Towards resolving the QCD phase structure with Discontinuous Galerkin Methods

Friederike Ihssen

24.11.2021 - Lunch Club Seminar @ JLU Gießen

Work in collaboration with: E. Grossi, J. M. Pawlowski, F. Sattler, N. Wink

DQ (P

roduction	LEFTs of QCD	in
•	0000	

Int

DG-Methods

Results in the FRG

LDG improvements

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

Conclusion 000

The QCD-Phase Structure, so far...

oduction	LEFTs of QCD
•	0000

Intr

QCD in the FRG

DG-Methods

Results in the FRG

LDG improvements 000 Conclusion

The QCD-Phase Structure, so far...

W. Fu, J. M. Pawlowski, F. Rennecke, (Phys.Rev.D 101, 054032)

- 1. The LEFTs of QCD in the Functional Renormalisation Group
- 2. Discontinuous Galerkin Methods

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

- 3. Results: Quark Meson Model
- Improvements: Local Discontinuous Galerkin
- 5. Conclusion and Outlook

LEFTs of QCD in the FRG •000 DG-Methods 00000 Results in the FRG

LDG improvements 000

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Conclusion

A Functional Approach

The infrared regularized path-integral / generating functional:

$$\mathcal{Z}_{k}[J] = \int [d\varphi]_{\mathrm{ren},p^{2} \geq k^{2}} \exp\left\{-S[\varphi] + J \cdot \varphi\right\},$$
$$\int [d\varphi]_{\mathrm{ren},p^{2} \geq k^{2}} = \int [d\varphi]_{\mathrm{ren}} \exp\left\{-\frac{1}{2}\varphi \cdot R_{k} \cdot \varphi\right\}$$

LEFTs of QCD in the FRG •000 DG-Methods

Results in the FRG

LDG improvements

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Conclusion

A Functional Approach

The infrared regularized path-integral / generating functional:

$$\mathcal{Z}_{k}[J] = \int [d\varphi]_{\mathrm{ren},p^{2} \geq k^{2}} \exp\left\{-S[\varphi] + J \cdot \varphi\right\},$$
$$\int [d\varphi]_{\mathrm{ren},p^{2} \geq k^{2}} = \int [d\varphi]_{\mathrm{ren}} \exp\left\{-\frac{1}{2}\varphi \cdot R_{k} \cdot \varphi\right\}$$

 $\mathcal{W}_k[J] = \ln \mathcal{Z}_k[J]$

LEFTs of QCD in the FRG •000 DG-Methods 00000 Results in the FRG

LDG improvements

Conclusion

A Functional Approach

The infrared regularized path-integral / generating functional:

$$\mathcal{Z}_{k}[J] = \int [d\varphi]_{\mathrm{ren},p^{2} \ge k^{2}} \exp\left\{-S[\varphi] + J \cdot \varphi\right\},$$
$$\int [d\varphi]_{\mathrm{ren},p^{2} \ge k^{2}} = \int [d\varphi]_{\mathrm{ren}} \exp\left\{-\frac{1}{2}\varphi \cdot R_{k} \cdot \varphi\right\}$$

$$\mathcal{W}_k[J] = \ln \mathcal{Z}_k[J]$$
 $\Gamma_k[\phi] = \sup \left\{ \int_x J(x)\phi(x) - \mathcal{W}_k[J] - \Delta S_k[\phi] \right\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Successive integration of momentum shells:

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{Tr}\left[\left(\frac{1}{\Gamma_k^{(2)}[\Phi] + R_k} \right)_{ab} \partial_t R_k^{ab} \right], \qquad t = \ln\left(\frac{\Lambda}{k} \right).$$

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

LEFTs of QCD in the FRG 0000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

QCD at low Energies

⁽M. Mitter, J. M. Pawlowski, N. Strodthoff, Phys.Rev.D 91, 054035)

LEFTs of QCD in the FRG

DG-Methods

esults in the FRG

DG improvements

Conclusion 000

QCD at low Energies

 Complete basis consistent with symmetry.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日本 のへで

(M. Mitter, J. M. Pawlowski, N. Strodthoff, Phys.Rev.D 91, 054035)

LEFTs of QCD in the FRG

DG-Methods

lesults in the FRG

DG improvements

Conclusion 000

QCD at low Energies

- Complete basis consistent with symmetry.
- We have one dominant resonant channel.

(M. Mitter, J. M. Pawlowski, N. Strodthoff, Phys.Rev.D 91, 054035)

LEFTs of QCD in the FRG

DG-Methods

Results in the FRG

DG improvements

Conclusion 000

QCD at low Energies

⁽M. Mitter, J. M. Pawlowski, N. Strodthoff, Phys.Rev.D 91, 054035)

- Complete basis consistent with symmetry.
- We have one dominant resonant channel.
- Introduction of a quark-condensate: q
 q.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

on	LEFTs of QCD in the FRG
	0000

Results in the FRG

LDG improvements

Conclusion

A Simple Low Energy Effective Model of QCD:

$$\Gamma_{k} = \int_{x} \left\{ \begin{array}{c} i\bar{q}(\gamma_{\mu}\partial_{\mu} + \gamma_{0}\mu)q + \frac{1}{2}(\partial_{\mu}\phi)^{2} + \bar{h}_{k}\bar{q}(\tau \cdot \phi)q + V_{k} \\ \end{array} \right\}$$
• Kinetic quark term
• Kinetic meson term
• Quark-meson coupling
• Higher-order mesonic scatterings

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

n	LEFTs of QCD in the FRG
	000●

Results in the FRG

LDG improvements

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Conclusion

A Simple Low Energy Effective Model of QCD:

$$\Gamma_{k} = \int_{x} \left\{ \begin{array}{c} i\bar{q}(\gamma_{\mu}\partial_{\mu} + \gamma_{0}\mu)q + \frac{1}{2}(\partial_{\mu}\phi)^{2} + \bar{h}_{k}\bar{q}(\tau \cdot \phi)q + V_{k} \\ \end{array} \right\}$$
• Kinetic quark term
• Kinetic meson term
• Quark-meson coupling
• Higher-order mesonic scatterings

Use the condensate as an order parameter:

$$\langle \bar{q}q \rangle = \sigma = \begin{cases} 0 & \text{symmetric phase} \\ \sigma_0 & \text{broken phase} \end{cases}$$

ction	LEFTs of QCD
	0000

Ts of QCD in the FRG

DG-Methods

Results in the FRG

LDG improvements

Conclusion 000

Solving FRG-Equations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

n	LEFTs of	QCD	in the
	0000		

Results in the FRG

LDG improvements 000

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Conclusion

Solving FRG-Equations

PDE with second order derivatives:

 \Rightarrow Analogy to Hydrodynamics

in	LEFTs of	QCD	in the
	0000		

Results in the FRG

LDG improvements 000

< ロ > < 同 > < 三 > < 三 > 三 = < の < ○</p>

Conclusion

Solving FRG-Equations

PDE with second order derivatives:

 \Rightarrow Analogy to Hydrodynamics

PDE with discontinuities:

 \Rightarrow Requires discontinuous methods

lotion	LEFTs of QCD in the FRG
	0000

Results in the I

LDG improvements

Conclusion

Solving Conservation Laws

DG-Methods

Scalar conservation law:

 $\partial_t u + \partial_x f(u) = 0$

In LEFTs of QCD in the

) in the FRG

DG-Methods

Results in the FRG

LDG improvements

Conclusion

Solving Conservation Laws

Scalar conservation law:

With numerical approximations:

 $\partial_t u + \partial_x f(u) = 0$

 $u_h(t, x_k), f_h(u_h(t, x_k))$

LEFTs	of	QCD	in	the	F
0000					

Results in the FRG

LDG improvements 000

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Conclusion

Solving Conservation Laws

Scalar conservation law:

With numerical approximations:

 $\partial_t u + \partial_x f(u) = 0$ $u_h(t, x_k), f_h(u_h(t, x_k))$

The scheme converges if the residual vanishes:

$$\mathcal{R}_h = \partial_t u_h + \partial_x f_h \stackrel{!}{=} 0$$

LEFTs	of	QCD	in	the	ļ
0000					

Results in the FRG

LDG improvements 000 Conclusion

Solving Conservation Laws

Scalar conservation law:

With numerical approximations:

 $\partial_t u + \partial_x f(u) = 0$ $u_h(t, x_k), f_h(u_h(t, x_k))$

The scheme converges if the residual vanishes:

$$\mathcal{R}_h = \partial_t u_h + \partial_x f_h \stackrel{!}{=} 0$$

Convergence on Nodes:

 $\mathcal{R}_h(t, x_k) = 0 \quad \forall x_k \in \Omega$

シック・単純 (日本)(日本)(日本)(日本)

LEFTs (of QCD	in the
0000		

Results in the FRG

LDG improvements 000 Conclusion

Solving Conservation Laws

Scalar conservation law:

With numerical approximations:

 $\partial_t u + \partial_x f(u) = 0$ $u_h(t, x_k), f_h(u_h(t, x_k))$

The scheme converges if the residual vanishes:

$$\mathcal{R}_h = \partial_t u_h + \partial_x f_h \stackrel{!}{=} 0$$

Convergence on Nodes:

Orthogonal to test-functions:

$$\int_{\Omega} \mathcal{R}_h(t, x) \psi(x) = 0$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)</

 $\mathcal{R}_h(t, x_k) = 0 \quad \forall x_k \in \Omega$

EFTs of QCD in the FRG

DG-Methods

Results in the FRG

LDG improvements

Conclusion

Discontinuous Galerkin

Computational domain:

 $\Omega\simeq\Omega_h=\bigcup_{k=1}^K D^k$

Solution in each cell:

$$u_{h}^{k}(t,x) = \sum_{n=1}^{N+1} \hat{u}_{n}^{k}(t)\psi_{n}(x)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

https://en.wikipedia.org/wiki /Finite_element_method

EFTs of QCD in the FRG

DG-Methods

Results in the FRG

LDG improvements

Conclusion

Discontinuous Galerkin

Computational domain:

$$\Omega \simeq \Omega_h = \bigcup_{k=1}^K D^k$$

Solution in each cell:

$$u_{h}^{k}(t,x) = \sum_{n=1}^{N+1} \hat{u}_{n}^{k}(t)\psi_{n}(x)$$

https://en.wikipedia.org/wiki /Finite_element_method

Best of Finite Volume

- Cell average vanishes.
- geometrically flexible
- Inherently discontinuous
- Higher order accuracy problems

・ロト・雪下・雪下・雪下 シック・

EFTs of QCD in the FRG

DG-Methods

Results in the FRG

LDG improvements

Conclusion

Discontinuous Galerkin

Computational domain:

$$\Omega \simeq \Omega_h = \bigcup_{k=1}^K D^k$$

https://en.wikipedia.org/wiki /Finite_element_method Solution in each cell:

$$u_h^k(t,x) = \sum_{n=1}^{N+1} \hat{u}_n^k(t)\psi_n(x)$$

Best of Finite Volume

- Cell average vanishes.
- geometrically flexible
- Inherently discontinuous
- Higher order accuracy problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Best of Finite Element

- Residue vanishes weakly.
- Higher order accuracy
- Method is global

n	LEFTs of QCD in the FRG	DG-Methods	Results in the FRG	LDG improvements	С
	0000	00000	0000000	000	0

Numerical Flux and Weak Convergence

$$\int_{D^k} \left((\partial_t u_{i,h} + a_{i,h} \partial_x u_{i,h} + s_{i,h}) \psi_n + f_{i,h} \partial_x \psi_n \right) dx$$
$$= -\int_{\partial D^k} \psi_n \left(\mathbf{f}_i^* \, \hat{\mathbf{n}} + \mathbf{D}(u_{i,h}^+, u_{i,h}^-, \hat{\mathbf{n}}) \right) dx$$

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

LEFTs of QCD in the FRG	DG-Methods	Results in the FRG	LDG improvements	(
0000	00000	000000	000	(

Numerical Flux and Weak Convergence

$$\int_{D^{k}} \left((\partial_{t} u_{i,h} + a_{i,h} \partial_{x} u_{i,h} + s_{i,h}) \psi_{n} + f_{i,h} \partial_{x} \psi_{n} \right) dx$$

$$= -\int_{\partial D^{k}} \psi_{n} \left(f_{i}^{*} \hat{\mathbf{n}} + \mathbf{D}(u_{i,h}^{+}, u_{i,h}^{-}, \hat{\mathbf{n}}) \right) dx$$
• Conservative numerical flux:
$$f^{*}(u_{h}^{+}, u_{h}^{-}) = \frac{1}{2} (f_{h}(u_{h}^{+}) + f_{h}(u_{h}^{-})) + \frac{C}{2} [[\mathbf{u}_{h}]]$$

Non-Conservative numerical flux:

$$\mathbf{D}(u^+, u^-, \hat{\mathbf{n}}) = \frac{1}{2} \int_0^1 |a| \hat{\mathbf{n}} \frac{\partial \phi}{\partial s} ds$$

LEFTs of QCD in the	FRG DG-Methods	Results in the FRG	LDG improvements	Cor
0000	00000	000000	000	00

Numerical Flux and Weak Convergence

$$\int_{D^{k}} \left((\partial_{t} u_{i,h} + a_{i,h} \partial_{x} u_{i,h} + s_{i,h}) \psi_{n} + f_{i,h} \partial_{x} \psi_{n} \right) dx$$

$$= -\int_{\partial D^{k}} \psi_{n} \left(f_{i}^{*} \hat{\mathbf{n}} + \mathbf{D}(u_{i,h}^{+}, u_{i,h}^{-}, \hat{\mathbf{n}}) \right) dx$$
Conservative numerical flux:
$$f^{*}(u_{h}^{+}, u_{h}^{-}) = \frac{1}{2} (f_{h}(u_{h}^{+}) + f_{h}(u_{h}^{-})) + \frac{C}{2} [[\mathbf{u}_{h}]]$$
Non-Conservative numerical flux:
$$\mathbf{D}(u^{+}, u^{-}, \hat{\mathbf{n}}) = \frac{1}{2} \int_{0}^{1} |a| \hat{\mathbf{n}} \frac{\partial \phi}{\partial s} ds$$

Hesthaven, Warburton, Nodal Discontinuous Galerkin Methods

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

EFTs of QCD in the FRG

DG-Methods

Results in the FRG

LDG improvements 000 Conclusion

Implementation

Distributed and Unified Numerics Environment

- Modular toolbox (C++)
 - Variety of grids (1D, 2D ...).
 - Implementations of FEM, FVM, DG.
 - Various time-stepping modules
- Large-scale computing

(c) 2002-2016 by the Dune developers https://www.dune-project.org/

EFTs of QCD in the FRG

DG-Methods 00000 Results in the FRG

LDG improvements

Conclusion 000

Applying DG to FRG

Solve explicitly for
$$m_{\pi}^2 = \partial_{\rho} V(\rho) = u(\rho)$$
:

 \Rightarrow Take a derivative w.r.t. $\rho = x$

$$\partial_t u - \partial_x (F(u) + G(u, \partial_x u) - s(x)) = 0$$

EFTs of QCD in the FRG

DG-Methods 00000 Results in the FRG

LDG improvements

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Conclusion 000

Applying DG to FRG

Solve explicitly for $m_{\pi}^2 = \partial_{\rho} V(\rho) = u(\rho)$:

 \Rightarrow Take a derivative w.r.t. $\rho = x$

$$\partial_t u - \partial_x (F(u) + G(u, \partial_x u) - s(x)) = 0$$

Large-N limit ($N_f \rightarrow \infty$), solve additionally for $m_q^2 = 2\rho h(\rho)^2 = v(\rho)$:

$$\partial_t u - \partial_x (F(u) - s(v, x)) = 0$$

$$\partial_t v - a(u) \partial_x v + L(u, v, x) = 0$$

Initial conditions:

 $m_{\pi}^2 = 0 \ \rho + \lambda \rho^2$ $m_q^2 = 2h^2 \rho$

Mean field expectation value:

$$\sigma_{0,\pi} = 87.4(17)$$
 MeV
 $\sigma_{0,q} = 86.0(17)$ MeV

E. Grossi, F. Ihssen, J.M. Pawlowski, N. Wink, Phys. Rev. D. 104.016028

LEFTs of QCD in the FRG

DG-Methods 00000 Results in the FRG

LDG improvement

Conclusion

E. Grossi, F. Ihssen, J.M. Pawlowski, N. Wink, Phys. Rev. D. 104.016028

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LEFTs of QCD in the FF 0000 DG-Methods

Results in the FRG

LDG improvement: 000 Conclusion

The Chiral Phase Structure

0.08

0.06

0.04

Phase diagram for constant quark mass, finite N_f .

Phase diagram with running field dependent quark mass, large N_f limit.

E. Grossi, F. Ihssen, J.M. Pawlowski, N. Wink, Phys. Rev. D. 104.016028

LEFTs of QCD in the FF 0000 DG-Methods

Results in the FRG

LDG improvements

Conclusion

The Chiral Phase Structure

0.08

0.06

0.04

Phase diagram for constant quark mass, finite N_f .

Phase diagram with running field dependent quark mass, large N_f limit.

E. Grossi, F. Ihssen, J.M. Pawlowski, N. Wink, Phys. Rev. D. 104.016028

LEFTs of QCD in the FR 0000 DG-Methods 00000 Results in the FRG

LDG improvement: 000 Conclusion

The Chiral Phase Structure

E. Grossi, F. Ihssen, J.M. Pawlowski, N. Wink, Phys. Rev. D. 104.016028

on LEFTs of QCD in the I

DG-Methods

Results in the FRG

LDG improvements

Conclusion

Chiral Crossover Transition

F. Ihssen, J.M. Pawlowski in preparation

 10^3 * Pion mass squared m_{π}^2 -10

-15

-20

-25

0.000

0.001

Derivative of the potential in the symmetric phase.

Derivative of the potential in the broken phase.

0.002

0.003

Field value p

0.004

E. Grossi, F. Ihssen, J.M. Pawlowski, N. Wink, Phys. Rev. D. 104.016028

k = 173.1 MeV

= 165.1 MeV

= 135.7 MeV

k = 66.4 MeV

0.005

154.6 MeV

0.006

troduction	LEFTs of QCD in the FRG	DG-Methods	Results in the FRG 000000●	LDG improvements
	Shock D	evelopn)	nent for N_f	$ ightarrow\infty$
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	

Transition driven by particle density μ_q .

- $\langle \bar{q}q \rangle$ undergoes a first order phase transition.
- Hidden second order phase transition of the shock position.

E. Grossi, F. Ihssen, J.M. Pawlowski, N. Wink, Phys. Rev. D. 104.016028

LEFTs of QCD in the FRO

DG-Methods 00000 Results in the FRG

LDG improvements

Conclusion 000

Dealing with Diffusion: LDG-Methods \Rightarrow Solve explicitly for $m_{\sigma}^2 = \partial_{\rho}V(\rho) + 2\rho\partial_{\rho}^2V(\rho) = w(\rho)$

$$\partial_t u - \partial_x \big(F(u) + G(w) \big) = 0$$
$$\partial_t w - \partial_x \big(H(u, w) + xa(w) \partial_x w \big) = 0$$

 \Rightarrow Introduce a stationary equation:

$$0 = v - \partial_x j(w), \quad j(w) = \int_v \sqrt{a(s)} \, ds$$

B. Cockburn, C. Shu, SIAM J. Numer. Anal., 35(6), 2440-2463.

EFTs of QCD in the FRG

DG-Methods

Results in the FRG

LDG improvements

Conclusion

Riemann problem for an O(1) model in 0+0 dim (in the 2^{nd} derivative):

$$\partial_t u = \partial_x \left(\sqrt{a(t,v)} v \right)$$

 $v = \sqrt{a(t)} \partial_x u$

- Slopes travel with convection.
- Slopes smooth out with diffusion.
- \Rightarrow What happens to Shocks?

F. Ihssen, F. Sattler, N. Wink, in preparation

A first look at the Quark-Meson model

Open technical issue: shock development & convexity

Diffusion smooths phase transition
 ⇒ Strong dynamics

F. Ihssen, J. M. Pawlowski, F. Sattler, N. Wink, in preparation

	du	oti	
mue			
00			

EFTs of QCD in the FRG

DG-Methods

Results in the FRG

LDG improvement: 000 Conclusion

Conclusion

- Shock development within the 1st order regime in the large-*N_f* limit.
- Diffusion shifts the shock to second derivative at finite N_f.

• Discontinuities may heavily influence the position of the QCD phase transition at high densities.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Discontinuous methods are necessary to capture full physics!

	du	oti	
muo			
~ ~			
00			

EFTs of QCD in the FRG

DG-Methods

Results in the FRG

LDG improvement: 000 Conclusion

Conclusion

- Shock development within the 1st order regime in the large-*N_f* limit.
- Diffusion shifts the shock to second derivative at finite N_f.

• Discontinuities may heavily influence the position of the QCD phase transition at high densities.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Discontinuous methods are necessary to capture full physics!

Results are right around the corner!

EFTs of QCD in the FR

DG-Methods

Results in the FRG

DG improvements

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Conclusion

Thank you for your attention!

Evaluate at constant fields:

$$\phi = (\sigma, \vec{\pi}) = (\sigma_0, \vec{0})$$
$$q = \bar{q} = 0$$

$$\Rightarrow \text{ LHS simplifies to:} \quad \partial_t \Gamma[\phi] = \int d^d x \, \partial_t V_k(\rho) \,,$$

with $\rho = \phi^2/2$.

• Compute the second derivatives $\Gamma_k^{(2)}$ for the RHS:

$$\Gamma_{\sigma\sigma,k}^{(2)}[\phi](p) = p^{2} + V_{k}'(\rho) + 2\rho V''(\rho)$$

$$\Gamma_{\pi_{i}\pi_{i},k}^{(2)}[\phi](p) = p^{2} + V_{k}'(\rho)$$

$$\Gamma_{\bar{q}q,k}^{(2)}[\phi](p) = \gamma_{\mu}p_{\mu} + h_{k}(\rho)\sigma_{0}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\partial_t V_k(\rho) = \frac{1}{2} \int_p (\Gamma^{(2)} + R_k)^{-1}(p) \,\partial_t R_k(p) \left[\frac{1}{\text{Vol}_d} (2\pi)^d \delta(0) \right]$$

$$= \frac{1}{2} \int_p \frac{1}{p^2 + V_k'(\rho) + 2\rho V_k''(\rho) + R_{B,k}(p^2)} \,\partial_t R_{B,k}(p^2)$$

$$+ \frac{1}{2} \int_p \frac{N_f - 1}{p^2 + V_k'(\rho) + R_{B,k}(p^2)} \,\partial_t R_{B,k}(p^2)$$

$$- \int_p \frac{4N_f N_c}{p^2 + 2\rho h_k^2(\rho) + R_{F,k}^2(p^2)} \,\partial_t R_{F,k}(p^2)$$

- \Rightarrow Choose regulator
- \Rightarrow Similar derivation for $\partial_t h(\rho)$

Time-stepping

CFL-Conditions:

$$\Delta t \le \frac{\Delta x}{(2N+1)} \frac{1}{f_{max}}$$

With maximum wavespeed:

Wavespeed
$$f_{max}$$
: Biggest contribution to the conservative flux.

$$f_{max} \ge \max_{D^{\{i,i+1\}}} |\partial_u f(u)|$$

(日)

Convergence

Error in comparision to a solution with high approximation order

Large-N Flow Equations

Flow equation of the pion mass:

$$\begin{split} \partial_t m_{\pi,k}^2 &= \partial_\rho \left[\frac{k^5}{12\pi^2} \Big\{ \frac{N_\pi}{\epsilon_k^\pi} (1 + 2n_B(\epsilon_k^\pi)) \\ &- \frac{4 \times 2 \times 3}{\epsilon_k^q} (1 - n_f(\epsilon_k^q + \mu) - n_f(\epsilon_k^q - \mu)) \Big\} \right]. \end{split}$$

Flow of the quark mass:

$$\partial_t m_{q,k}^2 = A(m_{\pi,k}^2) \partial_\rho m_{q,k}^2 + \frac{m_{q,k}^2}{\rho} \Big[m_{q,k}^2 B(m_{q,k}^2, m_{\pi,k}^2) - A(m_{\pi,k}^2) \Big] \,,$$

with

$$A(m_{\pi,k}^2;T,\mu) = -2N_{\pi}v_3k^2 l_1^{(B,4)}(m_{\pi,k}^2;T),$$

$$B(m_{q,k}^2, m_{\pi,k}^2; T, \mu) = -4N_{\pi}v_3 L_{(1,1)}^{(4)}(m_{q,k}^2, m_{\pi,k}^2; T, \mu),$$