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1. Local QFT in the vacuum

* In the 1960s, A. Wightman and R. Haag pioneered an approach which
set out to answer the fundamental question “what is a QFT?”

* The resulting approach, “Local QFT", defines a QFT using a core set
of physically motivated axioms

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert

space H which possesses a continuous unitary representation Ula, o) of the Poincaré

spinor group )”T .

: . B _ A. Wightman
Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator
P* is confined to the closed forward light cone VY = {p* | p* = 0, p" = 0}, where [R. F. Streater and A. S. Wightman, PCT,
Ula, 1) = ™. Spin and Statistics, and all that (1964).]

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector |0) (the
vacuum state) which is a unigue translationally invariant state in H.

Axiom 4 (Field operators). The theory consists of fields o' (z) (of type (k) ) which
have components p}":(.r} that are operator-valued tempered distributions in H, and the

vacuum state |0) is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields ;}"'(:r} transform covariantly under
the action of & 1, :

Ula, )™ (x)U(a,0) " = S'T.[_:.":(r} 1),3_';":(.-'\(0),:' +a)

where S{«) is a finite dimensional matriz representation of the Lorentz spinor group

i IT and A(a) is the Loventz transformation corresponding to o € ).

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of
the fields o™, o) are space-like separated, then:

Tim
[ (), 00 (9)]e = A (e (9) = 00 (g)el™ () = 0 R. Haag
when applied to any state in H, for any fields .,:'j":. ,55,’:"), [R. Haag, Local Quantum

Physics, Springer-Verlag (1996).]



1. Local QFT in the vacuum

* Local QFT has led to many important structural insights, including:

i0/2
— The connection of Minkowski and Euclidean QFTs \

— CPT is a symmetry of any QFT

— Spin-statistics theorem

— Scattering theory

— Existence of dispersion relations

But... this framework describes QFT in the vacuum state, what about T > 07

* Important progress was made by Bros and Buchholz [Z. Phys. C 55 (1992) 509]

... which was was later built upon [hep-th/9606046, hep-th/9807099, hep-ph/0109136]



2. Extension to finite T

* Idea: Look for a generalisation of the standard axioms that is

compatible with T > 0, and approaches the vacuum case for T— 0

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert
space H which possesses a continuous unitary representation Ula, o) of the Poincaré

spinor group )ﬂT :

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator
P* is confined to the closed forward light cone VY = {p* | p* > 0, p" > 0},
Ua, 1) = e,

where

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector |0) (the

vacuum state) which is a unique translationally invariant state in H.

Axiom 4 (Field operators). The theory consists of fields ' (x) (of type (k) ) which
have components p}":(.z'} that are operator-valued tempered distributions in H, and the

vacuum state |0) is a cyclic vector for the fields.

. . (&) . .
Axiom 5 (Relativistic covariance). The fields ;" (x) transform covariantly under

the action of J”1| :
(x)(a,a) ' = "(Ala)x + a)

where S(av) is a finite dimensional matriz representation of the Lorentz spinor group

Ula, a)p!” 5'1.[?'1'((} ').,:";."

,fT and A(a) is the Lorentz transformation corresponding to o € 728

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of

+ 2 s .
the fields @™, o\5") are space-like separated, then:

el ). 28N @) = e (F)e% (9) £ &% (@)™ (f) =0

when applied to any state in H, for any fields o™, o).

l
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: The fields no longer transform :
| under general unitary Lorentz
i transformations I
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i Locality is unaffected by the
: properties of the background state. :
This is important! |



3. Spectral implications

* For simplicity, consider a thermal QFT involving real scalar fields &(x)

* It turns out that by demanding the fields be local, this imposes

significant constraints on the structure of the correlation functions!

— In particular, the thermal commutator has the general form:

Copos 7) = F (2] [9(), ()] 1905)] = / s /

;’2 e(po) 3(p2 — (

Note: this is a non-perturbative representation!

* In the limit of vanishing temperature:

L ————————.———.—.

Dg(it,s) — (2m)*6° (i) p(s)

. and one recovers the standard Kallén-Lehmann spectral representation

Co(po.p) 222 2 e(po) / Tds 6 (p* — s) p(s) “e.g. p(s)=6(s-m’) for
0

1{ a massive free theory

|




4. Shear viscosity in @' theory

* Since all observable quantities are computed using correlation functions,
one can use this spectral representation to gain new insights into the
properties of QFTs at finite temperature

* As an example, in the recent work 2104.13413 this representation was

used to calculate the shear viscosity n, arising from states at

large times x  — “thermal asymptotic states”

o —_— S
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5 c 5 I
Important: | |nteractions with the thermal background persist, even for large x, |

— Need to include an external coupling A




4. Shear viscosity in @' theory

* A solution to the problem of asymptotic states in (scalar) thermal QFTs was
proposed in hep-ph/0109136

.................................................

— Asymptotic fields ®, are assumed to satisfy

dynamical equations only at large X,

* Given that the thermal spectral density has the decomposition:

o~ o~

Dy, $) = Din,p(@) 8(s = m?) + D p (i, )

r——-———""———""— | \’
! “Thermal s B 1

: : Causes mass poles m to become
' damping factor” ———
J

screened by thermal effects e
— Suppressed at large x;

... the thermal damping factor is uniquely fixed by the asymptotic field equation!

* This means that the non-perturbative thermal effects experienced by particle

states are entirely controlled by the asymptotic dynamics



4. Shear viscosity in @' theory

* Applying the asymptotic field condition for ®* theory, the corresponding
thermal damping factors have the form (see hep-ph/0109136)

. sin(k|Z - e I¥
— ForA<0 |p 7= 28 & ForA>0 |p,, 5(1)=°
k|2 Ko|@

. . . . ] ] . (r ) — Bq 1 :

where K is defined with r =m/T: k= TVINE®, K J ./(%)32\/|(J;2+.,.2 N

Now that one has an explicit expression for the damping factors of the

asymptotic states, one can use these to calculate the exact form of the

EMT spectral function |,.. () = lim F[(Q] [7 (2), mi3 ()] 125)] (0)

. . . . . 1 . d T
... the shear viscosity is then recovered via the Kubo relation |7 = - lim P

20 po—0 dpg




4. Shear viscosity in @' theory

* For A <0, the EMT spectral function p,_. has the structure:

-------------------------------------------------------------------------------------------------------------------------------------------------
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~* The presence of interactions causes resonant peaks to appear — peaked when p, ~ K=1/%

* The dimensionless ratio m/ T controls the magnitude of the peaks

|
* For A—0 the free-field result is recovered, as expected |
\
\




4. Shear viscosity in @' theory

* Applying the Kubo relation to p..one ultimately obtains the following

expression for the shear viscosity ng

3K (22, 0,00 m Ka( 7 VINK (7). VINK (7)
70 | Kal | )+\/W}C1(T,O;OO)+ ( i )

Mo = L
157 VA
/

L R :
| for small |A| B

et s — s — — — - — — —

. Magnitude of large |A|
[T T T T T T \ ; i
|  Global minima / 5 ‘ growth controlled by m/ T J

— For fixed coupling, no/ T° is entirely controlled by functions of m/T




4. Shear viscosity in @' theory

What about A >07? — n, diverges!

Why? — The thermal damping factor D, ;(u) does not decay rapidly

enough at large momenta — UV behaviour of the quartic interaction

For a thermal scalar QFT, in general:

& — — S oo OO S DD N OO O D O S OO e H O D N OO O O e D OO e OO — — O O

— This implies that when A>0, the KMS condition does not hold

in ®* theory, i.e. thermal equilibrium is violated!

In 2104.13413 these analytic conditions were used to relate the boundedness

of Ny with the existence of thermal equilibrium:




5. Summary & outlook

* Local QFT is an analytic framework that attempts to address the fundamental
question “what is a QFT?”

* The framework can be extended to T >0 — This has important implications,

including the generalisation of the Kallén-Lehmann representation

* In 2104.13413, this representation was used to calculate the shear viscosity

arising from asymptotic states n,, a non-perturbative quantity
* So far, only real scalar fields ®(x) were considered, where T>0

— In principle, this approach can be extended to non-scalar fields, as well

as theories with p # 0 (work in progress!)

* The generalised KL representation could also enable

— The extraction of observables from Euclidean data

— New insights into the phase structure of QFTs

[Brookhaven National Lab]



* For thermal asymptotic states, the spectral function p., has the form

E d3a 2 oo 6 ’C“’, .
Epm(Po) = sinh (épo) / (—;g‘(ﬂ‘l/ dqo ' ﬁ(ﬁqo (D ﬁ(poﬁ q0 @
] v —00 sinh ( q0) sinh (i(po — qO)) E

.. which after applying the generalised KL representation, together with the
Kubo relation, implies

2407?5/ ds/ df/ d\u\/ d|1JH?T||fU|D i, 9) 5(7,1)
L [TV L Vi
X [4[1+e(|u|v|)]{TI3 T:OaOO 5 7, ?,Ugoc

- 5] s —t+ (i) + |))? t|o] s—t+ (|7 — |a])?
ey iiM?s ft(\ﬁj|j|1}\) +e(|] — |9)) T £:|?|: 5 —I;(\’U|_} )
T T 2(|u| + |v])T /

* The model dependence of n, factorises, and is controlled by the

thermal spectral density Dg(u,s)



A1)=(0,0)

* ForA <0, p.(p,) and its derivative are non-analytic at (p,/ T,

[ T T T T T T T 7
\

. Setting A=0 first, and | But, setting p / T=0 first,

~then p,/T— 0, leads to | ~and then A— 0, leads to a
|
| a vanishing result ‘ } divergent result

— 1o in the interacting theory is not a continuous perturbation of the free field result (n, = 0)

15
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