Solving the transport equations with GiBUU

K. Gallmeister for the GiBUU group Justus-Liebig-Universität, Gießen

Kinetic theory and BUU equation

GiBUU implementation

Hadronization in Cold Nuclear Matter Coulomb Effects in Heavy Ion Collisions

JUSTUS-LIEBIG-ERSITÄT

Bundesministerium und Forschung

ITP Lunch Club Seminar, JLU Gießen

9.2.2022

Gibuu

GiBUU = The Giessen Boltzmann-Uehling-Uhlenbeck Project

Gießen: Town in Hesse, Germany 84000 inhabitants (2015) 70 km north of Frankfurt

Institut für Theoretische Physik, Justus-Liebig-Universität

'official' pronounciation: ghee – bee – you – you

alternatives: gee – bee – you – you (as "BeeGees") giii – buuh (as "Hui Buh")

BUU@Gießen and GiBUU

BUU@Gießen and GiBUU

Long history

1986: first code

~1996: rewrite of code

~2005: rewrite of code

(Bauer)

(Buss)

(Teis, Effenberger)

lifetime: ~10 yrs

Actual version: "GiBUU" Modular, Fortran 2003 Version control (syn + trac

Version control (svn + trac)

https://gibuu.hepforge.org/

Bottlenecks:

PYTHIAHuge code

(very slow at low energies)

(185 000 lines + Docu + 'Externals')

,long history

(old structures)

Transparency ratios = ratios of MC calculations: ~1 CPU-year per curve

Some kinetic theory

distribution function f(x,p) $x = (t, \vec{x}), p = (E, \vec{p})$

describes (density) distribution of (single) particles

for each particle species: $f_N, f_{\pi}, f_{\Delta}, \dots$

number of particles in a given phase-space volume: $\Delta N = f(x, p) \Delta^3 x \Delta^3 p$

continuity equation for free, non-interacting particles

$$p^{\mu}\partial_{\mu}f(x,p) = 0$$

straight line propagation of particles, no collisions

adding external forces (mean field potentials): Vlasov eq.

$$\left[\partial_t + (\nabla_p E)\nabla_r - (\nabla_r E)\nabla_p\right]f(x,p) = 0$$

propagation in mean field, no collisions

Some kinetic theory: adding collisions

...forget about mean fields, but add collisions:

continuity eq. + collision term \rightarrow Boltzmann eq.

$$p^{\mu}\partial_{\mu}f(x,p) = C(x,p)$$

straight line propagation of particles, with collisions

collision integral has gain and loss term:

 $C(x,p) = C_{\text{gain}}(x,p) + C_{\text{loss}}(x,p)$

mean fields & collision term:

Boltzmann-Uehling-Uhlenbeck equation (BUU)

 $\left[\partial_t + (\nabla_p H_i)\nabla_r - (\nabla_r H_i)\nabla_p\right]f_i(\vec{r}, t, \vec{p}) = C\left[f_i, f_j, \dots\right]$

The BUU equation

 $\left[\partial_t + (\nabla_p H_i)\nabla_r - (\nabla_r H_i)\nabla_p\right]f_i(\vec{r}, t, \vec{p}) = C\left[f_i, f_j, \dots\right]$

describes space-time evolution of single particle densities

index i represents particle species

 \rightarrow one equation for each species

$i=N,\Delta,\pi, ho,\dots$

Hamiltonian H_i

hadronic mean fields (Skyrme/Welke or RMF)

Coulomb

"off-shell-potential"

Collision term C

- decay and scattering processes: 1-, 2- and 3-body
- (low energy: resonance model, high energy: string model)
- contains Pauli-blocking

equations coupled via mean fields and via collision term

Degrees of Freedom

GiBUU is purely hadronic (no partonic phase)

61 baryons, 22 mesons (strangeness and charm included, no bottom) properties from Manley analysis (PDG for strange/charm)

leptons: usually not ,transported', but

- e+N, nu+N, gamma+N initial events
- leptonic/photonic decays

in principle one needs:

- cross sections for collisions between all of them (all energies)
- mean-field potentials for all species

often not known, thus use hypothesis/models/guesses

important particles:

particle	mass	width	GiBUU ID	PDG IDs
Ν	0.983	0	1	p=2212, n=2112
Δ	1.232	0.118	2	2224,2214,2114,1114
N^*			3-18	
Δ^*			19-31	
Λ	1.116	0	32	3122
\sum	1.189	0	33	$3222,\!3212,\!3112$
Λ^*,Σ^*			34-52	
π	0.138	0	101	$\pi^+ = 211, \pi^0 = 111, \pi^- = -211$
η	0.547		102	
ho	0.775	0.149	103	$213,\!113,\!-213$
σ			104	
ω	0.782	0.004	105	
η'	0.957		106	
K	0.496	0	110	$K^+ = 321, \ K^0 = 311$
\bar{K}	0.496	0	111	$K^- = -321, \ \bar{K}^0 = -311$

https://gibuu.hepforge.org/trac/wiki/ParticleIDs

Mean-field potentials

two types of mean-field potentials:

- non-relativistic Skyrme-type potentials
- relativistic mean fields (RMF)

potential may enter single-particle energy as

$$H = \sqrt{(m+V)^2 + (\vec{p} + \vec{U})^2 + U_0}$$

- RMF is Lorentz vector U^{μ}
- Skyrme enters as U_0 , bound to specific frame (LRF)

Scalar Potential V: mass shift

Skyrme/Welke-like potential

$$\begin{split} U_{0}(x,\vec{p}) = & A \frac{\rho}{\rho_{0}} + B \left(\frac{\rho}{\rho_{0}}\right)^{\gamma} \\ &+ \frac{2C}{\rho_{0}} \sum_{i=p,n} \int \frac{g \mathrm{d}^{3} p'}{(2\pi)^{3}} \frac{f_{i}(x,\vec{p}')}{1 + (\vec{p} - \vec{p}')^{2} / \Lambda^{2}} \\ &+ d_{\mathrm{symm}} \frac{\rho_{p}(x) - \rho_{n}(x)}{\rho_{0}} \tau_{i} \\ &\rho_{0} = 0.168 \,\mathrm{fm}^{-3} \end{split}$$

- defined in local rest frame (LRF, baryon current vanishes)
- six parameters
- fixed to...
 - Inclear binding energy of 16 MeV at $\rho = \rho 0$ (iso-spin symm. matter)
 - nuclear-matter incompressibility K=200-380 MeV

proper relativistic mean-field description
 based on (nonlinear) Walecka-type Lagrangian

$$\begin{aligned} \mathcal{L} = &\overline{\psi} [\gamma_{\mu} (i\partial^{\mu} - \mathbf{g}_{\omega} \omega^{\mu} - \mathbf{g}_{\rho} \tau \rho^{\mu} - \frac{e}{2} (1 + \tau^{3}) A^{\mu}) - m_{N} - \mathbf{g}_{\sigma} \sigma] \psi \\ &+ \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \mathbf{U}(\sigma) - \frac{1}{4} \Omega_{\mu\nu} \Omega^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{2} \\ &- \frac{1}{4} R_{\mu\nu} R^{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \rho^{2} - \frac{1}{16\pi} F_{\mu\nu} F^{\mu\nu} \end{aligned}$$

$$3 \text{ masses, 5 couplings}$$

difference to nonRMF:

- theoretically cleaner, computationally more demanding
- Iimited range of applicability in energy

Collision term

contains one-, two-, and three-body collisions $C = C_{1 \to X} + C_{2 \to X} + C_{3 \to X}$

(1) resonance decays

(2) two-body collisions

- elastic and inelastic
- any number of particles in final state
- baryon-meson, baryon-baryon, meson-meson

(3) three-body collisions (only relevant at high densities)

low energies: cross sections based on resonances e.g. $\pi N \rightarrow N^*$, $NN \rightarrow NN^*$

high energies: string fragmentation

Collision term

2-to-2 term $(12 \leftrightarrow 1'2')$ $C^{(2,2)}(x,p_1)$ $= C_{\text{gain}}^{(2,2)}(x,p_1) - C_{\text{loss}}^{(2,2)}(x,p_1)$ $=\frac{\mathcal{S}_{1'2'}}{2p_1^0 q_{1'} q_{2'}} \int \frac{\mathrm{d}^4 p_2}{(2\pi)^4 2p_2^0} \int \frac{\mathrm{d}^4 p_{1'}}{(2\pi)^4 2p_{1'}^0} \int \frac{\mathrm{d}^4 p_{2'}}{(2\pi)^4 2p_{1'}^0} \int \frac{\mathrm{d}^4 p_{2'}}{(2\pi)^4 2p_{2'}^0}$ $\times (2\pi)^4 \delta^{(4)} \left(p_1 + p_2 - p_{1'} - p_{2'} \right) \overline{|\mathcal{M}_{12 \to 1'2'}|^2}$ $\times [F_{1'}(x, p_{1'})F_{2'}(x, p_{2'})\overline{F}_1(x, p_1)\overline{F}_2(x, p_2)]$ $-F_1(x, p_1)F_2(x, p_2)\overline{F}_{1'}(x, p_{1'})\overline{F}_{2'}(x, p_{2'})$

$$F(x,p) = 2\pi g f(x,p) \mathcal{A}(x,p)$$

$$\overline{F}(x,p) = 2\pi g [1 - f(x,p)] \mathcal{A}(x,p)$$
Pauli-blocking

Baryon-Meson collisions

Resonance Model

resonance parameters, decays modes, widths:

D.Manley, E.Saleski, PRD45 (1992) 4002

= PWA of $\pi N \rightarrow \pi N$ and $\pi N \rightarrow \pi \pi N$ consistency!!!

		M_0	Γ_0	$\int_0 \mathcal{M}^2 /16\pi \; [\mathrm{mb}\mathrm{GeV}^2]$			branching ratio in %						
	rating	[MeV]	[MeV]	NR	ΔR	πN	ηN	$\pi \Delta$	ρN	σN	$\pi N^*(1440)$	$\sigma \Delta$	
$P_{11}(1440)$	****	1462	391	70		69		22_P		9			
$S_{11}(1535)$	***	1534	151	8	60	51	43		$2_{S} + 1_{D}$	1	2		
$S_{11}(1650)$	****	1659	173	4	12	89	3	2_D	3_D	2	1		
$D_{13}(1520)$	****	1524	124	4	12	59		$5_{S} + 15_{D}$	21_S				
$D_{15}(1675)$	****	1676	159	17		47		53_D					
$P_{13}(1720)$	*	1717	383	4	12	13			87_P				
$F_{15}(1680)$	****	1684	139	4	12	70		$10_P + 1_F$	$5_P + 2_F$	12			
$P_{33}(1232)$	****	1232	118	OBE	210	100							
$S_{31}(1620)$	**	1672	154	7	21	9		62_D	$25_{S} + 4_{D}$				
$D_{33}(1700)$	*	1762	599	7	21	14		$74_{S} + 4_{D}$	8_S				
$P_{31}(1910)$	****	1882	239	14		23					67	10_P	
$P_{33}(1600)$	***	1706	430	14		12		68_P			20		
$F_{35}(1905)$	***	1881	327	7	21	12		1_P	87_P				
$F_{37}(1950)$	****	1945	300	14		38		18_F				44_F	

$$\Gamma_{R \to ab}(m) = \Gamma_{R \to ab}^{0} \frac{\rho_{ab}(m)}{\rho_{ab}(M^{0})}$$
$$\rho_{ab}(m) = \int p_{a}^{2} p_{b}^{2} \mathcal{A}_{a}(p_{a}^{2}) \mathcal{A}_{b}(p_{b}^{2}) \frac{p_{ab}}{m} B_{L_{ab}}^{2}(p_{ab}R) \mathcal{F}_{ab}^{2}(m)$$

(Lund) String-fragmentation (PYTHIA)

idea:

hard qq scattering (pQCD) creates a color flux tube ('string') which then fragments into hadrons (via qq pair production)

high energy: 10 GeV...

"Lund string model" implementation: PYTHIA (JETSET)

only low-lying resonances

- phenomenological fragmentation function (when and how does a string break?)
- parameters fitted to data (different 'tunes' available)

Baryon-Baryon Collisions

low energy: resonance model, high energy: string model no nice peaks due to two-body kinematics $NN \rightarrow NR, \Delta R \ (R=\Delta, N^*, \Delta^*)$

Testparticle ansatz

 $\left[\partial_t + (\nabla_p H_i)\nabla_r - (\nabla_r H_i)\nabla_p\right]f_i(\vec{r}, t, \vec{p}) = C\left[f_i, f_j, \dots\right]$

idea:

approximate phase-space density distribution by sum of delta-functions

$$f(\vec{r}, t, \vec{p}) \sim \sum_{k=1}^{N_{\text{test}}} \delta\left(\vec{r} - \vec{r}_k(t)\right) \delta\left(\vec{p} - \vec{p}_k(t)\right)$$

each delta-function represents one (test-)particle with sharp position and momentum

I large number of test particles needed

Ensemble techniques

"parallel ensembles" technique

idea:

testparticle index is also ensemble index

 N_{test} independent runs, densities etc. may be averaged

Pros:

 \blacksquare calculational time: collisions scale with N_{test}

conserved quantum numbers are strictly respected ('microcanonical')

Cons:

non-locality of collisions $\sigma_{ij} \simeq 30 \,\mathrm{mb} \ \rightarrow \ r = 1 \,\mathrm{fm}$

"full ensembles" technique

each testparticle may interact with every other one
 rescaling of cross section

$$\sigma_{ij} \to \frac{1}{N_{\text{test}}} \sigma_{ij}$$

Pros:

Iocality of collisions

Cons:

- calculational time: collisions scale with $(N_{\text{test}})^2$
- energy not conserved per ensemble, on average only

conserved quantum numbers are respected on average only ('canonical') $K + \overline{K} \to \pi\pi$

ensemble i ensemble j

Time evolution

- time axis is discretized
 - collisions only happen at discrete time steps,
 - between collisions: propagation (through mean fields)
- **typical time-step size:** $\Delta t = 0.1-0.2 \, \text{fm}/c$
- start at t=0 and run N timesteps until t_{max}
- typically:

 $N \Delta t = t_{\max} \approx 20-50 \,\mathrm{fm}/c$ $\implies N \approx 100-1000$

density/potentials: if not analytically, recalc at every step

Cross section: Geometric interpretation

particle *i* and particle *j* collide, if during timestep Δt $r_{ij}(t) = |\vec{r}_i(t) - \vec{r}_j(t)| \stackrel{!}{\leq} \frac{\sqrt{\sigma_{ij}}}{\pi}$

problem 1: only for 2-body collisions

problem 2: not invariant under Lorentz-Trafos

different frames may lead to different ordering of collisions
 specific frame ('calculational frame') needed

Cross section: Stochastic interpretation

collision rate per unit phase space

massless, no $(2\pi)^3$

$$\frac{\Delta N_{\text{coll}}^{2 \to 2}}{\Delta t \Delta^3 x \Delta^3 p_1} = \frac{\Delta^3 p_2}{2E_1 2E_2} f_1 f_2 \int \frac{\mathrm{d}^3 p_1'}{2E_1'} \frac{\mathrm{d}^3 p_2'}{2E_2'} |\mathcal{M}| \delta^{(4)}(p_1 + p_2 - p_1' - p_2')$$

$$\sigma_{22} = \frac{1}{2s} \int \frac{\mathrm{d}^3 p_1'}{2E_1'} \frac{\mathrm{d}^3 p_2'}{2E_2'} |\mathcal{M}| \delta^{(4)}(p_1 + p_2 - p_1' - p_2')$$
$$f_i = \frac{\Delta N_i}{\Delta^3 x \Delta^3 p}$$

Collision probability in unit box $\Delta^3 x$ and unit time Δt

$$P_{22} = \frac{\Delta N_{\text{coll}}^{2 \to 2}}{\Delta N_1 \Delta N_2} = v_{\text{rel}} \sigma_{22} \frac{\Delta t}{\Delta^3 x} \qquad \left(v_{\text{rel}} = \frac{s}{2E_1 E_2} \right)$$

generalisable to n-body collisions

Cross section: Stochastic interpretation

together with 'full ensemble'

n particles in cell, randomly select n/2 pairs

$$\mathbf{P}_2 \to \frac{n(n-1)/2}{n/2} \mathbf{P}_2$$

calculational time: collisions scale approx. with N_{test}
 labeled as "local ensemble method"

Nuclear Reactions

elementary interaction on nucleon

additional:

- binding energies
- Fermi motion
- Pauli blocking
- (coherence length effects)

propagation of final state

elastic/inelastic scatteringsmean fields

GiBUU = plug-in system

density distribution: Woods-Saxon (or harm. Oscillator)
 particle momenta: 'Local Thomas-Fermi approximation'

$$f_{(n,p)}(\vec{r},\vec{p}) = \Theta\left[p_{F(n,p)}(\vec{r}) - |\vec{p}|\right]$$

Fermi-momentum: $p_{F({\rm n,p})}(\vec{r}) = \left(3\pi^2\rho_{({\rm n,p})}(\vec{r})\right)^{1/3}$

Fermi-energy:

$$E_{F(n,p)} = \sqrt{p_{F(n,p)}^2 + m_N^2} + U_{(n,p)}(\vec{r}, p_F)$$

potential: see above

LTF: time evolution en detail

non-mom.dep potential, asymmetry-term, Coulomb

LTF: time evolution en detail

non-mom.dep potential, asymmetry-term, Coulomb

improvement: ensure constant Fermi-Energy

non-mom.dep potential, asymmetry-term, Coulomb

needs iteration for mom.dep potential
 important for QE-peak (Gallmeister, Mosel, Weil, PRC94 (2016) 035502)

Init

in principle:

- 1) initialize nucleons
- 2) perform one initial elementary event on one nucleon
- 3) propagate nucleons and final state particles
- correct, but 'waste of time'

idea:

final state particles do not really disturb the nucleus

2 particle classes:

- 'real particles'
- 'perturbative particles'

Particle classes

'real particles'

- nucleons
- may interact among each other
- interaction products are again 'real particles'

'perturbative particles'

- final state particles of initial event
- may only interact with 'real particles'
- interaction products are again 'perturbative particles'

'real particles' behave as if other particles are not there

total energy, total baryon number, etc. not conserved!

Init with perturbative particles

init

- 1) initialize nucleons
- 2) perform one initial elementary event on every nucleon
- 3) propagate nucleons and final state particles
- final states particles are 'perturbative particles'
- different final states do not interfere

every final state particle gets a 'perturbative weight':

- value: cross section of initial event
- is inherited in every FSI
- for final spectra the 'perturbative weights' have to be added, not only the particle numbers

Init with perturbative particles

simple workaround against oscillating ground states: ("frozen approximation")

idea:

freeze nucleon testparticles (they are not propagated)

since nucleons are real particles, their interactions among each other should not influence final state particles

Pros:

computational time

Cons:

Applications

elementary reactions (eN, γN) on nucleon:

nuclear reactions (eA, $\gamma A @$ GeV energies) :

interactions with nuclear medium during formation

space-time picture of hadronization

 $\sigma^*/\sigma_H \sim t^{0,1,2,\ldots}$

development of wave function

Observables, Experiments

$$R^{h}(z_{h},\ldots) = \frac{\frac{N_{h}(z_{h},\ldots)}{N_{e}(\ldots)}}{\frac{N_{h}(z_{h},\ldots)}{N_{e}(\ldots)}}\Big|_{D}$$

$$\Delta p_T^2 = \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$$

hadronic: $z_h = \frac{E_h}{\nu}$, p_T , ...
photonic: ν , Q^2 , W, x_B ,...

Model: Hadronization in String Model (PYTHIA/JETSET)

3 times/points per particle:

- "production 1"
- "production 2"
- "formation"

- string-breaking
- string-breaking
- line-meeting

l leading vs. non-leading

connection to interaction vertex

cross section evolution scenarios: *pre-hadrons*

EMC & Hermes

describe simultanously: • EMC@100...280 GeV • Hermes@27 GeV

Dokshitzer et al., 1991

Hermes@27: A.Airapetian et al., NPB780(2007)1

experimental data only published with GiBUU curves!

- GiBUU: predictions!
- **GK**: Guiot & Kopeliovich, quark energy loss & pre-hadron absorption
- nFF: nuclear FF, LIKEn21 (fit to Hermes data)

HADES, Au+Au@1.23AGeV: pion Coulomb potential

Teis et al., ZPA 359(1997) 297:

Summary & Conclusions

Kinetic Theory and GiBUU implementation

- BUU equation
 - degrees of freedom
 - potentials
- collision term
- baryon-meson-, baryon-baryon-collisions
- testparticles, parallel vs. full ensemble
- collision criterion (beyond 2-particle collisions)
- initial state

· · · ·

Applications/Results

- Hadronization in cold nuclear matter (color transparency)
- Coulomb effects for pions in heavy ion collisions

Take home messages

- GiBUU propagates distributions, not particles
- GiBUU is (partially) world-leading (e+A, nu+A, low energy A+A)

not in this talk:

- off-shell transport
- photon/dilepton production (shining method)
- coarse graining / equilibration

Backup slides

example: eC, E_e=0.56 GeV, θ =60°

before 2016:

Delta: medium modification à la Oset et al. invalid
 QE: new ground state prescription
 2p2h: very important contribution

Hermes@27: A.Airapetian et al., NPB780(2007)1

kaons

Hermes: Acceptance effects

T.Falter, W.Cassing, K.G. ,U.Mosel, PRC 70 (2004) 054609

CLAS@5GeV: A.Daniel et al., PLB 706(2011) 26

Predictions: K.G., U.Mosel, NPA801(2008)68

- GiBUU: predictions!
- **GK**: Guiot & Kopeliovich, quark energy loss & pre-hadron absorption
- nFF: nuclear FF, LIKEn21 (fit to Hermes data)