of Schur
iterations l increases. As a result, sparse matrix multiplications become less and
less e�cient.

Clearly, one needs to store the matrix blocks D(l)
k

in memory in order to per-
form backward iterations which reconstruct X(l�1) from X(l). Thus the method
is rather memory consuming. On the other hand, once all matrix blocks D(l)

k

11

Thus, M̄ (l) can be then divided into four large blocks of the same size:
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✓
I R(l)

Q(l) J (l)

◆
, (22)

where J (l) = I,

R(l) =

0

BBBB@

D(l)
1

D(l)
3

. . .

D(l)
Kl�1

1

CCCCA
, (23)

and

Q(l) =

0

BBBBB@

0 D(l)
2
. . .

. . .

. . . D(l)
Kl�2

D(l)
Kl

0

1

CCCCCA
. (24)

After similar division of permuted vectors into upper and lower components
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✓
UX
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(l)

◆
, Ȳ (l) ⌘ P †

Kl
Y (l) =

✓
UY

(l)

LY
(l)

◆
, (25)

where each component contains Kl/2 blocks of size Ns, the system (19) takes
the form (

U (l)
X

+R(l)L(l)
X

= U (l)
Y

,

Q(l)U (l)
X

+ J (l)L(l)
X

= L(l)
Y
.

(26)

Expressing U (l)
X

from the first equation in (26) as

U (l)
X

= U (l)
Y

�R(l)L(l)
X

(27)

we can rewrite the second equation in (26) as
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Y

�Q(l)U (l)
Y

. (28)

Once we solve equation (28) and find LX
(l), the upper part U (l)

X
of the vector

X̄(l) can be immediately found using the first equation in (26). Thus we have
e↵ectively reduced the size of the linear system (19) by a factor of two.

An important observation is that the Schur complement of M̄ (l), i.e., the
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�
, which appears in the equation (28) has exactly the
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(29)
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Unitary	transformation	+	constant	multiplier:		 hoppings	in	k-th	time	slice	+	
mass	term		
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ḡm = Dm

�1(I � gm)

gm+1 = Dm

�1
gmDm

4

S =
X

x

n 4X

⌫=2

↵x,⌫

⇥
( ̄xUx,⌫ x+⌫̂)� ( ̄x+⌫̂U

†
x,⌫
 x

⇤
(1)

+
h
( ̄xUx,1e

µ 
x+1̂)� ( ̄

x+1̂U
†
x,1e

�µ x

i
+M( ̄ )

o
(2)

M(U) =

0

BBBBBBB@

1 !1 0 0 0 . . .
0 1 �1 0 0 . . .
0 0 1 !2 0 . . .
0 0 0 1 �2 . . .
...

. . .
��Nt 0 0 . . . 1

1

CCCCCCCA

, (3)

!k =

✓
Bk 1
1 0

◆
, (4)

�k =

✓
diag(Ux,1)eµ 0

0 diag(Ux,1)eµ

◆
, (5)

x = {k,~r} (6)

!�1
k

(7)

L =  ̄i�µ@
µ +G

⇥
( ̄ )( ̄ )� ( ̄�5 )( ̄�5 )

⇤
(8)

=  ̄i�µ@
µ � G

2

⇥
( ̄�µ )( ̄�

µ )� ( ̄�5�
µ )( ̄�5�

µ )
⇤

(9)

=  ̄i�µ@
µ +↵G

⇥
( ̄ )( ̄ )� ( ̄�5 )( ̄�5 )

⇤
�(1�↵)G

2

⇥
( ̄�µ )( ̄�

µ )� ( ̄�5�
µ )( ̄�5�

µ )
⇤

(10)

�a
b
�c
d
=

1

2
�a
d
�c
b
+

1

2

X

i

�(i)a

d
�(i)c

b
(11)
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is	needed	for	each	time	
slice.	But	it	doesn’t	
change	the	overall	Ns

3Nt	
scaling.		



Proceed	with	sparse	LU	decomposition	and	reverse	iterations	

Calculation	of	propagators		
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x to another.

algebra is advantageous even for sparse initial blocksD2k�1 because they become
dense too early in the process of Schur iterations. The most important result
is that in the strong-coupling phase of the Hubbard model the Schur solver is
faster than Conjugate Gradient iterations even for lattices with Ns = 1000 sites.
Moreover, when the linear algebra routines for sparse matrices are used, the
speed-up is by at least a factor of ten, and depends rather weakly on the lattice
size. A rough extrapolation of this result suggests that in the strong-coupling
phase of the Hubbard model the Schur complement solver will outperform CG
iterations for all practically relevant lattice sizes up to at least Ns ⇠ 104.

In the weak-coupling phase of the Hubbard model the speed-up is also sig-
nificant for moderately large lattice sizes, however, the di↵erence with CG is
not so large. Again, a rough extrapolation suggests that in this regime the
Conjugate Gradient method might become more e�cient than the Schur solver
at Ns ⇠ 103 . . . 104. Likewise, for the Hubbard-Coulomb model in the weak-
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which leads to the relation:

ḡi+1 = D
�1
i+1ḡiDi. (21)

We can now either directly use Eq. (21) to obtain the ḡi

or first obtain the gi and use the relation

ḡi = D
�1
i (I � gi) , (22)

between diagonal and o↵-diagonal blocks. By iterating
either (21) or (19) we can easily find all elements of M�1

needed for the computation of the derivative, starting
from just one block, which is computed from scratch us-
ing the Schur complement solver [49]. This is done by
applying the solver to point sources in the corresponding
time slice.

An important point here is that the whole procedure
scales as NS

3
N⌧ , where NS is the number of sites in one

Euclidean time slice of the lattice, so the scaling is not
worse than that of the Schur complement solver itself.
In practice however, the iterations (21) and (19) su↵er
from the accumulation of round-o↵ errors, which limits
the number of times they can be applied (this number
depends mostly on the condition number of e��⌧h). Af-
terwards, the block of M�1 in the subsequent time slice
must be computed from scratch. This is the so-called
stabilization which is routinely used in BSS-QMC [71].

Finally, an additional simplification comes from the
fact that we do not even need the full Schur complement
solver for the computation of the blocks gi or ḡi. In order
to demonstrate this, we sketch the essential parts of the
solver. A more detailed description can be found in Ref.
[49].

Essentially, the solver consists of tree stages. In the
first stage we decrease the size of the linear system in
an iterative procedure. At each step, the system has the
form

M̄
(l)
X

(l) = Y
(l)
, (23)

where l denotes the step number. We start from the ini-
tial system with the matrix M

(0) = M , the unknown
vector X

(0) containing elements of the fermionic propa-
gator, and a point source vector Y

(0). In the simplest
case, when N⌧ is some power of 2, the size of the system

decreases as N̄
(l)
⌧ = N⌧/2l�1. The general case is only

slightly more complicated and described in Ref. [49].

The matrix M
(l) always has the same form, with unit

matrices in the diagonal blocks and with o↵-diagonal

blocks D
(l)
k for k = 1...N̄ (l)

⌧ . Iterations are described by
the relations

D
(l+1)
k = �D

(l)
2kD

(l)
2k+1, k = 1...N̄ (l)

⌧ � 1, (24)

D
(l+1)
k = �D

(l)
2kD

(l)
1 , k = N̄

(l)
⌧ ,

for matrices and

Y
(l+1)
k = Y

(l)
2k �D

(l)
2kY

(l)
2k+1, k = 1...N̄ (l)

⌧ � 1, (25)

Y
(l+1)
k = Y

(l)
2k �D

(l)
2kY

(l)
1 , k = N̄

(l)
⌧ .

for vectors. Y (l)
k denotes the k-th timeslice of the vector

Y
(l).
The second stage is LU decomposition and solution of

the compactified system at l = lmax. Thus we know the
vector X

(lmax). Finally, the third stage is the reversed
iterative process of reconstruction of the initial solution

starting from X
(lmax), using matrix blocks D(l)

k and vec-

tors Y (l)
k computed during the first stage:

X
(l)
2k = Y

(l)
2k�1 �D

(l)
2k�1X

(l+1)
k , k = 1...N̄ (l+1)

⌧ , (26)

X
(l)
2k = X

(l+1)
k , k = 1...N̄ (l+1)

⌧ .

In the end, we arrive at the initial vectorX(0) which gives
us the matrix elements of the fermionic propagator.
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FIG. 2. Fermionic forces acting on Hubbard field �x,t during a
MD trajectory. Example calculation is made for a 6⇥6 hexag-
onal lattice with electron-electron interaction corresponding
to suspended graphene. N⌧ = 128 and temperature is equal to
0.125 eV. @ ln detM/@�x,t is shown for exact fermionic forces
and @ †(MM†)�1 /@�x,t is shown for the stochastic rep-
resentation of the determinant with pseudofermions. Exact
forces are rescaled for visibility.

One should note that the initial vector Y
(0) contains

non-zero elements only in one time slice. Due to the
structure of the iterations (25), this feature is preserved
at each step, thus we actually do not need to make the full
loop over k in (25). The same is true for backward itera-
tions (26), for a di↵erent reason: we need only one time
slice in the final solution X

(0), since we are interested
either only in diagonal blocks gk or only in o↵-diagonal
blocks ḡk. Due to this simplification we need only one
matrix-vector operation for each of the few time slices in
which we actually recompute the elements of fermionic
propagator from scratch. Thus the numerical cost of
the method is dominated by matrix-matrix operations
(24) and (21). This means that the number of floating-
point operations scales as NS

3
N⌧ with possible logarith-

mic corrections ⇠ logN⌧ from the sparse LU decompo-
sition. Such a mild scaling with N⌧ allows us to enlarge
the Euclidean time extent of the lattice and work in the

Side	effect:	
smooth	fermionic	
forces	
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FIG. 4: Weighted (a) and normal (b) histogram showing
the relative importance of relevant saddles for the one-site
Hubbard model in the Gaussian representation at half-filling
(µ = 0). The action is written in (34), U� = 15.0. Weight of
thimbles is counted with respect to the vacuum one.

the action in these cases can be written as

S(�) =
X

i

�2
i

2�U
� ln (detMel.(�) detMh.(�)) , (35)

where � = �/Nt. At half-filling all relevant saddles are
obviously located within the real subspace RN and the
same is true for all relevant thimbles. It means that the
tangent subspace for the anti-thimbles is oriented perpen-
dicular to RN in the vicinity of these relevant saddles. It
also means that once we introduce nonzero µ and the for-
mer real saddles shift from RN into complex space, their
intersection number still remains equal to 1 if the shift is
not that large. Moreover, we can expect that additional
complex saddles (which in principle might become rele-
vant) do not play important role in the overall sum (20)
for small chemical potential, especially if we do not pass
trough a phase transition. Within all these approxima-
tions, we can estimate the complexity of the sign problem
at relatively small chemical potential by looking at the
distribution of real saddles at half filling and then tracing
the shift of former real saddles to the complex plane at
finite µ.

The figure 5 illustrates the position of real saddle
points and configurations with zero fermionic determi-
nant in the two-site Hubbard model with Nt = 1 and
↵ = 1 at half-filling for U� = 15.0 and � = 3.0.
Now, two types of saddle points appear at half filling
within the real subspace. The classification is made us-
ing the matrix of the second derivatives D2 calculated

FIG. 5: Position of the real saddles at half-filling for the two-
site Hubbard model with one time slice in the Gaussian rep-
resentation with only complex exponents. Relevant (positive)
saddles are marked with red crosses and irrelevant (negative)
saddles are marked by green circles. The lines represent the
configurations of the fields �i where fermionic determinant is
equal to zero. The action is written according to eq. (14),
(15), (17) with parameters: U� = 15.0, � = 3.0, ↵ = 1.

entirely within the real subspace. “Positive” and “nega-
tive” saddles have positive- and negative-defined matrix
D2 respectively. Only positive saddles are relevant, be-
cause the thimbles corresponding to the saddle points
with negative-defined matrix D2 cross the real subspace
only at a set of points with dimension less then N .
This feature can be easily understood in the model

with the double-well potential (�2�m2)2. There are two
stable minima at � = ±m. These points correspond to
relevant saddle points, while unstable equilibrium at � =
0 corresponds to an irrelevant saddle point. Nevertheless,
it plays important role in the geometry of thimbles: this
point separates two thimbles which start from two stable
minima, while its own thimble is perpendicular to the
real axis. This property can be generalized to the N -
dimensional case. If some saddle has its matrix D2 with
M  N negative eigenvalues, this saddle is irrelevant.
But it still has N � M positive eigenvalues. It means
that the intersection of the thimble emanating from this
saddle with real subspace RN has dimensionN�M . This
set of points forms a domain wall between two thimbles
within the real subspace if M = 1 or just the manifold of
sunk points for relevant thimbles if M > 1.
To sum it all up, only “positive” real saddles are rel-

evant when we are looking at a system at half filling.
According to the figure 5, there is again an infinite set
of relevant saddle points. The thimbles are separated
by both the domain walls formed by configurations with
zero fermionic determinant and by the lines originating
from the “negative” (irrelevant) real saddles. Unlike the
domain walls, these lines are penetrable for the HMC up-
dates. In general, the appearance of the infinite number
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FIG. 2: The distribution of the action at the saddle points
for a 6⇥ 6 lattice with Nt = 256 and � = 20.0 at the interac-
tion strength corresponding to the phase transition from SM
(semimetal) to AFM (antiferromagnetic) phase: U = 3.8.
The upper row (a-c) shows the real part of the action at half-
filling. The lower row (d-f) shows the distribution of the imag-
inary part of the action for saddle points when µ = . Three
di↵erent values of ↵ (see eq. (6)) are considered in both cases.

identify a clear scale, where new physics is expected at
µ = . Special attention will be paid to this value of µ
in our study.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by splitting the interaction
term in the following way

U

2
q̂2x =

↵U

2
q̂2x � (1� ↵)U

2
ŝ2x + (1� ↵)Uŝx, (6)

where ŝx = n̂x,el.+n̂x,h.. Now, we can introduce two con-
tinuous auxiliary fields simultaneously by applying the
standard Hubbard-Stratonovich (HS) transformation to
each four-fermion term in (6). The parameter ↵ 2 [0, 1],
defines the balance between auxiliary fields coupled to
charge (q̂x) and spin (ŝx) density. Extreme cases ↵ = 0
and ↵ = 1.0 mean that only one auxiliary field is left.
This decomposition of the interaction term is not the
most general, but it is commonly used in QMC algo-
rithms with continuous auxiliary fields [28, 29].

Further construction of the path integral is straightfor-
ward and the detailed derivations can be found in [29–
31]. Here we simply state the explicit form which we have
used in our calculations,

Zc =

Z
D�x,tD�x,te

�S↵ detMel. detMh., (7)

S↵[�x,t,�x,t]=
X

x,t

�2
x,t

2↵�U
+

X

x,t

(�x,t + (1� ↵)�U)2

2(1� ↵)�U
,

where the fermionic operators are given by

Mel.,h. = I +
NtY

t=1

⇣
e��(h±µ)diag

�
e⌥i�x,t+�x,t

�⌘
, (8)

where h is the matrix of one-particle tight-binding Hamil-
tonian in (5). The field �x,t is coupled to charge density,

FIG. 3: (a) Schematic illustration of the search algorithm
for complex saddle points (1D case): c1 is the initial point;
c2, c3, c4 are the final points of the corresponding iteration
of the GF. (b) Example of a search processes for a 2 ⇥ 2
lattice with Nt = 256, � = 20.0, U = 2.0, µ =  and
↵ = 1.0. The shorter process converges to the vacuum saddle
point and the longer one shows convergence to a non-vacuum,
localized saddle point. These saddles are shown in the plot
(c). �x,t = 0, complex values of all �-fields are projected onto
a single complex plane.

and the field �x,t to spin density. The full action involves
both the bosonic action as well as the logarithm of the
fermionic determinants, S = S↵ � ln(detMel. detMh.).
The total number of the fields is 2NsNt, where Ns is the
spatial size and Nt is the Euclidean time extent of the
lattice.

Saddle points study. We begin with a study of the
saddles at half-filling. Unlike [32], where analytic re-
sults could be obtained for very small systems, we de-
vise a hybrid approach. First, we generate lattice con-
figurations using hybrid Monte Carlo (HMC) with exact
fermionic forces [33]. Second, we numerically integrate
the GF equations starting from these configurations for
a large enough flow time to reach local minima of the
action. The distribution of lattice ensembles, taken af-
ter employing the GF procedure, gives an accurate char-
acterization of the relevant saddle points at half-filling.
Results are shown in Figs. 2a-c. At half-filling we can
not work exactly at ↵ = 0 and ↵ = 1.0 because HMC
is not ergodic there [34], thus ↵ = 0.01; 0.8; 0.99. At
small ↵, �x,t dominates in saddles, while �x,t = 0. The
lowest bar in Fig. 2a corresponds to two identical mean-
field saddle points, which describe sublattice magnetiza-
tion (�x,t = 0 and �x,t = ±m, depending on sublattice).
Other saddles correspond to various single- and multi-
instanton solutions. At large ↵ (Fig. 2c), �x,t is domi-
nant, while �x,t = 0. The lowest bar is the vacuum saddle
(�x,t = �x,t = 0). The next bar contains equal contri-
butions from two localized field configurations (so-called
“blob” and “anti-blob”). All other saddles are various
combinations of several blobs and anti-blobs. Finally,
there is intermediate regime at ↵ ⇡ 0.8 (Fig. 2b), where
only vacuum saddle was found. More detailed descrip-
tion of saddles including results for larger lattices can be
found in [35].

Another procedure should be used away from half-
filling. Downward GF follows into saddle point only if
initial configuration was exactly on thimble. At µ 6= 0
it is possible only at ↵ = 0.0, but HMC is again not
ergodic there [29]. Thus we generate initial configura-
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p

hq2i as obtained from simulations with one (↵ = 1.0) and two (↵ = 0.95) Hubbard fields.

allow to identify the apparent CDW order as an artifact
due to these ergodicity violations.
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FIG. 12. Test for intersection points and finite-size scaling
in hq2i with two Hubbard fields at ↵ = 0.95 by comparing
di↵erent lattice sizes: L = 6 (green), 12 (blue) and 18 (red).

In Fig. 12 we plot hq2iL2�/⌫ as a function of U for
V = 1.111, V = 1.296, V = 1.481 and V = 1.666
at ↵ = 0.95. For V = 1.111 we show data from lattice
sizes L = 6, 12, 18, while for the remaining data sets re-
sults from L = 6, 12 are shown. By choosing �/⌫ = 0.948
we can collapse all data points of each line in the U � V

plane onto a single line with a very good precision. This
indicates that for all our points the expectation value hq2i
approaches zero as hq2i ⇠ L

�2�/⌫ in the thermodynamic
limit L ! 1. Furthermore, hq2i decreases when U is
increased, in stark contrast to the non-ergodic ↵ = 1.0
results. Thus when the complexification of the Hubbard-
Stratonovich fields enables the HMC algorithm to sam-
ple the whole phase space, signatures of the CDW order
appear to be just artifacts of previous non-ergodic for-
mulation.

IV. CONCLUSION AND OUTLOOK

We have carried out a detailed study of the SDW and
CDW orders in the extended Hubbard model on the
hexagonal graphene lattice with nearest-neighbour hop-
ping and on-site and nearest-neighbour interactions U

and V . We were able to explore the region of the U � V

plane with V < U/3 and U . 6. The Hybrid-Monte-
Carlo algorithm which we have used becomes inapplica-
ble for V � U/3 simulations because of a sign problem,
and alternative simulation methods are required.

We have been able to clearly identify the line of the
phase transition between the semimetal phase and the
gapped antiferromagnetic SDW phase, which starts at
U/ = 3.9±0.04 at V = 0, in agreement with the results
of [27], and bends towards larger values of U as V is in-
creased. The phase transition line goes at least all the
way up to the line V = U/3. An interesting open problem
is whether it continues even to V > U/3. We obtained
strong numerical evidence that the entire phase bound-
ary is characterized by the same critical behavior, with a
critical exponent �/⌫ = 0.936± 0.022. This is consistent
within errors with the chiral Heisenberg Gross-Neveu uni-
versality class in three spacetime dimensions [17, 62, 63].
Along the V = U/3 line we have verified finite-size scal-
ing with a universal scaling function for the squared spin
per sublattice and estimated the correlation length expo-
nent ⌫ ⇡ 1.162, which further strengthens the case that
this Gross-Neveu scaling persists all the way up to the
V = U/3 line. In particular we find no evidence of mul-
ticritical or triple points in this region below V = U/3.

On the other hand, our simulations suggest that
charge-ordered CDW phase is absent in the region with
V < U/3. As we have found out, the supposed signa-
tures of the CDW phase reported in our previous work
[31] were the artifacts of a non-ergodic HMC algorithm
which was not able to penetrate through the manifolds
where the fermion determinant is zero. Similar to topol-
ogy freezing in lattice QCD simulations, these manifolds

Ergodicity	issues	at	α=0.0	
and	α=1.0.	arXiv:1807.07025	
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FIG. 8. The dependence of the saddle points for mostly
charge-coupled auxiliary field on the interaction strength at
half filling (↵ = 0.9, 6⇥ 6 lattice with N⌧ = 256 at � = 20.0).
Each subsequent point is obtained via GF from the previous
one (moving from larger U). If the saddle point becomes ir-
relevant, the flow shows decays into the vacuum saddle. Due
to the localized structure of the field configurations at saddle
points, they remain equidistant in action. However, at small
interaction strength non trivial saddles decay into the vacuum
one. This illustrates the influence of non-trivial saddle points
on the physics in the strongly-coupled regime.

FIG. 9. Example of the Stokes phenomenon at half-filling if
there are only two auxiliary fields. We display the isolines of
the action for the case when the relevant saddle point (local
minima, denoted by the star) is accompanied by the irrelevant
one and the zero of determinant (top part of the plot, denoted
by the open circle).

trated around Sn = S0 + n�S, with the width of the
distribution steadily widening with increasing n. This is
due to that fact that as the density of blobs increases,
they are no longer well-separated and start to interact
with each other.

These single and multi-blob configurations have con-
sequences for the fermions, as we attempt to illustrate
in Fig. 7. We first define the equal-time fermion Green’s
function in position-time representation

g(x, y, ⌧) = �h âx(⌧)â
†
y
(⌧) i, (16)

where we have written the expression for particles and an
analogous expression exists for the holes. We compute
this expression on a given saddle point configuration, for
fixed spatial positions x and y as a function of ⌧ . This

quantity forms a closed curve in the complex plane due
to periodic boundary conditions for the auxiliary fields.
Furthermore, for certain locations of the source and sink,
this curve exhibits a non-trivial winding around the ori-
gin in the complex plane. We define the winding number
of the propagator for a given source and sink location as
follows

W (x, y) ⌘
1

2⇡i

I

�

dz

z
(17)

=
1

2⇡i

Z
�

0

1

g(x, y, ⌧)

@g(x, y, ⌧)

@⌧
d⌧,

where in the first equality we have used z = g(x, y, ⌧) and
� refers to the closed curve swept out by the propagator
in the complex plane. For the one-blob configuration in
Fig. 7, we have plotted the Green’s function contour for
two di↵erent sinks, with the source fixed at the center
of the blob. In Fig. 7-1(b), the sink is located on the
opposite sublattice of the source and shows a non-trivial
winding number of +1, while in Fig. 7-1(c) the sink is
located on the same sublattice of the source and shows
a trivial winding of 0. We thus see that there exists
a correlation between fermion winding number, saddle
points, and sublattice symmetry.
We have observed that, for the multi-blob configura-

tions, blobs with the same sign lie on the same sublattice
while blobs with opposite signs lie on opposite sublat-
tices. The latter is depicted in Fig. 7-2(a) where we have
a configuration containing a blob-anti-blob pair, and in
Fig. 7-2(b) and 7-2(c) we observe the same correlation be-
tween sublattice symmetry and fermion winding number
that was observed for one-blob configuration. However,
in 7-2(d), we see a non-trivial winding number of +2
where the sink and source were taken to be the centers
of the two blobs. A two-blob configuration is depicted
in 7-3(a), where again, the winding number is trivial for
source and sink on the same sublattice (Fig. 7-3(b)). The
winding number is non-trivial and equal to �1 for source
and sink on di↵erent sublattices (Fig. 7-3(c)). We note
that winding number ±2 was not observed for the two-
blob configuration. We assume that a similar correlation
exists between the winding number and the construction
of saddle point configurations with a larger number of
(anti-)blobs, and thus the winding number can be used
for the classification of saddle points. However, we have
left the detailed study of this point to future work.
One expects that the dependence of the thimbles de-

composition on the Hubbard coupling should reflect the
changing physics in the strong-coupled phase. The de-
pendence of the real part of the action of the various sad-
dles on the coupling U at half-filling is shown in Fig. 8 for
the case where the charge-coupled Hubbard field domi-
nates (↵ = 0.9). In order to track the location of the sad-
dles in a continuous manner we have used the GF in the
downwards direction after small shifts of the on-site in-
teraction U . This means that we start from saddle points
at large U , then slightly decrease U ! U��U and search
for the new locations of the local minima by starting GF
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FIG. 16. Field configurations at saddle points for mostly
charge-coupled auxiliary field at finite chemical potential.
(a,b) 6 ⇥ 6 lattice with ↵ = 0.9, U = 3.8 (these plots cor-
respond to the histograms (a) and (b) in the Fig. 14); (c)
2 ⇥ 2 lattice with ↵ = 1.0 and U = 2.0, displayed here to
show how the non-trivial saddle point looks like in the situa-
tion where we perform HMC with GF. The other parameters
are N⌧ = 256, µ = , � = 20.0. The �-field is always equal
to zero, and the complex values of all �-fields are projected
onto a single complex plane. The vacuum field configuration
corresponds to all �-fields uniformly shifted into the complex
plane along the imaginary axis. The saddle points, which are
separated in action from the vacuum, for the 6 ⇥ 6 lattice
preserve generally the same localized structure shown in the
Fig. 7, with the shifts of the imaginary parts of the fields from
the vacuum value following the shift of the real parts.

In the sweet spot regime at ↵ = 0.8, we detect again
only the vacuum saddle (Fig. 14(c)). In principle, such
situation should be very beneficial for the thimbles de-
composition, since the fluctuations of ImS can be made
arbitrarily small. Also, it should improve the ergodicity
of the Monte Carlo process, since the integration mani-
fold is no more divided into disconnected domains. How-
ever, we should stress that unlike the µ = 0 case, the dis-
tributions in Fig. 14 are exact only for ↵ = 10�4, since we
are quite close to the thimble in this case. For ↵ = 0.8
and ↵ = 0.9, the histograms are only approximate as
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FIG. 17. Results of the study of ↵-dependence of saddle points
are shown. (a) Example of the �-flow from the disturbed
saddle point in two cases: when the saddle point is relevant
and when it is irrelevant. (b) Example of a full flow (both
fields vary) originating from the disturbed non-vacuum saddle
point when it is irrelevant and the flow ends up in the trivial
vacuum. (c) Summary of results at half-filling. Fields at the
end of the flow are shown. The mean-field saddle point for the
spin-coupled auxiliary field appears only at ↵ = 0.7...0.8 while
typical non-vacuum saddle points for the charge-coupled field
become relevant only at ↵ ⇡ 0.9. (d) Decay of non-vacuum
saddle points in the case of µ = . Results are shown for a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 3.8.

the initial configurations for the iterations approach the
thimble, but do not lie exactly on it. Furthermore, “ver-
tically oriented” saddles, which do not satisfy the con-
vergence condition (18) can be missed. However, subse-
quent QMC calculations support the conclusion that the
regime around ↵ = 0.8 is indeed better for simulations
than ↵ ! 1.0.

The optimal regime around ↵ = 0.8 is studied in
Fig. 17. We start from half-filling in Fig. 17(c), The lower
boundary of this region in ↵ corresponds to the splitting
of the vacuum saddle into two mean-field saddles. This
splitting is observed by launching GF from a slightly per-
turbed vacuum (Gaussian noise added to �x,⌧ and �x,⌧ ).
If �x,⌧ returns to zero, the vacuum is stable, otherwise
the final value of �x,⌧ is non-zero, since the flow arrives
at the mean-field saddle point. This is what we see in the
�-profiles for the mean-field saddles in Fig. 17(c) both for
6⇥6 and 12⇥12 lattices. The jump upwards corresponds
to the appearance of the mean-field saddle and marks the
lower boundary of the optimal regime. The upper bound-
ary is determined by the decay of the nontrivial saddles
into vacuum, analogous to what was observed in Fig. 8.
We use the symmetry, S(�x,⌧ ,�x,⌧ ) = S(�x,⌧ ,��x,⌧ ),
and the fact that the saddles are located at �x,⌧ = 0
for large ↵. The Hessian matrix is block-diagonal in this
case as @2S/@�x,⌧@�x,⌧ = 0. Because it is enough to
find at least one instability (negative eigenvalue of �,
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turbed vacuum (Gaussian noise added to �x,⌧ and �x,⌧ ).
If �x,⌧ returns to zero, the vacuum is stable, otherwise
the final value of �x,⌧ is non-zero, since the flow arrives
at the mean-field saddle point. This is what we see in the
�-profiles for the mean-field saddles in Fig. 17(c) both for
6⇥6 and 12⇥12 lattices. The jump upwards corresponds
to the appearance of the mean-field saddle and marks the
lower boundary of the optimal regime. The upper bound-
ary is determined by the decay of the nontrivial saddles
into vacuum, analogous to what was observed in Fig. 8.
We use the symmetry, S(�x,⌧ ,�x,⌧ ) = S(�x,⌧ ,��x,⌧ ),
and the fact that the saddles are located at �x,⌧ = 0
for large ↵. The Hessian matrix is block-diagonal in this
case as @2S/@�x,⌧@�x,⌧ = 0. Because it is enough to
find at least one instability (negative eigenvalue of �,

Summary	
1)  Optimal	regime	with	only	1	

important	saddle	exists	at	
intermediate	values	of	alpha	
parameter.			

2)  If	charge-coupled	field	
dominates,		it	is	possible	to	build	
complete	semi-analytical	saddle	
point	approximation.		
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FIG. 12: Examples of configurations on the lattice with Ns =
4, Nt = 2, with only real exponents in the action. The scheme
shows three configurations, two of them have positive weight
((a) and (c)) and one has negative weight (b). Both time slices
are shown in each case. Circles correspond to the Hubbard
field � ⇡ �U� and crosses correspond to � ⇡ U�, � = �/2.

lattices and two highest saddles with Hubbard fields uni-
form in entire lattice. In between of them we have a set
of saddles where Hubbard fields fluctuate between sub-
lattices. Their weight is very close to each other, only
small splitting appears for Nt = 4. Thus their overall
number can be estimated as 2Nt � 2, taking into account
all possible reflections and translations. The competition
arises between exponentially increased amount of these
thimbles and their exponentially decreasing weight (this
fact can be also noticed from the figure 9). It means that
in continuous limit Nt ! 1 these non-uniform saddles
can still make significant contribution in the sum (20).

The case with non-zero chemical potential is shown
in the figure 11. Unlike the previous study for complex
exponents, where we could not directly find relevant com-
plex saddles thus we just tracked the evolution of former
real saddles, here we can find all relevant saddles exactly,
because all of them are lying within RN even for µ 6= 0.
The figure 11 shows the situation for µ� = 3. It shows
three di↵erent cases: 1) Ns = 2, Nt = 1; 2) Ns = 2,
Nt = 2; 3) Ns = 4, Nt = 1. Thus we can trace both
trends: increasing Nt and increasing Ns. Comparison
with the figures 9 and 10 shows that there are only small
changes in the distribution of relevant thimbles.

Importantly, all relevant saddles still have positive
weight. This is not surprising taking into account that
the absence of the sign problem for the two-site model
with Hamiltonian (17) can be proven analytically even
in the continuous limit Nt ! 1. It means that the
sign problem for the path integral representation with
purely real exponents appears only if we increase Nt

and Ns further. In order to give a short overview how
the sign problem looks like in this case, we studied the
lattice with Ns = 4 and Nt = 2. Indeed, the saddle
points with negative sign appear in this case. There
is, of course, very large amount of various non-uniform
saddles on this lattice, so we just give some examples.
The two saddle points with auxiliary fields being uni-

FIG. 13: The action for the one-site Hubbard model in
the Gaussian representation: (a) ↵ = 0.95, (b) ↵ = 0.8, (c)
↵ = 0.5. U� = 10.0, the action is written according to (14),
(16). Horizontal axis corresponds to the field � and vertical
axis corresponds to the field �. Relevant saddle points looks
like local minima on the current plots which show only the
behaviour of action within RN . All “negative” directions for
those saddle points are pointing out in complex space.

form across sublattices are again the lowest ones and they
still have positive weight. However, the non-uniform sad-
dles with smaller weight can change the sign. Typically,
those saddle points which are non-uniform only in space
but uniform in the Euclidean time direction have positive
weight. On the other hand, the saddle points, which are
non-uniform both in space and time, can have both pos-

Action	for	one-site	model	
in	two-field	formalism	at	

half-filling;	α=0.95	

Relevant	saddles	points	are	the	local	minima	of	the	action	if	we	are	
bounded	within	RN	
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FIG. 12: Examples of configurations on the lattice with Ns =
4, Nt = 2, with only real exponents in the action. The scheme
shows three configurations, two of them have positive weight
((a) and (c)) and one has negative weight (b). Both time slices
are shown in each case. Circles correspond to the Hubbard
field � ⇡ �U� and crosses correspond to � ⇡ U�, � = �/2.

lattices and two highest saddles with Hubbard fields uni-
form in entire lattice. In between of them we have a set
of saddles where Hubbard fields fluctuate between sub-
lattices. Their weight is very close to each other, only
small splitting appears for Nt = 4. Thus their overall
number can be estimated as 2Nt � 2, taking into account
all possible reflections and translations. The competition
arises between exponentially increased amount of these
thimbles and their exponentially decreasing weight (this
fact can be also noticed from the figure 9). It means that
in continuous limit Nt ! 1 these non-uniform saddles
can still make significant contribution in the sum (20).

The case with non-zero chemical potential is shown
in the figure 11. Unlike the previous study for complex
exponents, where we could not directly find relevant com-
plex saddles thus we just tracked the evolution of former
real saddles, here we can find all relevant saddles exactly,
because all of them are lying within RN even for µ 6= 0.
The figure 11 shows the situation for µ� = 3. It shows
three di↵erent cases: 1) Ns = 2, Nt = 1; 2) Ns = 2,
Nt = 2; 3) Ns = 4, Nt = 1. Thus we can trace both
trends: increasing Nt and increasing Ns. Comparison
with the figures 9 and 10 shows that there are only small
changes in the distribution of relevant thimbles.

Importantly, all relevant saddles still have positive
weight. This is not surprising taking into account that
the absence of the sign problem for the two-site model
with Hamiltonian (17) can be proven analytically even
in the continuous limit Nt ! 1. It means that the
sign problem for the path integral representation with
purely real exponents appears only if we increase Nt

and Ns further. In order to give a short overview how
the sign problem looks like in this case, we studied the
lattice with Ns = 4 and Nt = 2. Indeed, the saddle
points with negative sign appear in this case. There
is, of course, very large amount of various non-uniform
saddles on this lattice, so we just give some examples.
The two saddle points with auxiliary fields being uni-

FIG. 13: The action for the one-site Hubbard model in
the Gaussian representation: (a) ↵ = 0.95, (b) ↵ = 0.8, (c)
↵ = 0.5. U� = 10.0, the action is written according to (14),
(16). Horizontal axis corresponds to the field � and vertical
axis corresponds to the field �. Relevant saddle points looks
like local minima on the current plots which show only the
behaviour of action within RN . All “negative” directions for
those saddle points are pointing out in complex space.

form across sublattices are again the lowest ones and they
still have positive weight. However, the non-uniform sad-
dles with smaller weight can change the sign. Typically,
those saddle points which are non-uniform only in space
but uniform in the Euclidean time direction have positive
weight. On the other hand, the saddle points, which are
non-uniform both in space and time, can have both pos-
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FIG. 12: Examples of configurations on the lattice with Ns =
4, Nt = 2, with only real exponents in the action. The scheme
shows three configurations, two of them have positive weight
((a) and (c)) and one has negative weight (b). Both time slices
are shown in each case. Circles correspond to the Hubbard
field � ⇡ �U� and crosses correspond to � ⇡ U�, � = �/2.

lattices and two highest saddles with Hubbard fields uni-
form in entire lattice. In between of them we have a set
of saddles where Hubbard fields fluctuate between sub-
lattices. Their weight is very close to each other, only
small splitting appears for Nt = 4. Thus their overall
number can be estimated as 2Nt � 2, taking into account
all possible reflections and translations. The competition
arises between exponentially increased amount of these
thimbles and their exponentially decreasing weight (this
fact can be also noticed from the figure 9). It means that
in continuous limit Nt ! 1 these non-uniform saddles
can still make significant contribution in the sum (20).

The case with non-zero chemical potential is shown
in the figure 11. Unlike the previous study for complex
exponents, where we could not directly find relevant com-
plex saddles thus we just tracked the evolution of former
real saddles, here we can find all relevant saddles exactly,
because all of them are lying within RN even for µ 6= 0.
The figure 11 shows the situation for µ� = 3. It shows
three di↵erent cases: 1) Ns = 2, Nt = 1; 2) Ns = 2,
Nt = 2; 3) Ns = 4, Nt = 1. Thus we can trace both
trends: increasing Nt and increasing Ns. Comparison
with the figures 9 and 10 shows that there are only small
changes in the distribution of relevant thimbles.

Importantly, all relevant saddles still have positive
weight. This is not surprising taking into account that
the absence of the sign problem for the two-site model
with Hamiltonian (17) can be proven analytically even
in the continuous limit Nt ! 1. It means that the
sign problem for the path integral representation with
purely real exponents appears only if we increase Nt

and Ns further. In order to give a short overview how
the sign problem looks like in this case, we studied the
lattice with Ns = 4 and Nt = 2. Indeed, the saddle
points with negative sign appear in this case. There
is, of course, very large amount of various non-uniform
saddles on this lattice, so we just give some examples.
The two saddle points with auxiliary fields being uni-

FIG. 13: The action for the one-site Hubbard model in
the Gaussian representation: (a) ↵ = 0.95, (b) ↵ = 0.8, (c)
↵ = 0.5. U� = 10.0, the action is written according to (14),
(16). Horizontal axis corresponds to the field � and vertical
axis corresponds to the field �. Relevant saddle points looks
like local minima on the current plots which show only the
behaviour of action within RN . All “negative” directions for
those saddle points are pointing out in complex space.

form across sublattices are again the lowest ones and they
still have positive weight. However, the non-uniform sad-
dles with smaller weight can change the sign. Typically,
those saddle points which are non-uniform only in space
but uniform in the Euclidean time direction have positive
weight. On the other hand, the saddle points, which are
non-uniform both in space and time, can have both pos-
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FIG. 4: Results of the study of the ↵-dependence of saddle
points at half-filling (a) and at µ =  (b). In both plots, we
depict the value of �x,t at x = 0, t = 0 in the end of the
GF, started from slightly disturbed saddle. All calculations
are done for a 6 ⇥ 6 lattice with Nt = 256 and � = 20.0,
U = 3.8.

FIG. 5: Schematic illustration of HMC with gradient flow.

tions using phase quenched HMC along some contour in
CN , uniformly shifted from RN , in order to approach the
thimble (e.g. using the notion about the shift of vacuum
saddle into complex space at µ 6= 0.0). Subsequently, we
launch the procedure, illustrated in Fig. 3a, for a single
complex field. The minimization procedure proceeds by
alternation of GF for constant imaginary and real parts of
the field. Even iterations are GF in downward direction
with fixed Im�j = �(R)

j , where �j ⌘ �(R)
j + i�(I)

j repre-
sents both complex auxiliary fields. The flow stops when
it reaches the local minimum. Odd iterations are upward

GF with fixed Im�j = �(I)
j . This flow stops when it

reaches a local maximum or zero of determinant, where
ReS ! 1. Convergence can be controlled by monitor-

ing ⌃D,Re/Im ⌘
P

i |@ReS/@�
(R/I)
i | after each iteration,

with ⌃D,Re reaching the level of numerical errors (typ-
ically 10�10) at even iterations and ⌃D,Im at odd ones
(if the flow didn’t collide with a zero of determinant).
Examples are show in Fig. 3b.

This procedure does not converge for all saddles.
The criterion for the convergence of the procedure
can be understood in terms of the Hessian matrix,

which is defined as, � =

✓
A C
C B

◆
. We express the

Hessian in terms of 2N2
sN⌧ ⇥ 2N2

sN⌧ blocks Ai,j ⌘
@2ReS/@�(R)

i @�(R)
j , Bi,j ⌘ @2ReS/@�(I)

i @�(I)
j , and

Ci,j ⌘ @2ReS/@�(R)
i @�(I)

j . Using these matrices, the
minimization procedure is guaranteed to converge if both
A and �B are positive-definite, and each of the eigen-
values, �i, of the matrix A�1CB�1C, which character-

izes the update of the fields after each iteration, satisfy
|�i| < 1. The latter is actually a restraint for | arg @i@jS|.
If all of the second derivatives are real, C = 0, and thus
|�i| = 0. If | arg @i@jS| increases, with A and (�B) still
remaining positive-definite, the thimble in the vicinity of
the saddle point is no longer parallel to RN , but starts
to “rotate” in complex space. In the 1D case illustrated
in Fig. 3a, |�| < 1 simply means | arg @2S|z� | < ⇡/4.

The distribution of ImS over saddle points obtained
using this method is shown in Fig. 2d-f. At ↵ = 0.8,
we detect again only the vacuum saddle, which is uni-
formly shifted into complex space, �x,t = i�0, �x,t = 0.
However, we should stress that unlike µ = 0 case the dis-
tribution is only approximate, since the initial configura-
tions for the iterations are not on thimble. Furthermore,
”vertically oriented” saddles (see Fig. 1d for 1D exam-
ple) can be missed due to limitations in the convergence
of the algorithm as previously described.

Fig. 4 provides some insight into the nature of the
optimal regime around ↵ = 0.8. Starting from half-
filling in Fig. 4a, we see the lower boundary of this re-
gion in ↵ which was identified by the splitting of the
vacuum saddle into two mean-field saddles. This split-
ting is observed by launching GF from a slightly per-
turbed vacuum (Gaussian noise added in �x,t and �x,t).
If �x,t returns to zero, the vacuum is stable, otherwise
the final value of �x,t is non-zero. The upper boundary
is more di�cult to determine. We use the symmetry,
S(�x,t,�x,t) = S(�x,t,��x,t), and the fact that the sad-
dles are located at �x,t = 0 for large ↵. It follows that the
Hessian matrix is block-diagonal: @2S/@�x,t@�x,t = 0.
According to what was previously stated about the sad-
dles at half-filling, we can study the relevance of saddles
separately for �- and �-directions, as it su�ces to find at
least one instability (negative eigenvalue of �, with real
eigenvector). We first study the �-direction using GF
restricted to the � fields and starting from slightly per-
turbed saddles. No instability was found, and the non-
trivial saddles can be found for all values of ↵. Finally,
we use these saddles, add noise to the � fields, and launch
the restricted GF for these fields. At ↵ ⇡ 0.89, the final
value of � jumps upwards. It signals am instability in
the �-channel, and thus such saddles become irrelevant.
It is su�cient to study only one-blob configurations, as
being the building block for all other saddles, we expect
other saddles to behave similarly [34].

Similar calculations were made for µ = , where we
have used GF restricted to Re� (Fig. 4b), and essen-
tially the same behavior was observed. This suggests
that at ↵ > 0.89, the non-vacuum saddles shift into com-
plex space with increasing µ, remaining relevant, while
at ↵ < 0.89 they begin from irrelevant ones at µ = 0
and proceed in the same status into complex space for
µ 6= 0, remaining irrelevant. Another possibility is that
the saddles acquire a more “vertical” orientation with de-
creasing ↵ (as in Fig. 1d). GF along Re� can go away
from zero in this case too. However, there are additional
arguments against this from the results of QMC simula-
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FIG. 4: Results of the study of the ↵-dependence of saddle
points at half-filling (a) and at µ =  (b). In both plots, we
depict the value of �x,t at x = 0, t = 0 in the end of the
GF, started from slightly disturbed saddle. All calculations
are done for a 6 ⇥ 6 lattice with Nt = 256 and � = 20.0,
U = 3.8.

FIG. 5: Schematic illustration of HMC with gradient flow.

tions using phase quenched HMC along some contour in
CN , uniformly shifted from RN , in order to approach the
thimble (e.g. using the notion about the shift of vacuum
saddle into complex space at µ 6= 0.0). Subsequently, we
launch the procedure, illustrated in Fig. 3a, for a single
complex field. The minimization procedure proceeds by
alternation of GF for constant imaginary and real parts of
the field. Even iterations are GF in downward direction
with fixed Im�j = �(R)

j , where �j ⌘ �(R)
j + i�(I)

j repre-
sents both complex auxiliary fields. The flow stops when
it reaches the local minimum. Odd iterations are upward

GF with fixed Im�j = �(I)
j . This flow stops when it

reaches a local maximum or zero of determinant, where
ReS ! 1. Convergence can be controlled by monitor-

ing ⌃D,Re/Im ⌘
P

i |@ReS/@�
(R/I)
i | after each iteration,

with ⌃D,Re reaching the level of numerical errors (typ-
ically 10�10) at even iterations and ⌃D,Im at odd ones
(if the flow didn’t collide with a zero of determinant).
Examples are show in Fig. 3b.

This procedure does not converge for all saddles.
The criterion for the convergence of the procedure
can be understood in terms of the Hessian matrix,

which is defined as, � =
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j . Using these matrices, the
minimization procedure is guaranteed to converge if both
A and �B are positive-definite, and each of the eigen-
values, �i, of the matrix A�1CB�1C, which character-

izes the update of the fields after each iteration, satisfy
|�i| < 1. The latter is actually a restraint for | arg @i@jS|.
If all of the second derivatives are real, C = 0, and thus
|�i| = 0. If | arg @i@jS| increases, with A and (�B) still
remaining positive-definite, the thimble in the vicinity of
the saddle point is no longer parallel to RN , but starts
to “rotate” in complex space. In the 1D case illustrated
in Fig. 3a, |�| < 1 simply means | arg @2S|z� | < ⇡/4.

The distribution of ImS over saddle points obtained
using this method is shown in Fig. 2d-f. At ↵ = 0.8,
we detect again only the vacuum saddle, which is uni-
formly shifted into complex space, �x,t = i�0, �x,t = 0.
However, we should stress that unlike µ = 0 case the dis-
tribution is only approximate, since the initial configura-
tions for the iterations are not on thimble. Furthermore,
”vertically oriented” saddles (see Fig. 1d for 1D exam-
ple) can be missed due to limitations in the convergence
of the algorithm as previously described.

Fig. 4 provides some insight into the nature of the
optimal regime around ↵ = 0.8. Starting from half-
filling in Fig. 4a, we see the lower boundary of this re-
gion in ↵ which was identified by the splitting of the
vacuum saddle into two mean-field saddles. This split-
ting is observed by launching GF from a slightly per-
turbed vacuum (Gaussian noise added in �x,t and �x,t).
If �x,t returns to zero, the vacuum is stable, otherwise
the final value of �x,t is non-zero. The upper boundary
is more di�cult to determine. We use the symmetry,
S(�x,t,�x,t) = S(�x,t,��x,t), and the fact that the sad-
dles are located at �x,t = 0 for large ↵. It follows that the
Hessian matrix is block-diagonal: @2S/@�x,t@�x,t = 0.
According to what was previously stated about the sad-
dles at half-filling, we can study the relevance of saddles
separately for �- and �-directions, as it su�ces to find at
least one instability (negative eigenvalue of �, with real
eigenvector). We first study the �-direction using GF
restricted to the � fields and starting from slightly per-
turbed saddles. No instability was found, and the non-
trivial saddles can be found for all values of ↵. Finally,
we use these saddles, add noise to the � fields, and launch
the restricted GF for these fields. At ↵ ⇡ 0.89, the final
value of � jumps upwards. It signals am instability in
the �-channel, and thus such saddles become irrelevant.
It is su�cient to study only one-blob configurations, as
being the building block for all other saddles, we expect
other saddles to behave similarly [34].

Similar calculations were made for µ = , where we
have used GF restricted to Re� (Fig. 4b), and essen-
tially the same behavior was observed. This suggests
that at ↵ > 0.89, the non-vacuum saddles shift into com-
plex space with increasing µ, remaining relevant, while
at ↵ < 0.89 they begin from irrelevant ones at µ = 0
and proceed in the same status into complex space for
µ 6= 0, remaining irrelevant. Another possibility is that
the saddles acquire a more “vertical” orientation with de-
creasing ↵ (as in Fig. 1d). GF along Re� can go away
from zero in this case too. However, there are additional
arguments against this from the results of QMC simula-
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FIG. 4: Results of the study of the ↵-dependence of saddle
points at half-filling (a) and at µ =  (b). In both plots, we
depict the value of �x,t at x = 0, t = 0 in the end of the
GF, started from slightly disturbed saddle. All calculations
are done for a 6 ⇥ 6 lattice with Nt = 256 and � = 20.0,
U = 3.8.

FIG. 5: Schematic illustration of HMC with gradient flow.

tions using phase quenched HMC along some contour in
CN , uniformly shifted from RN , in order to approach the
thimble (e.g. using the notion about the shift of vacuum
saddle into complex space at µ 6= 0.0). Subsequently, we
launch the procedure, illustrated in Fig. 3a, for a single
complex field. The minimization procedure proceeds by
alternation of GF for constant imaginary and real parts of
the field. Even iterations are GF in downward direction
with fixed Im�j = �(R)

j , where �j ⌘ �(R)
j + i�(I)

j repre-
sents both complex auxiliary fields. The flow stops when
it reaches the local minimum. Odd iterations are upward

GF with fixed Im�j = �(I)
j . This flow stops when it

reaches a local maximum or zero of determinant, where
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i | after each iteration,

with ⌃D,Re reaching the level of numerical errors (typ-
ically 10�10) at even iterations and ⌃D,Im at odd ones
(if the flow didn’t collide with a zero of determinant).
Examples are show in Fig. 3b.

This procedure does not converge for all saddles.
The criterion for the convergence of the procedure
can be understood in terms of the Hessian matrix,
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j . Using these matrices, the
minimization procedure is guaranteed to converge if both
A and �B are positive-definite, and each of the eigen-
values, �i, of the matrix A�1CB�1C, which character-

izes the update of the fields after each iteration, satisfy
|�i| < 1. The latter is actually a restraint for | arg @i@jS|.
If all of the second derivatives are real, C = 0, and thus
|�i| = 0. If | arg @i@jS| increases, with A and (�B) still
remaining positive-definite, the thimble in the vicinity of
the saddle point is no longer parallel to RN , but starts
to “rotate” in complex space. In the 1D case illustrated
in Fig. 3a, |�| < 1 simply means | arg @2S|z� | < ⇡/4.

The distribution of ImS over saddle points obtained
using this method is shown in Fig. 2d-f. At ↵ = 0.8,
we detect again only the vacuum saddle, which is uni-
formly shifted into complex space, �x,t = i�0, �x,t = 0.
However, we should stress that unlike µ = 0 case the dis-
tribution is only approximate, since the initial configura-
tions for the iterations are not on thimble. Furthermore,
”vertically oriented” saddles (see Fig. 1d for 1D exam-
ple) can be missed due to limitations in the convergence
of the algorithm as previously described.

Fig. 4 provides some insight into the nature of the
optimal regime around ↵ = 0.8. Starting from half-
filling in Fig. 4a, we see the lower boundary of this re-
gion in ↵ which was identified by the splitting of the
vacuum saddle into two mean-field saddles. This split-
ting is observed by launching GF from a slightly per-
turbed vacuum (Gaussian noise added in �x,t and �x,t).
If �x,t returns to zero, the vacuum is stable, otherwise
the final value of �x,t is non-zero. The upper boundary
is more di�cult to determine. We use the symmetry,
S(�x,t,�x,t) = S(�x,t,��x,t), and the fact that the sad-
dles are located at �x,t = 0 for large ↵. It follows that the
Hessian matrix is block-diagonal: @2S/@�x,t@�x,t = 0.
According to what was previously stated about the sad-
dles at half-filling, we can study the relevance of saddles
separately for �- and �-directions, as it su�ces to find at
least one instability (negative eigenvalue of �, with real
eigenvector). We first study the �-direction using GF
restricted to the � fields and starting from slightly per-
turbed saddles. No instability was found, and the non-
trivial saddles can be found for all values of ↵. Finally,
we use these saddles, add noise to the � fields, and launch
the restricted GF for these fields. At ↵ ⇡ 0.89, the final
value of � jumps upwards. It signals am instability in
the �-channel, and thus such saddles become irrelevant.
It is su�cient to study only one-blob configurations, as
being the building block for all other saddles, we expect
other saddles to behave similarly [34].

Similar calculations were made for µ = , where we
have used GF restricted to Re� (Fig. 4b), and essen-
tially the same behavior was observed. This suggests
that at ↵ > 0.89, the non-vacuum saddles shift into com-
plex space with increasing µ, remaining relevant, while
at ↵ < 0.89 they begin from irrelevant ones at µ = 0
and proceed in the same status into complex space for
µ 6= 0, remaining irrelevant. Another possibility is that
the saddles acquire a more “vertical” orientation with de-
creasing ↵ (as in Fig. 1d). GF along Re� can go away
from zero in this case too. However, there are additional
arguments against this from the results of QMC simula-
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tions using phase quenched HMC along some contour in
CN , uniformly shifted from RN , in order to approach the
thimble (e.g. using the notion about the shift of vacuum
saddle into complex space at µ 6= 0.0). Subsequently, we
launch the procedure, illustrated in Fig. 3a, for a single
complex field. The minimization procedure proceeds by
alternation of GF for constant imaginary and real parts of
the field. Even iterations are GF in downward direction
with fixed Im�j = �(R)
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Examples are show in Fig. 3b.

This procedure does not converge for all saddles.
The criterion for the convergence of the procedure
can be understood in terms of the Hessian matrix,
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The distribution of ImS over saddle points obtained
using this method is shown in Fig. 2d-f. At ↵ = 0.8,
we detect again only the vacuum saddle, which is uni-
formly shifted into complex space, �x,t = i�0, �x,t = 0.
However, we should stress that unlike µ = 0 case the dis-
tribution is only approximate, since the initial configura-
tions for the iterations are not on thimble. Furthermore,
”vertically oriented” saddles (see Fig. 1d for 1D exam-
ple) can be missed due to limitations in the convergence
of the algorithm as previously described.

Fig. 4 provides some insight into the nature of the
optimal regime around ↵ = 0.8. Starting from half-
filling in Fig. 4a, we see the lower boundary of this re-
gion in ↵ which was identified by the splitting of the
vacuum saddle into two mean-field saddles. This split-
ting is observed by launching GF from a slightly per-
turbed vacuum (Gaussian noise added in �x,t and �x,t).
If �x,t returns to zero, the vacuum is stable, otherwise
the final value of �x,t is non-zero. The upper boundary
is more di�cult to determine. We use the symmetry,
S(�x,t,�x,t) = S(�x,t,��x,t), and the fact that the sad-
dles are located at �x,t = 0 for large ↵. It follows that the
Hessian matrix is block-diagonal: @2S/@�x,t@�x,t = 0.
According to what was previously stated about the sad-
dles at half-filling, we can study the relevance of saddles
separately for �- and �-directions, as it su�ces to find at
least one instability (negative eigenvalue of �, with real
eigenvector). We first study the �-direction using GF
restricted to the � fields and starting from slightly per-
turbed saddles. No instability was found, and the non-
trivial saddles can be found for all values of ↵. Finally,
we use these saddles, add noise to the � fields, and launch
the restricted GF for these fields. At ↵ ⇡ 0.89, the final
value of � jumps upwards. It signals am instability in
the �-channel, and thus such saddles become irrelevant.
It is su�cient to study only one-blob configurations, as
being the building block for all other saddles, we expect
other saddles to behave similarly [34].

Similar calculations were made for µ = , where we
have used GF restricted to Re� (Fig. 4b), and essen-
tially the same behavior was observed. This suggests
that at ↵ > 0.89, the non-vacuum saddles shift into com-
plex space with increasing µ, remaining relevant, while
at ↵ < 0.89 they begin from irrelevant ones at µ = 0
and proceed in the same status into complex space for
µ 6= 0, remaining irrelevant. Another possibility is that
the saddles acquire a more “vertical” orientation with de-
creasing ↵ (as in Fig. 1d). GF along Re� can go away
from zero in this case too. However, there are additional
arguments against this from the results of QMC simula-
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tions using phase quenched HMC along some contour in
CN , uniformly shifted from RN , in order to approach the
thimble (e.g. using the notion about the shift of vacuum
saddle into complex space at µ 6= 0.0). Subsequently, we
launch the procedure, illustrated in Fig. 3a, for a single
complex field. The minimization procedure proceeds by
alternation of GF for constant imaginary and real parts of
the field. Even iterations are GF in downward direction
with fixed Im�j = �(R)
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with ⌃D,Re reaching the level of numerical errors (typ-
ically 10�10) at even iterations and ⌃D,Im at odd ones
(if the flow didn’t collide with a zero of determinant).
Examples are show in Fig. 3b.

This procedure does not converge for all saddles.
The criterion for the convergence of the procedure
can be understood in terms of the Hessian matrix,
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values, �i, of the matrix A�1CB�1C, which character-

izes the update of the fields after each iteration, satisfy
|�i| < 1. The latter is actually a restraint for | arg @i@jS|.
If all of the second derivatives are real, C = 0, and thus
|�i| = 0. If | arg @i@jS| increases, with A and (�B) still
remaining positive-definite, the thimble in the vicinity of
the saddle point is no longer parallel to RN , but starts
to “rotate” in complex space. In the 1D case illustrated
in Fig. 3a, |�| < 1 simply means | arg @2S|z� | < ⇡/4.

The distribution of ImS over saddle points obtained
using this method is shown in Fig. 2d-f. At ↵ = 0.8,
we detect again only the vacuum saddle, which is uni-
formly shifted into complex space, �x,t = i�0, �x,t = 0.
However, we should stress that unlike µ = 0 case the dis-
tribution is only approximate, since the initial configura-
tions for the iterations are not on thimble. Furthermore,
”vertically oriented” saddles (see Fig. 1d for 1D exam-
ple) can be missed due to limitations in the convergence
of the algorithm as previously described.

Fig. 4 provides some insight into the nature of the
optimal regime around ↵ = 0.8. Starting from half-
filling in Fig. 4a, we see the lower boundary of this re-
gion in ↵ which was identified by the splitting of the
vacuum saddle into two mean-field saddles. This split-
ting is observed by launching GF from a slightly per-
turbed vacuum (Gaussian noise added in �x,t and �x,t).
If �x,t returns to zero, the vacuum is stable, otherwise
the final value of �x,t is non-zero. The upper boundary
is more di�cult to determine. We use the symmetry,
S(�x,t,�x,t) = S(�x,t,��x,t), and the fact that the sad-
dles are located at �x,t = 0 for large ↵. It follows that the
Hessian matrix is block-diagonal: @2S/@�x,t@�x,t = 0.
According to what was previously stated about the sad-
dles at half-filling, we can study the relevance of saddles
separately for �- and �-directions, as it su�ces to find at
least one instability (negative eigenvalue of �, with real
eigenvector). We first study the �-direction using GF
restricted to the � fields and starting from slightly per-
turbed saddles. No instability was found, and the non-
trivial saddles can be found for all values of ↵. Finally,
we use these saddles, add noise to the � fields, and launch
the restricted GF for these fields. At ↵ ⇡ 0.89, the final
value of � jumps upwards. It signals am instability in
the �-channel, and thus such saddles become irrelevant.
It is su�cient to study only one-blob configurations, as
being the building block for all other saddles, we expect
other saddles to behave similarly [34].

Similar calculations were made for µ = , where we
have used GF restricted to Re� (Fig. 4b), and essen-
tially the same behavior was observed. This suggests
that at ↵ > 0.89, the non-vacuum saddles shift into com-
plex space with increasing µ, remaining relevant, while
at ↵ < 0.89 they begin from irrelevant ones at µ = 0
and proceed in the same status into complex space for
µ 6= 0, remaining irrelevant. Another possibility is that
the saddles acquire a more “vertical” orientation with de-
creasing ↵ (as in Fig. 1d). GF along Re� can go away
from zero in this case too. However, there are additional
arguments against this from the results of QMC simula-
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tions using phase quenched HMC along some contour in
CN , uniformly shifted from RN , in order to approach the
thimble (e.g. using the notion about the shift of vacuum
saddle into complex space at µ 6= 0.0). Subsequently, we
launch the procedure, illustrated in Fig. 3a, for a single
complex field. The minimization procedure proceeds by
alternation of GF for constant imaginary and real parts of
the field. Even iterations are GF in downward direction
with fixed Im�j = �(R)
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with ⌃D,Re reaching the level of numerical errors (typ-
ically 10�10) at even iterations and ⌃D,Im at odd ones
(if the flow didn’t collide with a zero of determinant).
Examples are show in Fig. 3b.

This procedure does not converge for all saddles.
The criterion for the convergence of the procedure
can be understood in terms of the Hessian matrix,
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izes the update of the fields after each iteration, satisfy
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If all of the second derivatives are real, C = 0, and thus
|�i| = 0. If | arg @i@jS| increases, with A and (�B) still
remaining positive-definite, the thimble in the vicinity of
the saddle point is no longer parallel to RN , but starts
to “rotate” in complex space. In the 1D case illustrated
in Fig. 3a, |�| < 1 simply means | arg @2S|z� | < ⇡/4.

The distribution of ImS over saddle points obtained
using this method is shown in Fig. 2d-f. At ↵ = 0.8,
we detect again only the vacuum saddle, which is uni-
formly shifted into complex space, �x,t = i�0, �x,t = 0.
However, we should stress that unlike µ = 0 case the dis-
tribution is only approximate, since the initial configura-
tions for the iterations are not on thimble. Furthermore,
”vertically oriented” saddles (see Fig. 1d for 1D exam-
ple) can be missed due to limitations in the convergence
of the algorithm as previously described.

Fig. 4 provides some insight into the nature of the
optimal regime around ↵ = 0.8. Starting from half-
filling in Fig. 4a, we see the lower boundary of this re-
gion in ↵ which was identified by the splitting of the
vacuum saddle into two mean-field saddles. This split-
ting is observed by launching GF from a slightly per-
turbed vacuum (Gaussian noise added in �x,t and �x,t).
If �x,t returns to zero, the vacuum is stable, otherwise
the final value of �x,t is non-zero. The upper boundary
is more di�cult to determine. We use the symmetry,
S(�x,t,�x,t) = S(�x,t,��x,t), and the fact that the sad-
dles are located at �x,t = 0 for large ↵. It follows that the
Hessian matrix is block-diagonal: @2S/@�x,t@�x,t = 0.
According to what was previously stated about the sad-
dles at half-filling, we can study the relevance of saddles
separately for �- and �-directions, as it su�ces to find at
least one instability (negative eigenvalue of �, with real
eigenvector). We first study the �-direction using GF
restricted to the � fields and starting from slightly per-
turbed saddles. No instability was found, and the non-
trivial saddles can be found for all values of ↵. Finally,
we use these saddles, add noise to the � fields, and launch
the restricted GF for these fields. At ↵ ⇡ 0.89, the final
value of � jumps upwards. It signals am instability in
the �-channel, and thus such saddles become irrelevant.
It is su�cient to study only one-blob configurations, as
being the building block for all other saddles, we expect
other saddles to behave similarly [34].

Similar calculations were made for µ = , where we
have used GF restricted to Re� (Fig. 4b), and essen-
tially the same behavior was observed. This suggests
that at ↵ > 0.89, the non-vacuum saddles shift into com-
plex space with increasing µ, remaining relevant, while
at ↵ < 0.89 they begin from irrelevant ones at µ = 0
and proceed in the same status into complex space for
µ 6= 0, remaining irrelevant. Another possibility is that
the saddles acquire a more “vertical” orientation with de-
creasing ↵ (as in Fig. 1d). GF along Re� can go away
from zero in this case too. However, there are additional
arguments against this from the results of QMC simula-
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tions using phase quenched HMC along some contour in
CN , uniformly shifted from RN , in order to approach the
thimble (e.g. using the notion about the shift of vacuum
saddle into complex space at µ 6= 0.0). Subsequently, we
launch the procedure, illustrated in Fig. 3a, for a single
complex field. The minimization procedure proceeds by
alternation of GF for constant imaginary and real parts of
the field. Even iterations are GF in downward direction
with fixed Im�j = �(R)

j , where �j ⌘ �(R)
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j repre-
sents both complex auxiliary fields. The flow stops when
it reaches the local minimum. Odd iterations are upward
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with ⌃D,Re reaching the level of numerical errors (typ-
ically 10�10) at even iterations and ⌃D,Im at odd ones
(if the flow didn’t collide with a zero of determinant).
Examples are show in Fig. 3b.

This procedure does not converge for all saddles.
The criterion for the convergence of the procedure
can be understood in terms of the Hessian matrix,
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izes the update of the fields after each iteration, satisfy
|�i| < 1. The latter is actually a restraint for | arg @i@jS|.
If all of the second derivatives are real, C = 0, and thus
|�i| = 0. If | arg @i@jS| increases, with A and (�B) still
remaining positive-definite, the thimble in the vicinity of
the saddle point is no longer parallel to RN , but starts
to “rotate” in complex space. In the 1D case illustrated
in Fig. 3a, |�| < 1 simply means | arg @2S|z� | < ⇡/4.

The distribution of ImS over saddle points obtained
using this method is shown in Fig. 2d-f. At ↵ = 0.8,
we detect again only the vacuum saddle, which is uni-
formly shifted into complex space, �x,t = i�0, �x,t = 0.
However, we should stress that unlike µ = 0 case the dis-
tribution is only approximate, since the initial configura-
tions for the iterations are not on thimble. Furthermore,
”vertically oriented” saddles (see Fig. 1d for 1D exam-
ple) can be missed due to limitations in the convergence
of the algorithm as previously described.

Fig. 4 provides some insight into the nature of the
optimal regime around ↵ = 0.8. Starting from half-
filling in Fig. 4a, we see the lower boundary of this re-
gion in ↵ which was identified by the splitting of the
vacuum saddle into two mean-field saddles. This split-
ting is observed by launching GF from a slightly per-
turbed vacuum (Gaussian noise added in �x,t and �x,t).
If �x,t returns to zero, the vacuum is stable, otherwise
the final value of �x,t is non-zero. The upper boundary
is more di�cult to determine. We use the symmetry,
S(�x,t,�x,t) = S(�x,t,��x,t), and the fact that the sad-
dles are located at �x,t = 0 for large ↵. It follows that the
Hessian matrix is block-diagonal: @2S/@�x,t@�x,t = 0.
According to what was previously stated about the sad-
dles at half-filling, we can study the relevance of saddles
separately for �- and �-directions, as it su�ces to find at
least one instability (negative eigenvalue of �, with real
eigenvector). We first study the �-direction using GF
restricted to the � fields and starting from slightly per-
turbed saddles. No instability was found, and the non-
trivial saddles can be found for all values of ↵. Finally,
we use these saddles, add noise to the � fields, and launch
the restricted GF for these fields. At ↵ ⇡ 0.89, the final
value of � jumps upwards. It signals am instability in
the �-channel, and thus such saddles become irrelevant.
It is su�cient to study only one-blob configurations, as
being the building block for all other saddles, we expect
other saddles to behave similarly [34].

Similar calculations were made for µ = , where we
have used GF restricted to Re� (Fig. 4b), and essen-
tially the same behavior was observed. This suggests
that at ↵ > 0.89, the non-vacuum saddles shift into com-
plex space with increasing µ, remaining relevant, while
at ↵ < 0.89 they begin from irrelevant ones at µ = 0
and proceed in the same status into complex space for
µ 6= 0, remaining irrelevant. Another possibility is that
the saddles acquire a more “vertical” orientation with de-
creasing ↵ (as in Fig. 1d). GF along Re� can go away
from zero in this case too. However, there are additional
arguments against this from the results of QMC simula-
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tions using phase quenched HMC along some contour in
CN , uniformly shifted from RN , in order to approach the
thimble (e.g. using the notion about the shift of vacuum
saddle into complex space at µ 6= 0.0). Subsequently, we
launch the procedure, illustrated in Fig. 3a, for a single
complex field. The minimization procedure proceeds by
alternation of GF for constant imaginary and real parts of
the field. Even iterations are GF in downward direction
with fixed Im�j = �(R)
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with ⌃D,Re reaching the level of numerical errors (typ-
ically 10�10) at even iterations and ⌃D,Im at odd ones
(if the flow didn’t collide with a zero of determinant).
Examples are show in Fig. 3b.

This procedure does not converge for all saddles.
The criterion for the convergence of the procedure
can be understood in terms of the Hessian matrix,

which is defined as, � =

✓
A C
C B

◆
. We express the

Hessian in terms of 2N2
sN⌧ ⇥ 2N2

sN⌧ blocks Ai,j ⌘
@2ReS/@�(R)

i @�(R)
j , Bi,j ⌘ @2ReS/@�(I)

i @�(I)
j , and

Ci,j ⌘ @2ReS/@�(R)
i @�(I)

j . Using these matrices, the
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A and �B are positive-definite, and each of the eigen-
values, �i, of the matrix A�1CB�1C, which character-

izes the update of the fields after each iteration, satisfy
|�i| < 1. The latter is actually a restraint for | arg @i@jS|.
If all of the second derivatives are real, C = 0, and thus
|�i| = 0. If | arg @i@jS| increases, with A and (�B) still
remaining positive-definite, the thimble in the vicinity of
the saddle point is no longer parallel to RN , but starts
to “rotate” in complex space. In the 1D case illustrated
in Fig. 3a, |�| < 1 simply means | arg @2S|z� | < ⇡/4.

The distribution of ImS over saddle points obtained
using this method is shown in Fig. 2d-f. At ↵ = 0.8,
we detect again only the vacuum saddle, which is uni-
formly shifted into complex space, �x,t = i�0, �x,t = 0.
However, we should stress that unlike µ = 0 case the dis-
tribution is only approximate, since the initial configura-
tions for the iterations are not on thimble. Furthermore,
”vertically oriented” saddles (see Fig. 1d for 1D exam-
ple) can be missed due to limitations in the convergence
of the algorithm as previously described.

Fig. 4 provides some insight into the nature of the
optimal regime around ↵ = 0.8. Starting from half-
filling in Fig. 4a, we see the lower boundary of this re-
gion in ↵ which was identified by the splitting of the
vacuum saddle into two mean-field saddles. This split-
ting is observed by launching GF from a slightly per-
turbed vacuum (Gaussian noise added in �x,t and �x,t).
If �x,t returns to zero, the vacuum is stable, otherwise
the final value of �x,t is non-zero. The upper boundary
is more di�cult to determine. We use the symmetry,
S(�x,t,�x,t) = S(�x,t,��x,t), and the fact that the sad-
dles are located at �x,t = 0 for large ↵. It follows that the
Hessian matrix is block-diagonal: @2S/@�x,t@�x,t = 0.
According to what was previously stated about the sad-
dles at half-filling, we can study the relevance of saddles
separately for �- and �-directions, as it su�ces to find at
least one instability (negative eigenvalue of �, with real
eigenvector). We first study the �-direction using GF
restricted to the � fields and starting from slightly per-
turbed saddles. No instability was found, and the non-
trivial saddles can be found for all values of ↵. Finally,
we use these saddles, add noise to the � fields, and launch
the restricted GF for these fields. At ↵ ⇡ 0.89, the final
value of � jumps upwards. It signals am instability in
the �-channel, and thus such saddles become irrelevant.
It is su�cient to study only one-blob configurations, as
being the building block for all other saddles, we expect
other saddles to behave similarly [34].

Similar calculations were made for µ = , where we
have used GF restricted to Re� (Fig. 4b), and essen-
tially the same behavior was observed. This suggests
that at ↵ > 0.89, the non-vacuum saddles shift into com-
plex space with increasing µ, remaining relevant, while
at ↵ < 0.89 they begin from irrelevant ones at µ = 0
and proceed in the same status into complex space for
µ 6= 0, remaining irrelevant. Another possibility is that
the saddles acquire a more “vertical” orientation with de-
creasing ↵ (as in Fig. 1d). GF along Re� can go away
from zero in this case too. However, there are additional
arguments against this from the results of QMC simula-

Hessian	matrix	at	
saddle	point:	

A	and	(-B)	should	be	positive-definite,	also	the	eigenvalues	of	the	
matrix:	

should	satisfy	the	condition:		

In	1D	case	in	means:	
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FIG. 2: The distribution of the action at the saddle points
for a 6⇥ 6 lattice with Nt = 256 and � = 20.0 at the interac-
tion strength corresponding to the phase transition from SM
(semimetal) to AFM (antiferromagnetic) phase: U = 3.8.
The upper row (a-c) shows the real part of the action at half-
filling. The lower row (d-f) shows the distribution of the imag-
inary part of the action for saddle points when µ = . Three
di↵erent values of ↵ (see eq. (6)) are considered in both cases.

identify a clear scale, where new physics is expected at
µ = . Special attention will be paid to this value of µ
in our study.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by splitting the interaction
term in the following way

U

2
q̂2x =

↵U

2
q̂2x � (1� ↵)U

2
ŝ2x + (1� ↵)Uŝx, (6)

where ŝx = n̂x,el.+n̂x,h.. Now, we can introduce two con-
tinuous auxiliary fields simultaneously by applying the
standard Hubbard-Stratonovich (HS) transformation to
each four-fermion term in (6). The parameter ↵ 2 [0, 1],
defines the balance between auxiliary fields coupled to
charge (q̂x) and spin (ŝx) density. Extreme cases ↵ = 0
and ↵ = 1.0 mean that only one auxiliary field is left.
This decomposition of the interaction term is not the
most general, but it is commonly used in QMC algo-
rithms with continuous auxiliary fields [27, 28].

Further construction of the path integral is straightfor-
ward and the detailed derivations can be found in [28–
30]. Here we simply state the explicit form which we have
used in our calculations,

Zc =

Z
D�x,tD�x,te

�S↵ detMel. detMh., (7)

S↵[�x,t,�x,t]=
X

x,t

�2
x,t

2↵�U
+

X

x,t

(�x,t + (1� ↵)�U)2

2(1� ↵)�U
,

where the fermionic operators are given by

Mel.,h. = I +
NtY

t=1

⇣
e��(h±µ)diag

�
e⌥i�x,t+�x,t

�⌘
, (8)

where h is the matrix of one-particle tight-binding Hamil-
tonian in (5). The field �x,t is coupled to charge density,

FIG. 3: (a) Schematic illustration of the search algorithm
for complex saddle points (1D case): c1 is the initial point;
c2, c3, c4 are the final points of the corresponding iteration
of the GF. (b) Example of a search processes for a 2 ⇥ 2
lattice with Nt = 256, � = 20.0, U = 2.0, µ =  and
↵ = 1.0. The shorter process converges to the vacuum saddle
point and the longer one shows convergence to a non-vacuum,
localized saddle point. These saddles are shown in the plot
(c). �x,t = 0, complex values of all �-fields are projected onto
a single complex plane.

and the field �x,t to spin density. The full action involves
both the bosonic action as well as the logarithm of the
fermionic determinants, S = S↵ � ln(detMel. detMh.).
The total number of the fields is 2NsNt, where Ns is the
spatial size and Nt is the Euclidean time extent of the
lattice.

Saddle points study. We begin with a study of the
saddles at half-filling. Unlike [31], where analytic re-
sults could be obtained for very small systems, we de-
vise a hybrid approach. First, we generate lattice con-
figurations using hybrid Monte Carlo (HMC) with exact
fermionic forces [32]. Second, we numerically integrate
the GF equations starting from these configurations for
a large enough flow time to reach local minima of the
action. The distribution of lattice ensembles, taken af-
ter employing the GF procedure, gives an accurate char-
acterization of the relevant saddle points at half-filling.
Results are shown in Figs. 2a-c. At half-filling we can
not work exactly at ↵ = 0 and ↵ = 1.0 because HMC
is not ergodic there [33], thus ↵ = 0.01; 0.8; 0.99. At
small ↵, �x,t dominates in saddles, while �x,t = 0. The
lowest bar in Fig. 2a corresponds to two identical mean-
field saddle points, which describe sublattice magnetiza-
tion (�x,t = 0 and �x,t = ±m, depending on sublattice).
Other saddles correspond to various single- and multi-
instanton solutions. At large ↵ (Fig. 2c), �x,t is domi-
nant, while �x,t = 0. The lowest bar is the vacuum saddle
(�x,t = �x,t = 0). The next bar contains equal contri-
butions from two localized field configurations (so-called
“blob” and “anti-blob”). All other saddles are various
combinations of several blobs and anti-blobs. Finally,
there is intermediate regime at ↵ ⇡ 0.8 (Fig. 2b), where
only vacuum saddle was found. More detailed descrip-
tion of saddles including results for larger lattices can be
found in [34].

Another procedure should be used away from half-
filling. Downward GF follows into saddle point only if
initial configuration was exactly on thimble. At µ 6= 0
it is possible only at ↵ = 0.0, but HMC is again not
ergodic there [28]. Thus we generate initial configura-
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Within	the	saddle	point	approximation,	
saddles	with	smaller	phases	will	always	
dominate		within	the	class	with	fixed	
weight:	more	variants	with	smaller	
phase			(éé	and	êê		vs	êé	+		éê).	
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FIG. 8. The dependence of the saddle points for mostly
charge-coupled auxiliary field on the interaction strength at
half filling (↵ = 0.9, 6⇥ 6 lattice with N⌧ = 256 at � = 20.0).
Each subsequent point is obtained via GF from the previous
one (moving from larger U). If the saddle point becomes ir-
relevant, the flow shows decays into the vacuum saddle. Due
to the localized structure of the field configurations at saddle
points, they remain equidistant in action. However, at small
interaction strength non trivial saddles decay into the vacuum
one. This illustrates the influence of non-trivial saddle points
on the physics in the strongly-coupled regime.

FIG. 9. Example of the Stokes phenomenon at half-filling if
there are only two auxiliary fields. We display the isolines of
the action for the case when the relevant saddle point (local
minima, denoted by the star) is accompanied by the irrelevant
one and the zero of determinant (top part of the plot, denoted
by the open circle).

trated around Sn = S0 + n�S, with the width of the
distribution steadily widening with increasing n. This is
due to that fact that as the density of blobs increases,
they are no longer well-separated and start to interact
with each other.

These single and multi-blob configurations have con-
sequences for the fermions, as we attempt to illustrate
in Fig. 7. We first define the equal-time fermion Green’s
function in position-time representation

g(x, y, ⌧) = �h âx(⌧)â
†
y
(⌧) i, (16)

where we have written the expression for particles and an
analogous expression exists for the holes. We compute
this expression on a given saddle point configuration, for
fixed spatial positions x and y as a function of ⌧ . This

quantity forms a closed curve in the complex plane due
to periodic boundary conditions for the auxiliary fields.
Furthermore, for certain locations of the source and sink,
this curve exhibits a non-trivial winding around the ori-
gin in the complex plane. We define the winding number
of the propagator for a given source and sink location as
follows

W (x, y) ⌘
1

2⇡i

I

�

dz

z
(17)

=
1

2⇡i

Z
�

0

1

g(x, y, ⌧)

@g(x, y, ⌧)

@⌧
d⌧,

where in the first equality we have used z = g(x, y, ⌧) and
� refers to the closed curve swept out by the propagator
in the complex plane. For the one-blob configuration in
Fig. 7, we have plotted the Green’s function contour for
two di↵erent sinks, with the source fixed at the center
of the blob. In Fig. 7-1(b), the sink is located on the
opposite sublattice of the source and shows a non-trivial
winding number of +1, while in Fig. 7-1(c) the sink is
located on the same sublattice of the source and shows
a trivial winding of 0. We thus see that there exists
a correlation between fermion winding number, saddle
points, and sublattice symmetry.
We have observed that, for the multi-blob configura-

tions, blobs with the same sign lie on the same sublattice
while blobs with opposite signs lie on opposite sublat-
tices. The latter is depicted in Fig. 7-2(a) where we have
a configuration containing a blob-anti-blob pair, and in
Fig. 7-2(b) and 7-2(c) we observe the same correlation be-
tween sublattice symmetry and fermion winding number
that was observed for one-blob configuration. However,
in 7-2(d), we see a non-trivial winding number of +2
where the sink and source were taken to be the centers
of the two blobs. A two-blob configuration is depicted
in 7-3(a), where again, the winding number is trivial for
source and sink on the same sublattice (Fig. 7-3(b)). The
winding number is non-trivial and equal to �1 for source
and sink on di↵erent sublattices (Fig. 7-3(c)). We note
that winding number ±2 was not observed for the two-
blob configuration. We assume that a similar correlation
exists between the winding number and the construction
of saddle point configurations with a larger number of
(anti-)blobs, and thus the winding number can be used
for the classification of saddle points. However, we have
left the detailed study of this point to future work.
One expects that the dependence of the thimbles de-

composition on the Hubbard coupling should reflect the
changing physics in the strong-coupled phase. The de-
pendence of the real part of the action of the various sad-
dles on the coupling U at half-filling is shown in Fig. 8 for
the case where the charge-coupled Hubbard field domi-
nates (↵ = 0.9). In order to track the location of the sad-
dles in a continuous manner we have used the GF in the
downwards direction after small shifts of the on-site in-
teraction U . This means that we start from saddle points
at large U , then slightly decrease U ! U��U and search
for the new locations of the local minima by starting GF

α=0.9	
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FIG. 18. Schematic diagrams which explain the evolution of
saddle points and thimbles in the case when both fields are
present in the path integral.

with real eigenvector), we can study the relevance of sad-
dles separately for �- and �-directions. It can be done
in two di↵erent ways, which should lead to identical re-
sults. The first is the calculation fully analogous to the
one made for Fig. 8: we start from large ↵, slightly de-
crease it and launch GF in downwards direction for both
fields, �x,⌧ and �x,⌧ . At su�ciently small ↵ we see the
decay of the saddle into vacuum (example of the flow
history for the fields at one particular site is shown in
Fig. 17(b)). Thus, we can plot the dependence of �x,⌧

after the flow on ↵ and a sharp drop to zero will mark
the transition of a non-trivial saddle into an irrelevant
one. This approach, however, does not allow us to un-
derstand, in which block of the Hessian matrix does the
negative, “unstable” eigenvalue appear. Alternatively,
one can first use GF, restricted to the � fields in order
to find the saddle after a small shift of ↵. No instability
was found in this case, and the non-trivial saddles can be
found for all values of ↵. Finally, we use these saddles,
add noise to the � fields, and launch the GF, restricted to
� fields for these configurations. In this case, the insta-
bility manifests itself in a finite value of the � fields after
the flow is performed (the configuration does not return
to the initial saddle located at �x,⌧ = 0). Thus, we can
plot � field after the flow and the sudden appearance of
a nonzero value signals the transition of the non-trivial,
relevant saddle into an irrelevant one. Both approaches
are demonstrated in Fig. 17(c) for 6⇥ 6 and 12⇥ 12 lat-
tice. At ↵ ⇡ 0.89, the final value of � after the flow for �

fields jumps upwards. Simultaneously, the final value of
� fields goes down to the level of numerical errors (typ-
ically around 10�10). This signals an instability in the
�-channel, and thus the non-trivial saddle becomes ir-
relevant. Remarkably, the results depend neither on the
type of saddle point nor on lattice size. We attribute
this property to the localized nature of non-trivial sad-
dle points at large ↵. An important observation is that
the width of the ”optimal regime” grows with increasing
system size, since the lower border shifts to smaller ↵
for the 12⇥ 12 lattice. This lends strong support to the
existence of this regime in the thermodynamic limit.
A similar set of calculations was performed for µ = ,

where we have used GF restricted to Re�. The plot in
Fig. 17(a) demonstrates how the flow switches from the
stable regime to eventual decay. We essentially observe
the same behavior for the non-vacuum saddles at large
↵ (Fig. 17(d)): all non-trivial field configurations are un-
stable in the Re� direction if ↵ < 0.89. This suggests
that at ↵ > 0.89, the non-vacuum saddles shift into com-
plex space with increasing µ, remaining relevant, while
at ↵ < 0.89 they begin from irrelevant ones at µ = 0 and
move into complex space for µ 6= 0, remaining irrelevant.
These situations are depicted in the schematic drawings
in Fig. 18, where both relevant and irrelevant saddle
points are shown at half-filling and at µ 6= 0. Another
possibility is that the saddles acquire a more “vertical”
orientation with decreasing ↵ (as shown in Fig. 19(a)).
It can happen that the GF along Re� can take us away
from zero also in this case. However, there are additional
arguments against this based on the results of our HMC
over manifolds in complex space at di↵erent ↵ described
in the next section.

V. HMC WITH GRADIENT FLOW

Following [32], we perform the sequence of deforma-
tions of the integration contour, which can be summa-
rized by

Z =

Z

RN

D�e�S[�+i�0] =

Z

RN

D�e�S[�̃] det J. (19)

The general idea behind these deformations is shown in
the schematic illustration of Fig. 19(b). First, we per-
form a uniform shift into the complex plane, but only
for the charge-coupled field: � ! � + i�0. We work at
large ↵, and this uniform shift moves onto the thimble
attached to the vacuum saddle (see Fig. 16) in the Gaus-
sian approximation. Below we will denote this shift as
� ! � + i�0. A further shift is made using the GF
equations. The quantity �̃ 2 CN is the result of the evo-
lution of the field determined by (6), starting from the
Gaussian thimble � + i�0,� 2 R with flow time T . At
this stage, the complex-valued Jacobian of the transfor-
mation, J = D�̃/D�, appears in the integral. The flow
plays a dual role in the transformation. First, it defines,
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FIG. 14. The distribution of saddle points at µ =  for ↵ =
0.8; 0.9. Results are shown for a 6⇥ 6 lattice with N⌧ = 256
and � = 20.0, U = 3.8. (a,b) The distribution of the real and
imaginary part of the action for ↵ = 0.9. The set of saddle
points is similar to the results at half-filling at the same ↵ (see
Fig. 6). Plot (c) shows that again, only one (shifted trivial
vacuum) saddle point can be found for ↵ = 0.8.

FIG. 15. Evolution of saddle points at ↵ = 0.9 with increas-
ing chemical potential. Real (a) and imaginary (b) parts of
the action are shown. Saddle points remain roughly equally
spaced in terms of the real part of their action, while their
phases start to diverge with increasing µ. Results are shown
for a 6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 3.8.

expressed in terms of the Hessian matrix � =

✓
A C
C B

◆
.

The Hessian is written in terms of 2NsN⌧⇥2NsN⌧ blocks
Ai,j ⌘ @2ReS/@�(R)

i
@�(R)

j
, Bi,j ⌘ @2ReS/@�(I)

i
@�(I)

j
,

and Ci,j ⌘ @2ReS/@�(R)
i

@�(I)
j

. Using these matrices,
the minimization procedure is guaranteed to converge if
both A and �B are positive-definite, and each of the
eigenvalues, �i, of the matrix A�1CB�1C, which char-
acterizes the update of the fields after two subsequent
iterations, satisfy

|�i| < 1. (18)

The latter is actually a constraint on | arg @i@jS|. If all of
the second derivatives are real, C = 0, and thus |�i| = 0.
If | arg @i@jS| increases, with A and (�B) still remaining
positive-definite, the thimble in the vicinity of the saddle
point is no longer parallel to RN , but starts to “rotate” in
complex space. In the 1D case illustrated in Fig. 11(a),
|�| < 1 simply means that | arg @2S|z� | < ⇡/4.

We again start from small ↵, which corresponds to
a dominant spin-coupled field. In this case, all saddle
points are located at �x,⌧ = 0 and Im�x,⌧ = 0 with their
phases cos argS = ±1. Results are shown in Fig. 12,
separately for positive and negative saddles. In general,
we observed a very large variety of saddles with non-
uniform structures both in space and time. It is almost
impossible to characterize them, since their actions form

a quasi-continuum distribution. Furthermore, positive
and negative saddles almost compensate each other in
this case (see histograms in [36]), and thus the residual
sign problem stemming from the phase factors in eq. (4)
is quite strong. The qualitative explanation for such be-
havior can be derived from the schematic illustrations in
Fig. 13. At half filling, the fermionic determinants for
electrons and holes are identical for ↵ = 0.0, thus the
sign problem is absent, but, according to the previously
mentioned results (see Fig. 4, 5) we have many thimbles
in RN , separated by zeros of the determinants. Once
the chemical potential shifts from zero, the two determi-
nants are no longer identical, the domain walls between
thimbles are split, and “negative” thimbles immediately
appear along the borders between “positive” thimbles.
Since we observe a large variety of thimbles at half-filling,
the situation can only become worse at µ 6= 0.

Results for large ↵ are shown in Fig. 14. At ↵ = 0.9
the distribution of both ReS and ImS show the same
characteristic behavior as it was at half filling (Fig. 6)
with saddle points located equidistantly in action. The
di↵erence is that the step in the action is now a com-
plex number. More precisely, the properties of the saddle
points can be understood from Fig. 15, which shows the
evolution of the saddle points as one goes away from half-
filling. We see a continuous evolution of the same system
of blobs and anti-blobs. The di↵erence between them in
ReS remains constant (Fig. 15(a)), while ImS increases
and blob and anti-blob configurations acquire opposite
phases. As obvious from our previous discussion, the
general rule for the approximate action of saddle point is
Sn1,n2 = S0+n1�S+n2�S, where n1 is number of blobs
and n2 is the number of anti-blobs in the configuration.
An interesting consequence is that not only the vacuum,
but also configurations with equal number of blobs and
anti blobs have ImS = 0, which e↵ectively decreases the
complexity of the sign problem.

As we go to finite chemical potential we can also at-
tempt to visualize the saddle point configurations. Unlike
Fig. 7, where the field is real, we plot the configuration in
the complex plane with each point representing the value
of the field at a given lattice site for ↵ = 0.9 (Fig. 16). In
these plots, the vacuum configuration is the trivial vac-
uum with an added constant, volume-independent shift
of the imaginary part. In Fig. 16(a), we plot the con-
figuration of a single anti-blob. The collection of points
which extends furthest away from the vacuum all come
from the localized region of space and time surrounding
the center of anti-blob. In Fig. 16(a), where we display
a blob-anti-blob pair, we see that we have have two such
collections of points extending away from the vacuum in
opposite directions. Each collection comes from the re-
gion of space surrounding the centers of blob or anti-blob
respectively. An illustration of the e↵ect of finite-volume
on the non-trivial saddles is depicted in Fig. 16(c) for a
2⇥ 2 lattice where, for a single blob, the structure of the
distribution of the field values is distorted as compared
to Fig. 16(a).

Optimal	regime:	α=0.8	12

FIG. 16. Field configurations at saddle points for mostly
charge-coupled auxiliary field at finite chemical potential.
(a,b) 6 ⇥ 6 lattice with ↵ = 0.9, U = 3.8 (these plots cor-
respond to the histograms (a) and (b) in the Fig. 14); (c)
2 ⇥ 2 lattice with ↵ = 1.0 and U = 2.0, displayed here to
show how the non-trivial saddle point looks like in the situa-
tion where we perform HMC with GF. The other parameters
are N⌧ = 256, µ = , � = 20.0. The �-field is always equal
to zero, and the complex values of all �-fields are projected
onto a single complex plane. The vacuum field configuration
corresponds to all �-fields uniformly shifted into the complex
plane along the imaginary axis. The saddle points, which are
separated in action from the vacuum, for the 6 ⇥ 6 lattice
preserve generally the same localized structure shown in the
Fig. 7, with the shifts of the imaginary parts of the fields from
the vacuum value following the shift of the real parts.

In the sweet spot regime at ↵ = 0.8, we detect again
only the vacuum saddle (Fig. 14(c)). In principle, such
situation should be very beneficial for the thimbles de-
composition, since the fluctuations of ImS can be made
arbitrarily small. Also, it should improve the ergodicity
of the Monte Carlo process, since the integration mani-
fold is no more divided into disconnected domains. How-
ever, we should stress that unlike the µ = 0 case, the dis-
tributions in Fig. 14 are exact only for ↵ = 10�4, since we
are quite close to the thimble in this case. For ↵ = 0.8
and ↵ = 0.9, the histograms are only approximate as
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FIG. 17. Results of the study of ↵-dependence of saddle points
are shown. (a) Example of the �-flow from the disturbed
saddle point in two cases: when the saddle point is relevant
and when it is irrelevant. (b) Example of a full flow (both
fields vary) originating from the disturbed non-vacuum saddle
point when it is irrelevant and the flow ends up in the trivial
vacuum. (c) Summary of results at half-filling. Fields at the
end of the flow are shown. The mean-field saddle point for the
spin-coupled auxiliary field appears only at ↵ = 0.7...0.8 while
typical non-vacuum saddle points for the charge-coupled field
become relevant only at ↵ ⇡ 0.9. (d) Decay of non-vacuum
saddle points in the case of µ = . Results are shown for a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 3.8.

the initial configurations for the iterations approach the
thimble, but do not lie exactly on it. Furthermore, “ver-
tically oriented” saddles, which do not satisfy the con-
vergence condition (18) can be missed. However, subse-
quent QMC calculations support the conclusion that the
regime around ↵ = 0.8 is indeed better for simulations
than ↵ ! 1.0.

The optimal regime around ↵ = 0.8 is studied in
Fig. 17. We start from half-filling in Fig. 17(c), The lower
boundary of this region in ↵ corresponds to the splitting
of the vacuum saddle into two mean-field saddles. This
splitting is observed by launching GF from a slightly per-
turbed vacuum (Gaussian noise added to �x,⌧ and �x,⌧ ).
If �x,⌧ returns to zero, the vacuum is stable, otherwise
the final value of �x,⌧ is non-zero, since the flow arrives
at the mean-field saddle point. This is what we see in the
�-profiles for the mean-field saddles in Fig. 17(c) both for
6⇥6 and 12⇥12 lattices. The jump upwards corresponds
to the appearance of the mean-field saddle and marks the
lower boundary of the optimal regime. The upper bound-
ary is determined by the decay of the nontrivial saddles
into vacuum, analogous to what was observed in Fig. 8.
We use the symmetry, S(�x,⌧ ,�x,⌧ ) = S(�x,⌧ ,��x,⌧ ),
and the fact that the saddles are located at �x,⌧ = 0
for large ↵. The Hessian matrix is block-diagonal in this
case as @2S/@�x,⌧@�x,⌧ = 0. Because it is enough to
find at least one instability (negative eigenvalue of �,
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FIG. 19. (a) Illustration of “vertically” oriented saddle points
and thimbles which are lost in the search for complex saddle
points. Results are shown for a 2 ⇥ 2 lattice with N⌧ = 256
and � = 20.0, U = 2.0, µ = . (b) Schematic illustration of
HMC with gradient flow.

FIG. 20. An example of flow profiles for � (a) and � (b)
fields at a single lattice site is shown. The flow starts at the
Gaussian thimble attached to the shifted trivial vacuum.

how close we can approach the thimble, and thus it reg-
ulates the fluctuations of ImS. Second, if the flow time
is too large, the flow lines can reach zeros of the deter-
minant, which separate thimbles (see Fig. 19(b)). In this
case, the integration domain for the � fields is again split
into separate regions and as a result the Monte Carlo pro-
cess can hardly be expected to be ergodic. Another con-
tribution to the sign porblem comes from the Jacobian,
especially in the case of “vertically” oriented thimbles, as
shown in Fig. 19(a).

We use the following strategy to sample the partition
function (19): 1) The Jacobian is not taken into account
in the Markov process employed to generate field config-
urations �̃, and is left for the final reweighting; 2) The
fields � are generated using HMC, according to the dis-

tribution e�ReS[�̃(�+�0)]; 3) The fields �̃ are computed

FIG. 21. Technical plots demonstrating that the calculation
of derivatives through finite di↵erences is indeed reliable. (a)
The di↵erence of the real part of the action at the end of two
flow procedures where the initial field configurations di↵er at
a single site by a variable amount ��0. (b) Dependence of
the derivative of the real part of the action computed after
the flow on the precision of the integrator for the GF equa-
tions. As in (a), one starts from two initial field configurations
di↵ering at a single site (��0 = 3.0 ⇥ 10�5) and at the end
of the flow one computes the derivative as a finite di↵erence,
�ReS/��0. Clearly, the derivative stabilizes once the pre-
cision is high enough. Usually we need around 20 steps in
the GF procedure for typical flow lengths. These examples
are shown for exactly the same setup which we are using in
one of our HMC flow simulations: ↵ = 1.0, 2⇥ 2 lattice with
N⌧ = 256 at U = 2.0, µ = , � = 20.0.

FIG. 22. Example of configurations, generated in HMC with
GF, for charge-coupled (a) and spin-coupled (b) auxiliary
field. In both cases we show both the initial configuration
located on the Gaussian thimble attached to the trivial vac-
uum saddle point and the configuration after GF. Parameters
of the run: ↵ = 0.8, 2⇥ 2 lattice with N⌧ = 256 at U = 2.0,
µ = , � = 20.0. Unfortunately, one can not deduce any sim-
ple relation which allows for a fit of the result of the GF with
some local function: Im�i = F (Re�i).

through the gradient flow evolution. Several examples
from the second stage of the process are shown in Fig. 20
for one particular site of the lattice. The second stage
requires an additional comment. HMC employs global
updates of the fields, using molecular dynamics (MD)
governed byH = 1

2

P
i
p2
i
+ReS[�̃(�)], where an artificial

momentum, pi, is introduced for each Hubbard field �i.
In order to solve Hamilton’s equations, we need to com-
pute the derivative @ReS[�̃(�+ �0)]/@�i. We calculate
this quantity by shifting the initial fields �i ! �i +��
and solving the GF equations for each shift. Examples
of such calculations are shown in Fig. 21. These plots
show that we can compute these derivatives to the same
accuracy as the GF solution which is required in order
to use the fields at the end of the flow. These calcula-
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hKi hS(1)
x S(1)

y i
ED 19.5781 -0.14624

BSS-QMC 19.587±0.002 -0.1466±0.0008

HMC-GF, ↵ = 1.0 19.65±0.31 -0.112±0.069

HMC-GF, ↵ = 0.8 19.52±0.17 -0.142±0.062

TABLE I: Comparison of observables for exact diagonaliza-
tion, BSS-QMC, and two variants of HMC-GF. Parameters of
simulations: 2⇥ 2 lattice, Nt = 256, U = 2, � = 20, µ = .

hcos ImSi hcosArgJi h⌃Gi
BSS-QMC 0.2363±0.0032 0.2363±0.0032

HMC-GF,↵=1.0 0.9627±0.0038 0.427±0.014 0.351±0.015

HMC-GF,↵=0.8 0.797±0.022 0.915±0.008 0.644±0.028

TABLE II: Comparison of the sign problem for BSS-QMC
(ALF) and two variants of HMC-GF. Parameters of simula-
tions: 2⇥ 2 lattice, Nt = 256, U = 2, � = 20, µ = .

tions at di↵erent ↵, described in the next section.
HMC with gradient flow. The general scheme for the

deformation of the integration contour is shown in Fig. 5.
Following [22], the sequence of deformations can be sum-
marized by

Z =

Z

RN

D�e�S[�+i�0] =

Z

RN

D�e�S[�̃] det J. (9)

First, we perform a uniform shift into the complex plane,
� ! � + i�0. We work at large ↵, and this shift corre-
sponds to the thimble attached to the vacuum saddle (see
Fig. 3c) in the Gaussian approximation. A further shift is
made using the GF equations. We denote �̃ 2 CN as the
result of the evolution of the field determined by (3, start-
ing from the Gaussian thimble �+ i�0,� 2 R with flow
time T . The complex-valued Jacobian of the transfor-
mation, J = D�̃/D�, appears in the second stage. The
flow time defines how close we can approach the thimble,
and thus it regulates the fluctuations of ImS. The Jaco-
bian can also contribute to the sign problem, especially
in the case of “vertically” oriented thimbles, as shown in
Fig. 1d.

We sample the � fields in RN according to the dis-
tribution e�S[�̃[�+i�0]], using HMC, while �̃ is then
reconstructed with GF. The details of the algorithms
can be found in [34], and we refer to the algorithm as
HMC-GF. The key point is that we compute the ex-
act derivatives, @ ln detMel.,h./@�j , with a Schur com-
plement solver [32, 35]. This allows us to solve the GF
equations with high precision and performance, which is
necessary, as GF is the basic building block of the algo-
rithm. The dominant term in the scaling of the compu-
tational cost of the method is N4

sN
2
t .

The Jacobian is left for the final reweighting,

hOi = hOei Im(�S+ln det J)+Re(ln det J)i
hei Im(�S+ln det J)+Re(ln det J)i

, (10)

FIG. 6: (a) Comparison of the sign problem in conventional
HMC with real Hubbard fields and in HMC-GF. (b) Com-
parison of the sign problem in BSS-QMC and in HMC-GF,
depending on temperature at µ = . Results are shown for
a 2 ⇥ 2 lattice with U = 2.0, Nt = 256. ↵ = 0.8 for all
HMC-GF points.

where the residual fluctuations of ImS are also taken
into account. The brackets hi denote the averaging over
configurations generated with HMC-CG. Since S ! S̄
if Re�j changes sign, we use the following metrics to
estimate the severity of the sign problem: hcos(ImS)i
and hcos(Im ln det J)i for configurations and the Jaco-
bian respectively, and the joint sign ⌃G = hcos(Im(�S+
ln det J))i. We also estimate the strength of the fluctu-
ations of the Jacobian by computing DJ , the dispersion
of Re(ln det J).

We made the following choice for the parameters of the
simulations: 2 ⇥ 2 lattice (Ns = 8), Nt = 256, U = 2,
µ = , � = 20. This lattice is small enough to make the
fast comparison with finite-temperature ED possible, but
large enough to host non-trivial saddle points at large ↵
(see Fig. 3c). These saddles also decay in the � channel
at ↵ = 0.8, similar to the 6⇥6 lattices studied above. Nt

is large enough to probe the low-temperature limit and
continuous limit in Euclidean time. Also, the state-of-
the-art QMC algorithm for condensed matter systems,
BSS (Blankenbecler, Scalapino and Sugar)-QMC taken
from the ALF package [36], experiences exponential de-
cay of the average sign at these parameters, thus the sign
problem is already strong enough.

Results for observables are displayed in the table I.
We compute the kinetic energy, h K̂ i, and the nearest-
neighbor correlation function for the first component of

spin h Ŝ(1)
x Ŝ(1)

y i. The study of the sign problem is sum-
marised in Tab. II. Results at ↵ = 1.0 substantially
deviate from ED, while at ↵ = 0.8 the ED results fall
within errorbars of HMC-GF calculation. It means that
at ↵ = 1.0 we indeed have ergodicity issues because there
are several relevant thimbles and the flow lines collide
with zeros of determinant. HMC-GF can not penetrate
the border between two thimbles in such situation. At
↵ = 0.8 the ergodicity is restored. Moreover, we do
not observe the growth of the fluctuations of Jacobian,
which should appear if GF approaches “vertically” ori-
ented thimbles (Fig. 1d). It means that the thimbles at-
tached to non-vacuum saddles indeed become irrelevant
or they are shortcut by the integration manifold, con-
structed by GF. In both cases these non-vacuum saddles
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FIG. 18. Schematic diagrams which explain the evolution of
saddle points and thimbles in the case when both fields are
present in the path integral.

with real eigenvector), we can study the relevance of sad-
dles separately for �- and �-directions. It can be done
in two di↵erent ways, which should lead to identical re-
sults. The first is the calculation fully analogous to the
one made for Fig. 8: we start from large ↵, slightly de-
crease it and launch GF in downwards direction for both
fields, �x,⌧ and �x,⌧ . At su�ciently small ↵ we see the
decay of the saddle into vacuum (example of the flow
history for the fields at one particular site is shown in
Fig. 17(b)). Thus, we can plot the dependence of �x,⌧

after the flow on ↵ and a sharp drop to zero will mark
the transition of a non-trivial saddle into an irrelevant
one. This approach, however, does not allow us to un-
derstand, in which block of the Hessian matrix does the
negative, “unstable” eigenvalue appear. Alternatively,
one can first use GF, restricted to the � fields in order
to find the saddle after a small shift of ↵. No instability
was found in this case, and the non-trivial saddles can be
found for all values of ↵. Finally, we use these saddles,
add noise to the � fields, and launch the GF, restricted to
� fields for these configurations. In this case, the insta-
bility manifests itself in a finite value of the � fields after
the flow is performed (the configuration does not return
to the initial saddle located at �x,⌧ = 0). Thus, we can
plot � field after the flow and the sudden appearance of
a nonzero value signals the transition of the non-trivial,
relevant saddle into an irrelevant one. Both approaches
are demonstrated in Fig. 17(c) for 6⇥ 6 and 12⇥ 12 lat-
tice. At ↵ ⇡ 0.89, the final value of � after the flow for �

fields jumps upwards. Simultaneously, the final value of
� fields goes down to the level of numerical errors (typ-
ically around 10�10). This signals an instability in the
�-channel, and thus the non-trivial saddle becomes ir-
relevant. Remarkably, the results depend neither on the
type of saddle point nor on lattice size. We attribute
this property to the localized nature of non-trivial sad-
dle points at large ↵. An important observation is that
the width of the ”optimal regime” grows with increasing
system size, since the lower border shifts to smaller ↵
for the 12⇥ 12 lattice. This lends strong support to the
existence of this regime in the thermodynamic limit.
A similar set of calculations was performed for µ = ,

where we have used GF restricted to Re�. The plot in
Fig. 17(a) demonstrates how the flow switches from the
stable regime to eventual decay. We essentially observe
the same behavior for the non-vacuum saddles at large
↵ (Fig. 17(d)): all non-trivial field configurations are un-
stable in the Re� direction if ↵ < 0.89. This suggests
that at ↵ > 0.89, the non-vacuum saddles shift into com-
plex space with increasing µ, remaining relevant, while
at ↵ < 0.89 they begin from irrelevant ones at µ = 0 and
move into complex space for µ 6= 0, remaining irrelevant.
These situations are depicted in the schematic drawings
in Fig. 18, where both relevant and irrelevant saddle
points are shown at half-filling and at µ 6= 0. Another
possibility is that the saddles acquire a more “vertical”
orientation with decreasing ↵ (as shown in Fig. 19(a)).
It can happen that the GF along Re� can take us away
from zero also in this case. However, there are additional
arguments against this based on the results of our HMC
over manifolds in complex space at di↵erent ↵ described
in the next section.

V. HMC WITH GRADIENT FLOW

Following [32], we perform the sequence of deforma-
tions of the integration contour, which can be summa-
rized by

Z =

Z

RN

D�e�S[�+i�0] =

Z

RN

D�e�S[�̃] det J. (19)

The general idea behind these deformations is shown in
the schematic illustration of Fig. 19(b). First, we per-
form a uniform shift into the complex plane, but only
for the charge-coupled field: � ! � + i�0. We work at
large ↵, and this uniform shift moves onto the thimble
attached to the vacuum saddle (see Fig. 16) in the Gaus-
sian approximation. Below we will denote this shift as
� ! � + i�0. A further shift is made using the GF
equations. The quantity �̃ 2 CN is the result of the evo-
lution of the field determined by (6), starting from the
Gaussian thimble � + i�0,� 2 R with flow time T . At
this stage, the complex-valued Jacobian of the transfor-
mation, J = D�̃/D�, appears in the integral. The flow
plays a dual role in the transformation. First, it defines,
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FIG. 18. Schematic diagrams which explain the evolution of
saddle points and thimbles in the case when both fields are
present in the path integral.

with real eigenvector), we can study the relevance of sad-
dles separately for �- and �-directions. It can be done
in two di↵erent ways, which should lead to identical re-
sults. The first is the calculation fully analogous to the
one made for Fig. 8: we start from large ↵, slightly de-
crease it and launch GF in downwards direction for both
fields, �x,⌧ and �x,⌧ . At su�ciently small ↵ we see the
decay of the saddle into vacuum (example of the flow
history for the fields at one particular site is shown in
Fig. 17(b)). Thus, we can plot the dependence of �x,⌧

after the flow on ↵ and a sharp drop to zero will mark
the transition of a non-trivial saddle into an irrelevant
one. This approach, however, does not allow us to un-
derstand, in which block of the Hessian matrix does the
negative, “unstable” eigenvalue appear. Alternatively,
one can first use GF, restricted to the � fields in order
to find the saddle after a small shift of ↵. No instability
was found in this case, and the non-trivial saddles can be
found for all values of ↵. Finally, we use these saddles,
add noise to the � fields, and launch the GF, restricted to
� fields for these configurations. In this case, the insta-
bility manifests itself in a finite value of the � fields after
the flow is performed (the configuration does not return
to the initial saddle located at �x,⌧ = 0). Thus, we can
plot � field after the flow and the sudden appearance of
a nonzero value signals the transition of the non-trivial,
relevant saddle into an irrelevant one. Both approaches
are demonstrated in Fig. 17(c) for 6⇥ 6 and 12⇥ 12 lat-
tice. At ↵ ⇡ 0.89, the final value of � after the flow for �

fields jumps upwards. Simultaneously, the final value of
� fields goes down to the level of numerical errors (typ-
ically around 10�10). This signals an instability in the
�-channel, and thus the non-trivial saddle becomes ir-
relevant. Remarkably, the results depend neither on the
type of saddle point nor on lattice size. We attribute
this property to the localized nature of non-trivial sad-
dle points at large ↵. An important observation is that
the width of the ”optimal regime” grows with increasing
system size, since the lower border shifts to smaller ↵
for the 12⇥ 12 lattice. This lends strong support to the
existence of this regime in the thermodynamic limit.
A similar set of calculations was performed for µ = ,

where we have used GF restricted to Re�. The plot in
Fig. 17(a) demonstrates how the flow switches from the
stable regime to eventual decay. We essentially observe
the same behavior for the non-vacuum saddles at large
↵ (Fig. 17(d)): all non-trivial field configurations are un-
stable in the Re� direction if ↵ < 0.89. This suggests
that at ↵ > 0.89, the non-vacuum saddles shift into com-
plex space with increasing µ, remaining relevant, while
at ↵ < 0.89 they begin from irrelevant ones at µ = 0 and
move into complex space for µ 6= 0, remaining irrelevant.
These situations are depicted in the schematic drawings
in Fig. 18, where both relevant and irrelevant saddle
points are shown at half-filling and at µ 6= 0. Another
possibility is that the saddles acquire a more “vertical”
orientation with decreasing ↵ (as shown in Fig. 19(a)).
It can happen that the GF along Re� can take us away
from zero also in this case. However, there are additional
arguments against this based on the results of our HMC
over manifolds in complex space at di↵erent ↵ described
in the next section.

V. HMC WITH GRADIENT FLOW

Following [32], we perform the sequence of deforma-
tions of the integration contour, which can be summa-
rized by

Z =

Z
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D�e�S[�+i�0] =

Z
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D�e�S[�̃] det J. (19)

The general idea behind these deformations is shown in
the schematic illustration of Fig. 19(b). First, we per-
form a uniform shift into the complex plane, but only
for the charge-coupled field: � ! � + i�0. We work at
large ↵, and this uniform shift moves onto the thimble
attached to the vacuum saddle (see Fig. 16) in the Gaus-
sian approximation. Below we will denote this shift as
� ! � + i�0. A further shift is made using the GF
equations. The quantity �̃ 2 CN is the result of the evo-
lution of the field determined by (6), starting from the
Gaussian thimble � + i�0,� 2 R with flow time T . At
this stage, the complex-valued Jacobian of the transfor-
mation, J = D�̃/D�, appears in the integral. The flow
plays a dual role in the transformation. First, it defines,
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with real eigenvector), we can study the relevance of sad-
dles separately for �- and �-directions. It can be done
in two di↵erent ways, which should lead to identical re-
sults. The first is the calculation fully analogous to the
one made for Fig. 8: we start from large ↵, slightly de-
crease it and launch GF in downwards direction for both
fields, �x,⌧ and �x,⌧ . At su�ciently small ↵ we see the
decay of the saddle into vacuum (example of the flow
history for the fields at one particular site is shown in
Fig. 17(b)). Thus, we can plot the dependence of �x,⌧

after the flow on ↵ and a sharp drop to zero will mark
the transition of a non-trivial saddle into an irrelevant
one. This approach, however, does not allow us to un-
derstand, in which block of the Hessian matrix does the
negative, “unstable” eigenvalue appear. Alternatively,
one can first use GF, restricted to the � fields in order
to find the saddle after a small shift of ↵. No instability
was found in this case, and the non-trivial saddles can be
found for all values of ↵. Finally, we use these saddles,
add noise to the � fields, and launch the GF, restricted to
� fields for these configurations. In this case, the insta-
bility manifests itself in a finite value of the � fields after
the flow is performed (the configuration does not return
to the initial saddle located at �x,⌧ = 0). Thus, we can
plot � field after the flow and the sudden appearance of
a nonzero value signals the transition of the non-trivial,
relevant saddle into an irrelevant one. Both approaches
are demonstrated in Fig. 17(c) for 6⇥ 6 and 12⇥ 12 lat-
tice. At ↵ ⇡ 0.89, the final value of � after the flow for �

fields jumps upwards. Simultaneously, the final value of
� fields goes down to the level of numerical errors (typ-
ically around 10�10). This signals an instability in the
�-channel, and thus the non-trivial saddle becomes ir-
relevant. Remarkably, the results depend neither on the
type of saddle point nor on lattice size. We attribute
this property to the localized nature of non-trivial sad-
dle points at large ↵. An important observation is that
the width of the ”optimal regime” grows with increasing
system size, since the lower border shifts to smaller ↵
for the 12⇥ 12 lattice. This lends strong support to the
existence of this regime in the thermodynamic limit.
A similar set of calculations was performed for µ = ,

where we have used GF restricted to Re�. The plot in
Fig. 17(a) demonstrates how the flow switches from the
stable regime to eventual decay. We essentially observe
the same behavior for the non-vacuum saddles at large
↵ (Fig. 17(d)): all non-trivial field configurations are un-
stable in the Re� direction if ↵ < 0.89. This suggests
that at ↵ > 0.89, the non-vacuum saddles shift into com-
plex space with increasing µ, remaining relevant, while
at ↵ < 0.89 they begin from irrelevant ones at µ = 0 and
move into complex space for µ 6= 0, remaining irrelevant.
These situations are depicted in the schematic drawings
in Fig. 18, where both relevant and irrelevant saddle
points are shown at half-filling and at µ 6= 0. Another
possibility is that the saddles acquire a more “vertical”
orientation with decreasing ↵ (as shown in Fig. 19(a)).
It can happen that the GF along Re� can take us away
from zero also in this case. However, there are additional
arguments against this based on the results of our HMC
over manifolds in complex space at di↵erent ↵ described
in the next section.

V. HMC WITH GRADIENT FLOW

Following [32], we perform the sequence of deforma-
tions of the integration contour, which can be summa-
rized by

Z =

Z

RN

D�e�S[�+i�0] =

Z

RN

D�e�S[�̃] det J. (19)

The general idea behind these deformations is shown in
the schematic illustration of Fig. 19(b). First, we per-
form a uniform shift into the complex plane, but only
for the charge-coupled field: � ! � + i�0. We work at
large ↵, and this uniform shift moves onto the thimble
attached to the vacuum saddle (see Fig. 16) in the Gaus-
sian approximation. Below we will denote this shift as
� ! � + i�0. A further shift is made using the GF
equations. The quantity �̃ 2 CN is the result of the evo-
lution of the field determined by (6), starting from the
Gaussian thimble � + i�0,� 2 R with flow time T . At
this stage, the complex-valued Jacobian of the transfor-
mation, J = D�̃/D�, appears in the integral. The flow
plays a dual role in the transformation. First, it defines,



HMC	with	gradient	flow:	calculation	of	
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FIG. 19. (a) Illustration of “vertically” oriented saddle points
and thimbles which are lost in the search for complex saddle
points. Results are shown for a 2 ⇥ 2 lattice with N⌧ = 256
and � = 20.0, U = 2.0, µ = . (b) Schematic illustration of
HMC with gradient flow.

FIG. 20. An example of flow profiles for � (a) and � (b)
fields at a single lattice site is shown. The flow starts at the
Gaussian thimble attached to the shifted trivial vacuum.

how close we can approach the thimble, and thus it reg-
ulates the fluctuations of ImS. Second, if the flow time
is too large, the flow lines can reach zeros of the deter-
minant, which separate thimbles (see Fig. 19(b)). In this
case, the integration domain for the � fields is again split
into separate regions and as a result the Monte Carlo pro-
cess can hardly be expected to be ergodic. Another con-
tribution to the sign porblem comes from the Jacobian,
especially in the case of “vertically” oriented thimbles, as
shown in Fig. 19(a).

We use the following strategy to sample the partition
function (19): 1) The Jacobian is not taken into account
in the Markov process employed to generate field config-
urations �̃, and is left for the final reweighting; 2) The
fields � are generated using HMC, according to the dis-

tribution e�ReS[�̃(�+�0)]; 3) The fields �̃ are computed

FIG. 21. Technical plots demonstrating that the calculation
of derivatives through finite di↵erences is indeed reliable. (a)
The di↵erence of the real part of the action at the end of two
flow procedures where the initial field configurations di↵er at
a single site by a variable amount ��0. (b) Dependence of
the derivative of the real part of the action computed after
the flow on the precision of the integrator for the GF equa-
tions. As in (a), one starts from two initial field configurations
di↵ering at a single site (��0 = 3.0 ⇥ 10�5) and at the end
of the flow one computes the derivative as a finite di↵erence,
�ReS/��0. Clearly, the derivative stabilizes once the pre-
cision is high enough. Usually we need around 20 steps in
the GF procedure for typical flow lengths. These examples
are shown for exactly the same setup which we are using in
one of our HMC flow simulations: ↵ = 1.0, 2⇥ 2 lattice with
N⌧ = 256 at U = 2.0, µ = , � = 20.0.

FIG. 22. Example of configurations, generated in HMC with
GF, for charge-coupled (a) and spin-coupled (b) auxiliary
field. In both cases we show both the initial configuration
located on the Gaussian thimble attached to the trivial vac-
uum saddle point and the configuration after GF. Parameters
of the run: ↵ = 0.8, 2⇥ 2 lattice with N⌧ = 256 at U = 2.0,
µ = , � = 20.0. Unfortunately, one can not deduce any sim-
ple relation which allows for a fit of the result of the GF with
some local function: Im�i = F (Re�i).

through the gradient flow evolution. Several examples
from the second stage of the process are shown in Fig. 20
for one particular site of the lattice. The second stage
requires an additional comment. HMC employs global
updates of the fields, using molecular dynamics (MD)
governed byH = 1

2

P
i
p2
i
+ReS[�̃(�)], where an artificial

momentum, pi, is introduced for each Hubbard field �i.
In order to solve Hamilton’s equations, we need to com-
pute the derivative @ReS[�̃(�+ �0)]/@�i. We calculate
this quantity by shifting the initial fields �i ! �i +��
and solving the GF equations for each shift. Examples
of such calculations are shown in Fig. 21. These plots
show that we can compute these derivatives to the same
accuracy as the GF solution which is required in order
to use the fields at the end of the flow. These calcula-
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HMC	with	gradient	flow:	benchmarks	(1)		
2x2x256	lattice,	U=2.0,	β=20.0,	μ=1.0	

Kinetic	energy	 Spin-spin	
correlation	

Exact	
Diagonalization	

19.5781	 -0.14624	

BSS-QMC	(ALF)	 19.587±0.002	 -0.1466	±	0.0008	

HMC	with	flow	
α=1.0	

19.65	±0.31	 -0.112	±	0.0069	

HMC	with	flow	
α=0.8	

19.52	±	0.17	 -0.142	±	0.0062	

cos	Im	S	 cos	Arg	J	
	

SignΣ	

BSS-QMC	(ALF)	 0.2363	±	
0.0032	

0.2363	±	
0.0032	

HMC	with	flow	
α=1.0	

0.9627±	
0.0038	

0.427	±	
0.014	

0.351	±	
0.015	

HMC	with	flow	
α=0.8	

0.797	±	
0.022	

0.915	±	
0.008	

0.644	±	
0.028	

Comparison	of	
observables	
with	BSS-QMC	
and	Ex.	Diag.	

Comparison	of	
average	sign	with	
BSS-QMC	for	
discrete	fields	



HMC	with	gradient	flow:	benchmarks	(2)	
2x2x2x256,	2x2x2x384	lattice;	U=2.0,	β=20.0,	30.0;	μ=1.0	

Possible	problems	due	to	growth	of	fluctuations	of	Jacobian:	
Nt=256:	<cos	Arg	J>	=	0.915+-0.008,	DJ=1.115	
Nt=384:	<cos	Arg	J>	=	0.823+-0.018,	DJ=1.68	

	

5

hKi hS(1)
x S(1)

y i
ED 19.5781 -0.14624

BSS-QMC 19.587±0.002 -0.1466±0.0008

HMC-GF, ↵ = 1.0 19.65±0.31 -0.112±0.069

HMC-GF, ↵ = 0.8 19.52±0.17 -0.142±0.062

TABLE I: Comparison of observables for exact diagonaliza-
tion, BSS-QMC, and two variants of HMC-GF. Parameters of
simulations: 2⇥ 2 lattice, Nt = 256, U = 2, � = 20, µ = .

hcos ImSi hcosArgJi h⌃Gi
BSS-QMC 0.2363±0.0032 0.2363±0.0032

HMC-GF,↵=1.0 0.9627±0.0038 0.427±0.014 0.351±0.015

HMC-GF,↵=0.8 0.797±0.022 0.915±0.008 0.644±0.028

TABLE II: Comparison of the sign problem for BSS-QMC
(ALF) and two variants of HMC-GF. Parameters of simula-
tions: 2⇥ 2 lattice, Nt = 256, U = 2, � = 20, µ = .

tions at di↵erent ↵, described in the next section.
HMC with gradient flow. The general scheme for the

deformation of the integration contour is shown in Fig. 5.
Following [22], the sequence of deformations can be sum-
marized by

Z =

Z

RN

D�e�S[�+i�0] =

Z

RN

D�e�S[�̃] det J. (9)

First, we perform a uniform shift into the complex plane,
� ! � + i�0. We work at large ↵, and this shift corre-
sponds to the thimble attached to the vacuum saddle (see
Fig. 3c) in the Gaussian approximation. A further shift is
made using the GF equations. We denote �̃ 2 CN as the
result of the evolution of the field determined by (3, start-
ing from the Gaussian thimble �+ i�0,� 2 R with flow
time T . The complex-valued Jacobian of the transfor-
mation, J = D�̃/D�, appears in the second stage. The
flow time defines how close we can approach the thimble,
and thus it regulates the fluctuations of ImS. The Jaco-
bian can also contribute to the sign problem, especially
in the case of “vertically” oriented thimbles, as shown in
Fig. 1d.

We sample the � fields in RN according to the dis-
tribution e�S[�̃[�+i�0]], using HMC, while �̃ is then
reconstructed with GF. The details of the algorithms
can be found in [34], and we refer to the algorithm as
HMC-GF. The key point is that we compute the ex-
act derivatives, @ ln detMel.,h./@�j , with a Schur com-
plement solver [32, 35]. This allows us to solve the GF
equations with high precision and performance, which is
necessary, as GF is the basic building block of the algo-
rithm. The dominant term in the scaling of the compu-
tational cost of the method is N4

sN
2
t .

The Jacobian is left for the final reweighting,

hOi = hOei Im(�S+ln det J)+Re(ln det J)i
hei Im(�S+ln det J)+Re(ln det J)i

, (10)
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FIG. 6: (a) Comparison of the sign problem in conventional
HMC with real Hubbard fields and in HMC-GF. (b) Com-
parison of the sign problem in BSS-QMC and in HMC-GF,
depending on temperature at µ = . Results are shown for
a 2 ⇥ 2 lattice with U = 2.0, Nt = 256. ↵ = 0.8 for all
HMC-GF points.

where the residual fluctuations of ImS are also taken
into account. The brackets hi denote the averaging over
configurations generated with HMC-CG. Since S ! S̄
if Re�j changes sign, we use the following metrics to
estimate the severity of the sign problem: hcos(ImS)i
and hcos(Im ln det J)i for configurations and the Jaco-
bian respectively, and the joint sign ⌃G = hcos(Im(�S+
ln det J))i. We also estimate the strength of the fluctu-
ations of the Jacobian by computing DJ , the dispersion
of Re(ln det J).

We made the following choice for the parameters of the
simulations: 2 ⇥ 2 lattice (Ns = 8), Nt = 256, U = 2,
µ = , � = 20. This lattice is small enough to make the
fast comparison with finite-temperature ED possible, but
large enough to host non-trivial saddle points at large ↵
(see Fig. 3c). These saddles also decay in the � channel
at ↵ = 0.8, similar to the 6⇥6 lattices studied above. Nt

is large enough to probe the low-temperature limit and
continuous limit in Euclidean time. Also, the state-of-
the-art QMC algorithm for condensed matter systems,
BSS (Blankenbecler, Scalapino and Sugar)-QMC taken
from the ALF package [36], experiences exponential de-
cay of the average sign at these parameters, thus the sign
problem is already strong enough.

Results for observables are displayed in the table I.
We compute the kinetic energy, h K̂ i, and the nearest-
neighbor correlation function for the first component of

spin h Ŝ(1)
x Ŝ(1)

y i. The study of the sign problem is sum-
marised in Tab. II. Results at ↵ = 1.0 substantially
deviate from ED, while at ↵ = 0.8 the ED results fall
within errorbars of HMC-GF calculation. It means that
at ↵ = 1.0 we indeed have ergodicity issues because there
are several relevant thimbles and the flow lines collide
with zeros of determinant. HMC-GF can not penetrate
the border between two thimbles in such situation. At
↵ = 0.8 the ergodicity is restored. Moreover, we do
not observe the growth of the fluctuations of Jacobian,
which should appear if GF approaches “vertically” ori-
ented thimbles (Fig. 1d). It means that the thimbles at-
tached to non-vacuum saddles indeed become irrelevant
or they are shortcut by the integration manifold, con-
structed by GF. In both cases these non-vacuum saddles

Also,	recent	tests	on	2x4x2x256	lattice	showed	average	sign>0.7	



1)  Set	of	algorithms	for	fast	solution	of	GF	equations	was	
developed.	

2)  Using	this	set	of	algorithm	we	could	find	saddle	points	both	at	
half-filling	at	non-zero	chemical	potential.	Thus	we	could	study	
the	properties	of	saddle	point	decomposition	approaching	
continuum	and	thermodynamic	limit.	

3)  There	is	optimal	regime	at	intermediate	values	of	alpha	around	
0.8,	where	only	vacuum	is	important	in	overall	sum	(at	half	filling	
this	result	is	numerically	exact).	

4)  In	optimal	regime	the	ergodicity	issues	are	weak	enough	for	
HMC-CG	could	reproduce	exact	diagonalization.	

5)  Further	directions:	Hubbard	model	on	square	lattice,	QCD	(?)	

Summary	




