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● In the 1960s, A. Wightman and R. Haag pioneered an approach which 
set out to answer the fundamental question “what is a QFT?”

● The resulting approach, “Local QFT”, defines a QFT using a core set 
of physically motivated axioms

A. Wightman

R. Haag

[R. F. Streater and A. S. Wightman, PCT, 
Spin and Statistics, and all that (1964).]

 [R. Haag, Local Quantum 
Physics, Springer-Verlag (1996).]

1. Local QFT in the vacuum



 4

● Local QFT has led to many important structural insights, including:

    

But… this framework describes QFT in the vacuum state, what about T > 0?

1. Local QFT in the vacuum

e+ e-

 →  The connection of Minkowski and Euclidean QFTs 

 →  CPT is a symmetry of any QFT

 →  Spin-statistics theorem

 →  Scattering theory  

 →  Existence of dispersion relations 

● Important progress was made by Bros and Buchholz [Z. Phys. C 55 (1992) 509]

... which was was later built upon [hep-th/9606046, hep-th/9807099, hep-ph/0109136] 
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2. Extension to finite T

● Idea: Look for a generalisation of the standard axioms that is 
compatible with T > 0, and approaches the vacuum case for T → 0

 

             

→

→

→

H
β
 is defined for fixed β=1/T

Replaced by the KMS condition

Instead, thermal background state |Ω
β
>

Fields are still distributions  

The fields no longer transform 
under general unitary Lorentz 

transformations  

Locality is unaffected by the 
properties of the background state. 

This is important!  

 ✓

→

 ✓



 6

3. Spectral implications

● For simplicity, consider a thermal QFT involving real scalar fields Φ(x) 

● It turns out that by demanding the fields be local, this imposes 
significant constraints on the structure of the correlation functions! 

  → In particular, the thermal commutator has the general form:  

    Note: this is a non-perturbative representation!

● In the limit of vanishing temperature:

  ... and one recovers the standard Källén-Lehmann spectral representation
 

             

 

“Thermal spectral density” 

e.g. ρ(s)=δ(s-m2) for 
a massive free theory  
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● Since all observable quantities are computed using correlation functions, 
one can use this spectral representation to gain new insights into the 
properties of QFTs at finite temperature 

● As an example, in the recent work 2104.13413 this representation was 
used to calculate the shear viscosity η0 arising from states at           
large times x0  → “thermal asymptotic states”

 

             x0 

 

∞-∞

Important:

   →  Need to include an external coupling λ  

Interactions with the thermal background persist, even for large x0 

4. Shear viscosity in Φ4 theory
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● A solution to the problem of asymptotic states in (scalar) thermal QFTs was 
proposed in hep-ph/0109136

  →  Asymptotic fields Φ0 are assumed to satisfy                                                 
        dynamical equations only at large x0

● Given that the thermal spectral density has the decomposition:

  

            

● This means that the non-perturbative thermal effects experienced by particle 
states are entirely controlled by the asymptotic dynamics   

Continuous component Causes mass poles m to become 
screened by thermal effects 

→  Suppressed at large x0 

“Thermal 
damping factor”

 ... the thermal damping factor is uniquely fixed by the asymptotic field equation!

4. Shear viscosity in Φ4 theory
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● Applying the asymptotic field condition for Φ4 theory, the corresponding 
thermal damping factors have the form (see hep-ph/0109136) 

where  κ is defined with r =m/T:

● Now that one has an explicit expression for the damping factors of the 
asymptotic states, one can use these to calculate the exact form of the   
EMT spectral function 

... the shear viscosity is then recovered via the Kubo relation                   

 

→  For λ < 0 →  For λ > 0

4. Shear viscosity in Φ4 theory
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● For λ < 0, the EMT spectral function ρ  ππ has the structure:      

            

● The presence of interactions causes resonant peaks to appear → peaked when p0 ~ =κ 1/   ℓ
● For λ→0 the free-field result is recovered, as expected
● The dimensionless ratio m/T controls the magnitude of the peaks    

4. Shear viscosity in Φ4 theory
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● Applying the Kubo relation to ρ  ππ one ultimately obtains the following 
expression for the shear viscosity η0 

      

Dominant component 
for small |λ| For large |λ|, η0 ~ |λ|

Global minima

Magnitude of large |λ| 
growth controlled by m/T  

→  For fixed coupling, η0/T 
3 is entirely controlled by functions of m/T 

4. Shear viscosity in Φ4 theory
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4. Shear viscosity in Φ4 theory

● What about λ > 0?  →  η0 diverges!

 Why?  – The thermal damping factor Dm,β(u) does not decay rapidly            
              enough at large momenta → UV behaviour of the quartic interaction

● For a thermal scalar QFT, in general:

             
● In 2104.13413 these analytic conditions were used to relate the boundedness 

of η0 with the existence of thermal equilibrium:  

If the KMS condition holds   ⟹  Dβ(u,s) ~ e - β|u|/2 , for |u|→∞ 

If the KMS condition holds   ⟹  η0 is finite 

→ This implies that when λ>0, the KMS condition does not hold  
     in Φ4 theory, i.e. thermal equilibrium is violated!    
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● Local QFT is an analytic framework that attempts to address the fundamental 
question “what is a QFT?” 

● The framework can be extended to T > 0  → This has important implications, 
including the generalisation of the Källén-Lehmann representation

● In 2104.13413, this representation was used to calculate the shear viscosity 
arising from asymptotic states η0, a non-perturbative quantity

● So far, only real scalar fields Φ(x) were considered, where T > 0

   →  In principle, this approach can be extended to non-scalar fields, as well             
         as theories with µ  0 (work in progress!)≠  

● The generalised KL representation could also enable

   

5. Summary & outlook

[Brookhaven National Lab]

     –  The extraction of observables from Euclidean data

–  New insights into the phase structure of QFTs 
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Backup

● For thermal asymptotic states, the spectral function ρππ  has the form   

... which after applying the generalised KL representation, together with the 
Kubo relation, implies

● The model dependence of η0 factorises, and is controlled by the 
thermal spectral density Dβ(u,s)
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Backup

● For  λ < 0,  ρππ(p0) and its derivative are non-analytic at (p0/T, |λ|)=(0,0)  

 

But, setting p0/T=0 first, 
and then →λ  0, leads to a 

divergent result     

Setting =0 first, and λ
then p0/T→ 0, leads to 

a vanishing result

→  η0 in the interacting theory is not a continuous perturbation of the free field result (η0 = 0)
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