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• describes the strong interaction between quarks and gluons

• strong coupling  grows with decreasing energy scaleαs

IR UV
perturbative physics

quarks & gluons

non-perturbative 
many-body physics

bound states & condensates

[PDG 2019]

36 9. Quantum Chromodynamics

world average, we first combine six pre-averages, excluding the lattice result, using a ‰
2 averaging

method. This gives
–s(M2

Z) = 0.1176 ± 0.0011 , (without lattice) . (9.24)

This result is fully compatible with the lattice pre-average Eq. (9.23) and has a comparable error.
In order to be conservative, we combine these two numbers using an unweighted average and take
as an uncertainty the average between these two uncertainties. This gives our final world average
value

–s(M2
Z) = 0.1179 ± 0.0010 . (9.25)
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Figure 9.5: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

This world average value is in very good agreement with the last version of this Review, which
was –s(M2

Z
) = 0.1181 ± 0.0011, with only a slightly lower central value and decreased overall
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QUANTUM CHROMODYNAMICS



"external" parameters control scale: phase diagram

QUANTUM CHROMODYNAMICSTHE PHASES OF QCD

hadrons
color superconductor

quark-gluon plasma
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QUANTUM CHROMODYNAMICSTHE PHASES OF QCD

hadrons
color superconductor
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αS

?
• inhomogeneous phases
• no CEP, but Lifshitz point
• various CSC phases
• quarkyonic matter
• quantum pion liquid

possible phases:

"external" parameters control scale: phase diagram



QUANTUM CHROMODYNAMICSTHE PHASES OF QCD

hadrons
color superconductor

quark-gluon plasma
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αS

?

Experiments:

heavy-ion collisions

e.g. gravitational waves

early universe & LHC

RHIC

FAIR & others

neutron stars

"external" parameters control scale: phase diagram



OUTLINE

• moat regimes


• how to find them



MOAT REGIMES



A MOAT

[Caerlaverock Castle, Scotland (source: Wikipedia)]



A MOAT
energy dispersion of particle :ϕ

Eϕ(p2) = Z p2 + W(p2)2 + m2
eff

Z = 1
Z = 0.5
Z = -0.003
Z = -0.05
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particles can be favored to have a nonzero momentum
"gain energy by going faster"

moat regime



WHERE DOES THE MOAT COME FROM?

spatial oscillation
cos(2π k0 x)

momentum space peak
δ(p− k0 )

pk0x
1/k0

• particles subject to a spatial modulation are favored to have finite momentum k0

moat energy dispersion
(minimal energy at )k0

• typical for inhomogeneous/crystalline phases or a quantum pion liquid (Q L)π

heuristic picture:
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T,
� B

)

• consider "meson" coupled to a massless quark in 1+1 dimensions

• 1-loop meson self-energy

simplistic consideration:

•  in dispersion relation is the coefficient of  in Z p2 Γ(2)

Z(T, μB) =
1
2

∂2

∂p2
Γ(2)

p=0

∝ − Re ψ (2)( 1
2

+
i

2π
μB

3T )

Γ(2) = ψ
ϕ ϕ

polygamma function (not a quark)

moat regime ( ) 
at large density

Z < 0

WHERE CAN MOAT REGIMES APPEAR?



WHERE CAN MOAT REGIMES APPEAR?

[Fu, Pawlowski, FR (2019)]

indication for extended region with  in QCD:  moat regimeZ < 0

At large  in the QCD phase diagram:μB

Lattice: [Bazavov et al. '18]
Lattice: [Borsanyi et al. '20]

FRG: crossover
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not computed

Z < 0

μB

T
= 4



MOAT REGIME IN THE QCD PHASE DIAGRAMMeson two-point functions
Energy

<latexit sha1_base64="h/5WO++32SR3LYo4heDQpG9wJzc=">AAACLHicbVDLSsNAFJ3UV62vqEs3wSK0CDUpom6EYhFcVrAPbNIwmU7boTNJnJkIJeSD3PgrgriwiFu/w2mbhUYPXDiccy/33uOFlAhpmlMtt7S8srqWXy9sbG5t7+i7ey0RRBzhJgpowDseFJgSHzclkRR3Qo4h8yhue+P6zG8/Yi5I4N/JSYgdBoc+GRAEpZJcvX7txiU7JCe2IEMGy8mlLR64jO8zcinsVcuqjlmvmrESVy+aFXMO4y+xUlIEKRqu/mr3AxQx7EtEoRBdywylE0MuCaI4KdiRwCFEYzjEXUV9yLBw4vmziXGklL4xCLgqXxpz9edEDJkQE+apTgblSGS9mfif143k4MKJiR9GEvtosWgQUUMGxiw5o084RpJOFIGIE3WrgUaQQyRVvgUVgpV9+S9pVSvWWcW6PS3WrtI48uAAHIISsMA5qIEb0ABNgMATeAHvYKo9a2/ah/a5aM1p6cw++AXt6xuL/act</latexit>

E(⇡/�) =
q
Z(⇡/�)(p2)p2 +m2

(⇡/�)
• preliminary result for the energy dispersion of pions/sigmas

Eσ(p2) = Zσ(p2) p2 + m2
σ



IMPLICATIONS OF THE MOAT

The energy gap might close at lower T and larger  :μB

Lattice: [Bazavov et al. '18]
Lattice: [Borsanyi et al. '20]

FRG: crossover
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E

p20

E

p20

 for all E > 0 p2

 at :E = 0 p2 > 0

instability towards formation of an inhomogeneous condensate



INHOMOGENEOUS PHASE

• : particles with momentum  condense

• basic example:  chiral density wave

Eϕ(k2
0) = 0 k0

O(Nf )

ϕ0 = Δ

cos(k0 z)
sin(k0 z)

0
⋮
0

ϕ =

σ
πN−1
πN−2

⋮
π1

,

field condensate/VEV
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[Carignano, Buballa, Schaefer '14]

emerges if energy gap closes

mean-field phase diagram



IMPLICATIONS OF THE MOAT

option 1: moat is a precursor for an inhomogeneous phase

THE PHASES OF QCD

hadrons
color superconductor

quark-gluon plasma
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αS

?

possibilities: inhomogeneous chiral condensate or crystalline CSC



INHOM. PHASES & FLUCTUATIONS 1
Inhomogeneous phases are mostly studied in mean-field.
But associated spontaneous symmetry breaking gives rise to massless modes (Goldstones).
Their fluctuations must be relevant!

Two types of symmetry breaking for inhomogeneous phases:

• continuous spatial symmetries (rotations, translations) broken down to discrete ones

• global flavor symmetries are broken (e.g.  for chiral density wave)O(Nf ) → O(Nf − 2)

It has been argued that 1d modulations are favored against higher-dimensional ones 
[Abuki, Ishibashi, Suzuki '12]

Goldstone bosons from spatial symmetry breaking (e.g. phonons) lead to Landau-Peierls 
instability of 1d inhomogeneous condensates (e.g. chiral density wave)

• Goldstones lead to logarithmic divergences

1d condensate is destroyed; the system is disordered

• algebraically instead of exponentially decaying correlations still possible

quasi-long-range order (e.g. liquid crystal) [Landau, Lifshitz, Stat. Phys. I, §137]
[Lee, Nakano, Tsue, Tatsumi, Friman '15]

Option 2: moat is a precursor for a liquid-crystal-like phase



• basic example: fluctuations around  chiral density waveO(N )

even "worse" for fluctuations of Goldstones from broken flavor symmetry 

ϕ = Δ

cos(k0 z)
sin(k0 z)

0
⋮
0

+ (
δϕ∥

δϕ⊥)

transverse fluctuations  disorder the system: 
no inhomogeneous phase for 


not even quasi-long-range order

δϕ⊥
N > 2

Gϕ⊥
=

1
W (p2 − k2

0)2

static (large ) propagator of 
transverse (Goldstone) modes

T

double pole at 
nonzero momentum

(rigorous for  chiral density wave at )O(N ) N → ∞

• tadpole corrections in any dimension lead to linear IR divergences at finite T:

∼ T∫
ddp

(2π)d
Gϕ⊥

∼
T
W

kd−3
0 ∫|p|∼k0

d |p|
( |p| − k0)2

[Pisarski, Tsvelik, Valgushev '20, Pisarski '21]

INHOM. PHASES & FLUCTUATIONS 2

ϕ⊥



QUANTUM PION LIQUID

[Pisarski, Tsvelik, Valgushev '20]
[Pisarski '21]

• disordered phase with a moat spectrum (  for all )E > 0 p2

• lead to spatial modulations:   for large ⟨ϕ(x)ϕ(0)⟩ ∼ e−mr x cos(mi x) x

quantum pion liquid

(in analogy to quantum spin liquids)

in this case we are left with another unusual disordered phase: 

Z

m
2

0

1

2

-0.4 -0.2 0.0 0.2 0.4

〈 φ 〉 ≠ 0

〈 φ 〉 = 0, OSP

〈 φ 〉 = 0, QSL

broken phase

Q Lπ

Z

m2

Option 3: moat signals a quantum pion liquid

• instead of double pole,  has complex poles  Gϕ⊥
|p | = mr + imi



IMPLICATIONS OF THE MOAT

option 1: 

inhomogeneous phase

THE PHASES OF QCD

hadrons
color superconductor

quark-gluon plasma
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αS

?

the moat regime could be an indication that dense QCD has:

option 2: 

liquid-crystal-like

option 3: 

quantum pion liquid

this will occur in the regions 
where inhomogeneous 
phases are expected 

• only if there are no 
Goldstone bosons

• only if there are only 
Goldstones from spatial 
symmetry breaking

• only if there are 
Goldstones flavor 
symmetry breaking



SIGNATURES OF MOATS
IN HEAVY-ION COLLISIONS



PROBING THE PHASE DIAGRAM

imprints of the phase structure at freeze-out?



PROBING THE PHASE DIAGRAM
Vary the beam energy to study the phase diagram different densities (smaller energy  lager )↔ μ

not computed

moat regime

FRG: crossover
STAR: freeze-out
SPS & AGS: freeze-out
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STAR @ RHIC

s = 7.7 − 200 GeV
μB ≈ 400 − 30 MeV

CBM @ FAIR

s = 2.7 − 4.9 GeV
μB ≈ 730 − 540 MeV

[Fu, Pawlowski, FR '19]
[STAR '17, Andronic et al. '18]

What are the signatures of the the phase diagram in heavy-ion collisions?

future experiments, e.g.,

also: J-PARC, NICA, HIAF

HADES @ GSI

s ≈ 2.4 GeV
μB ≈ 770 MeV



PARTICLE NUMBER DISTRIBUTION
The challenge: signatures have to be extracted from hadronic final states

• count particles from many collisions at fixed energy, get particle number distribution 

A solution: consider distributions

⟨(NP − ⟨NP⟩)n⟩ = ∑
NP

(NP − ⟨NP⟩)n P(NP)

• extract particle number correlations from the measured probability distribution :P(NP)

look for signatures of the phase diagram in particle number correlations

[STAR '20]
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• prominent example: CEP search



SEARCH FOR MOAT REGIMES

Moats arise in regimes with spatial modulations in the phase diagram at large 

Characteristic feature: minimal energy at nonzero momentum 

 enhanced particle production at nonzero momentum


 look for signatures in the momentum dependence of particle numbers and correlations

μB

⇒
→

 [Pisarski, FR '21]

• particles freeze out at certain temperature Tf

0 2 4 6 8 10
r @fmD0

2
4
6
8
10
12
14

t @fmêcD

[Floerchinger, Wiedemann '13]

defines 3d hypersurface: 
freeze-out surface Σ

How does the moat regime affect particles on ?Σ

• particle numbers are observables!



GENERALIZED COOPER-FRYE FORMULA

• probability distribution of finding a particle  with momentum  in thermal equilibrium: 
Wigner function

ϕ p

compute particle numbers on the freeze-out surface

Fϕ(p) = 2π ρϕ(p0, p) f(p0)

spectral function

• particle spectrum from integrating particle number current over freeze-out surface:

d3Nϕ

dp3
=

2
(2π)3 ∫Σ

dΣμ ∫
dp0

2π
pμ Θ( p̆0) Fϕ( p̆)

• reduces to Cooper-Frye formula for free vacuum spectral function: ρϕ(p) = sign(p0) δ[p2
0 − (p2 + m2)]

• particles on  boosted with fluid velocity :Σ uμ(x)

                 energy:  

spatial momentum:   

p̆0 = uμpμ

p̆2 = (uμuν − gμν) pμpν

~ particle number current density



PARTICLE SPECTRUM IN A MOAT PHASE

• low-energy model of free bosons in a moat regime ( , ):Z < 0 W > 0

ℒ0 =
1
2 (∂0ϕ)2 +

Z
2 (∂i ϕ)2 +

W
2 (∂2

i ϕ)2 +
m2

eff

2
ϕ2

• gives simple in-medium spectral function

  with  ρϕ(p0, p2) = sign(p0) δ[p2
0 − E2

ϕ(p2)] Eϕ(p2) = Z p2 + W(p2)2 + m2
eff

use simple models to show general structure

• boost invariant freeze-out at fixed temperature  and fixed proper time  ( )Tf τf = t2 − z2

Particle in a moat regime:

• boost symmetry broken! (but spatial rotation symmetry still intact)

Fluid velocity and freeze-out surface from hydro evolution

• blast wave approximation 
for the fluid velocity: ur = ū

r
R̄

θ(R̄ − r)

time

radial size of the system

[Schnedermann, Sollfrank, Heinz (1993)]
[Teaney (2003)]



PARTICLE SPECTRUM IN A MOAT PHASE
use simple models to show general structure

model parameters:

• pick a beam energy of  and read off thermodynamic and blast wave parameters:s = 5 GeV

Tf = 115 MeV
μB, f = 536 MeV

ū = 0.3
R̄ = 8 fm
τf = 5 fm/c

[Andronic, Braun-Munzinger, Redlich, Stachel (2018)] [Zhang, Ma, Chen, Zhong (2016)]

• thermodynamics (used later) from a hadron resonance gas [Braun-Munzinger, Redlich, Stachel (2003)]

• moat parameters: purely illustrative

if :   Z < 0 W = 2.5 GeV−2



PARTICLE SPECTRUM IN A MOAT PHASE
transverse momentum spectrum ( : beam direction, )z pT = p2

x + p2
y

Z = 1
Z = 0.5
Z = -0.003
Z = -0.05
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• compare normal phase (gray, ) to moat phase (yellow, )W = 0 W = 2.5 GeV−2

enhanced particle production at nonzero momentum!

maximum related to the wavenumber of the spatial modulation

d3N
pT dpT dy dϕp



PARTICLE NUMBER CORRELATIONS
• correlations sensitive to in-medium modifications

• difficult to compute in systems with long-range order due to multi-particle correlations

• moat regime is disordered: single particle correlations can capture relevant features

correlations on  from (generalized) Cooper-Frye formulaΣ

⟨
n

∏
i=1

d3Nϕ

dp3
i ⟩ = [

n

∏
i=1

2
(2π)3 ∫ dΣμ

i ∫
dp0

i

2π
(pi)μ Θ( p̆0

i )] ⟨
n

∏
i=1

Fϕ( p̆i)⟩

[Pisarski, FR (2021)]
[Floerchinger (unpublished)]

• fluctuations, e.g., of thermodynamic quantities lead to fluctuations of 

• consider small fluctuations , ,  with  : 

Fϕ

T μB u κμ
i (x) = (T(x), μB(x), uμ(x))i

thermodynamic average

⟨Fϕ Fϕ⟩c
=

∂Fϕ

∂κμ
i

∂Fϕ

∂κν
j κ̄

⟨δκμ
i δκν

j ⟩ + 𝒪(δκ3)

connected correlator fluctuations of , , T μB u

-particle 
correlation:
n



THERMODYNAMIC CORRELATIONS
• correlations  from thermodynamic average

• weight configurations with the change in entropy due to fluctuations, 

⟨…⟩

Δsμ

generating functional of (connected) thermodynamic correlations

[Landau, Lifshitz (vol. 5)]

W[J] = ln∫ 𝒟κ(x) exp∫ dΣμ [Δsμ(x) + J(x)iν ̂vμ δκν
i (x)]

normal to Σ

• connected n-particle correlations  from⟨δκn⟩c
δnW[J]

δJn
J=0

• change of entropy in an ideal fluid ( ) with Gaussian fluctuations:Tμν = ϵ uμuν + pΔμν

̂vμΔsμ = −
1
2

δκiμ(x) ℱμν
ij (x) δκjν(x)

ℱμν
ij =

1
T

̂u
∂s
∂T

̂u
∂s

∂μB
s ̂vν

̂u
∂s

∂μB
̂u

∂n
∂μB

n ̂vν

s ̂vμ n ̂vμ − ̂u (Ts + μBn)gμν
ij

fluctuation matrix ( )̂u = ̂vμ uμ

local fluctuations!



PARTICLE NUMBER CORRELATIONS
• Gaussian fluctuations: only nontrivial correlation is two-point function (all others are products 

thereof (Wick's theorem))

⟨
d3Nϕ

dp3
1

d3Nϕ

dp3
2 ⟩

c

=
4

(2π)6 ∫ dΣμ ∫
dp0

1

2π
dp0

2

2π
(p1)μ ( ̂v⋅p2) Θ( p̆0

1) Θ( p̆0
2) (

∂Fϕ( p̆1)
∂κρ

i

∂Fϕ( p̆2)
∂κσ

j )
κ̄

(ℱρσ
ij (w))

−1

• look at normalized two-particle correlation Δn12 = ⟨(d3N
dp3 )

2

⟩
c
/⟨ d3N

dp3 ⟩
2

normal phase

Δn12

(relatively) flat two-particle  
correlation in the normal phase

pT



PARTICLE NUMBER CORRELATIONS
• Gaussian fluctuations: only nontrivial correlation is two-point function (all others are products 

thereof (Wick's theorem))

• look at normalized two-particle correlation Δn12 = ⟨(d3N
dp3 )

2

⟩
c
/⟨ d3N

dp3 ⟩
2

moat phase

pronounced peak and ridges at 
nonzero  related to wavenumber 

of spatial modulation!
pT

Δn12

⟨
d3Nϕ

dp3
1

d3Nϕ

dp3
2 ⟩

c

=
4

(2π)6 ∫ dΣμ ∫
dp0

1

2π
dp0

2

2π
(p1)μ ( ̂v⋅p2) Θ( p̆0

1) Θ( p̆0
2) (

∂Fϕ( p̆1)
∂κρ

i

∂Fϕ( p̆2)
∂κσ

j )
κ̄

(ℱρσ
ij (w))

−1

huge enhancement:

 
Δn12(ppeak)

moat

Δn12(ppeak)
normal

≈ 102



SUMMARY

Moats arise in regimes with spatial modulations

• characteristic peaks (and ridges) in particle spectra 
and correlations at nonzero pT

• expected to occur at large 

• are precursors for inhomogeneous-, liquid-crystal-like 
or quantum pion liquid phases

μB

Enhanced production of moat particles at nonzero momentum

Opportunity to discover novel phases with low-energy 
heavy-ion collisions through differential measurements of 

particles and their correlations at small momenta

So far: basic description of qualitative effects
To do: quantitative description of moat regimes


