MOAT REGIMES & THEIR SIGNATURES IN HEAVY-ION COLLISIONS

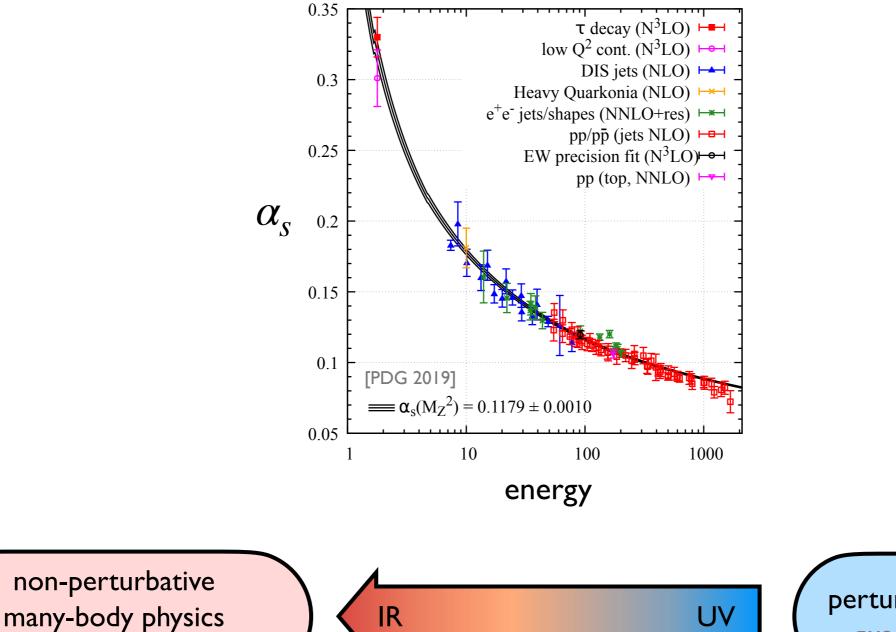
Fabian Rennecke

[Pisarski, FR, PRL 127 (2021)]

LUNCH CLUB - JLU GIESSEN 19/01/2022

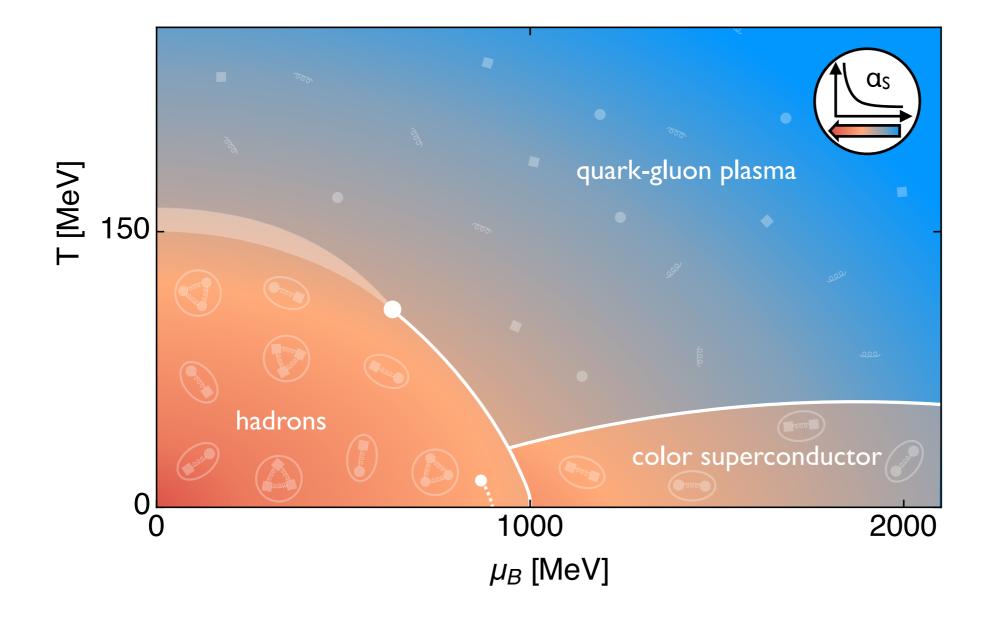
- describes the strong interaction between quarks and gluons
- strong coupling α_s grows with decreasing energy scale

bound states & condensates

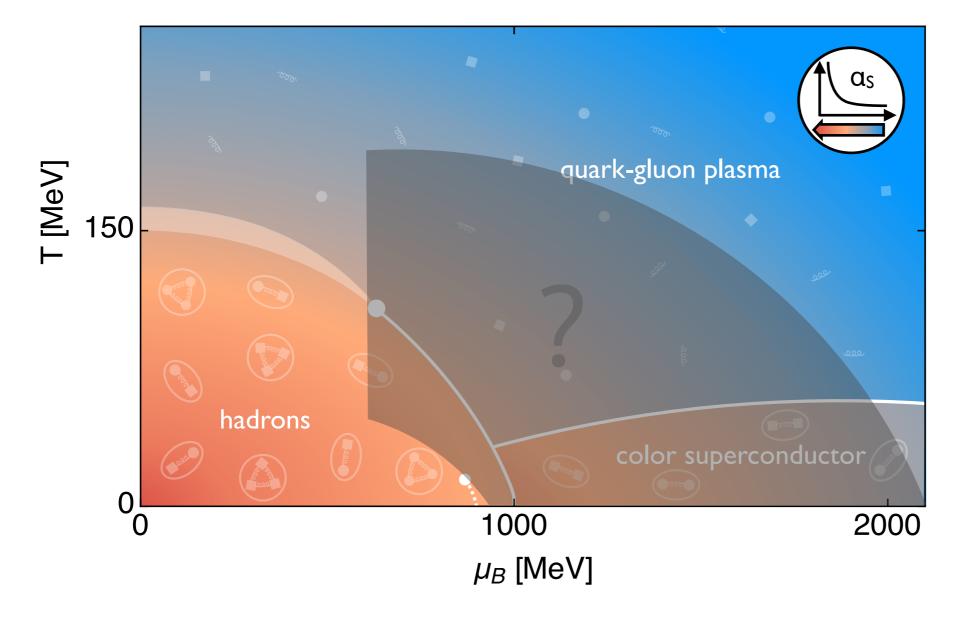


perturbative physics quarks & gluons

"external" parameters control scale: phase diagram



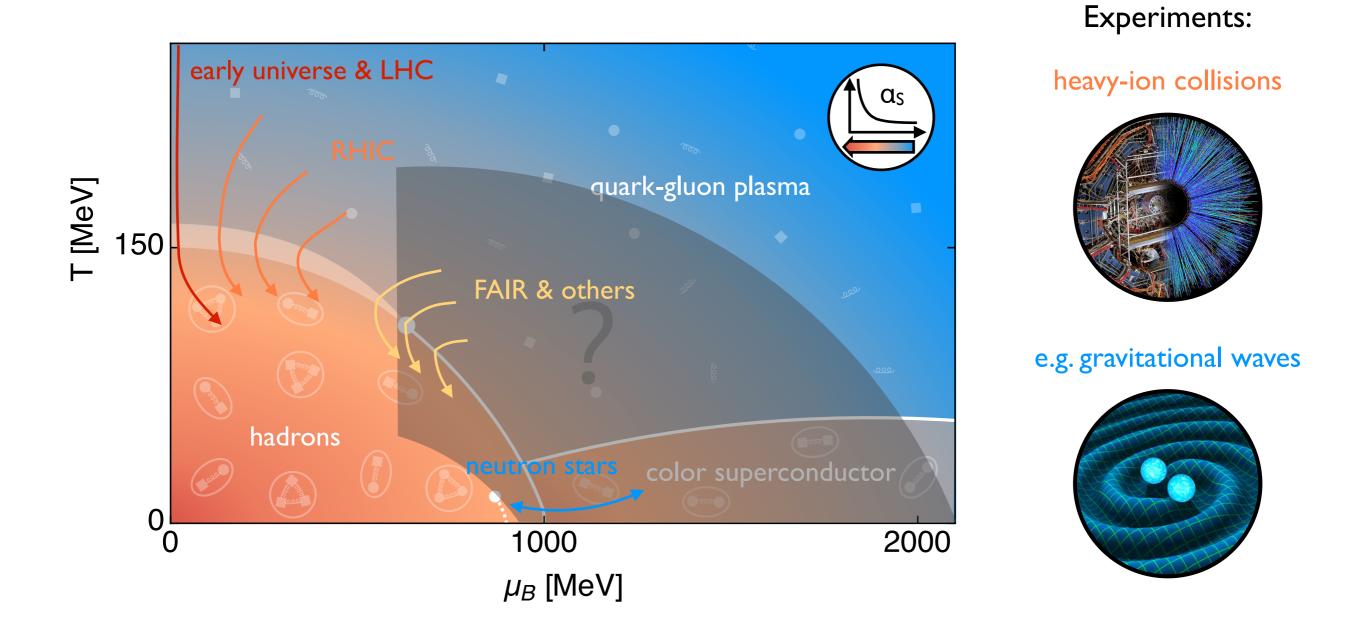
"external" parameters control scale: phase diagram



possible phases:

- inhomogeneous phases
- no CEP, but Lifshitz point
- various CSC phases
- quarkyonic matter
- quantum pion liquid

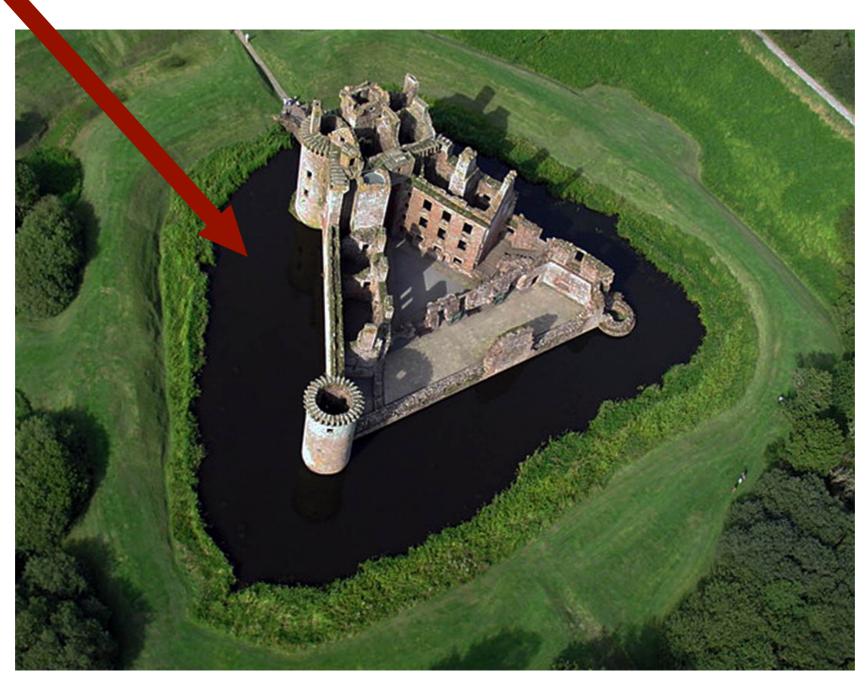
"external" parameters control scale: phase diagram



OUTLINE

- moat regimes
- how to find them

MOAT REGIMES

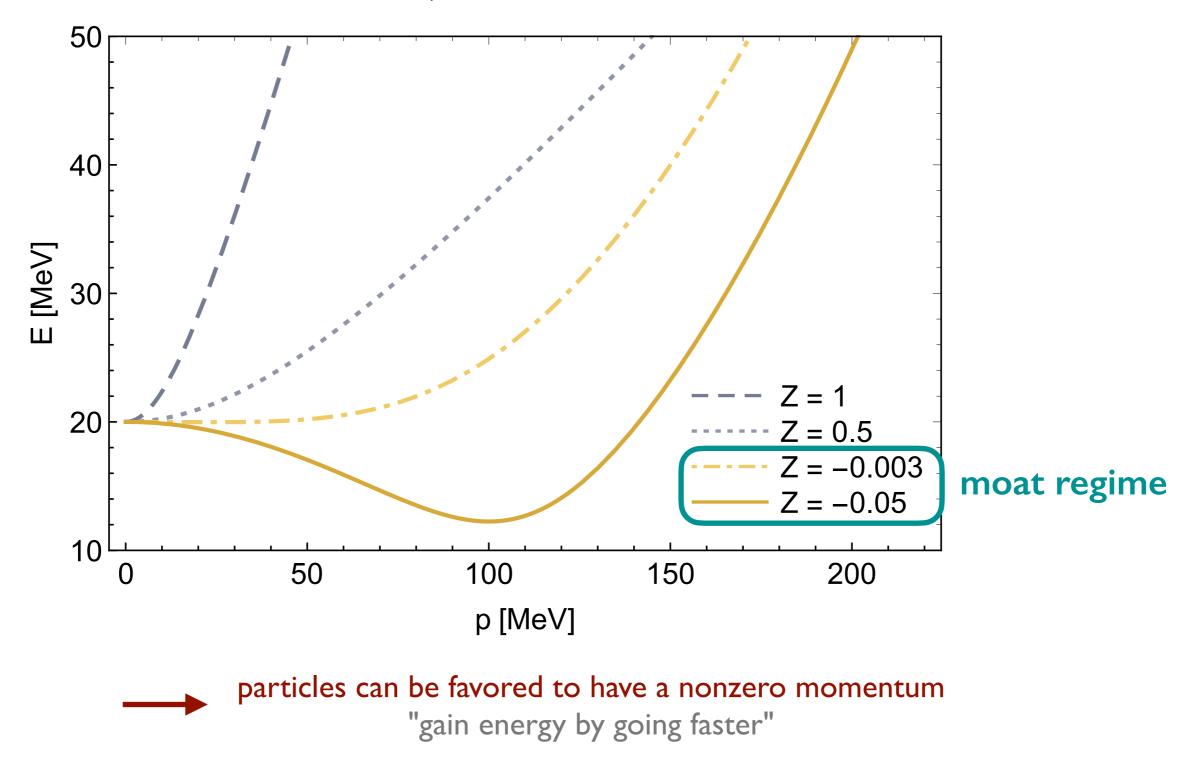


[Caerlaverock Castle, Scotland (source: Wikipedia)]

Α ΜΟΑΤ

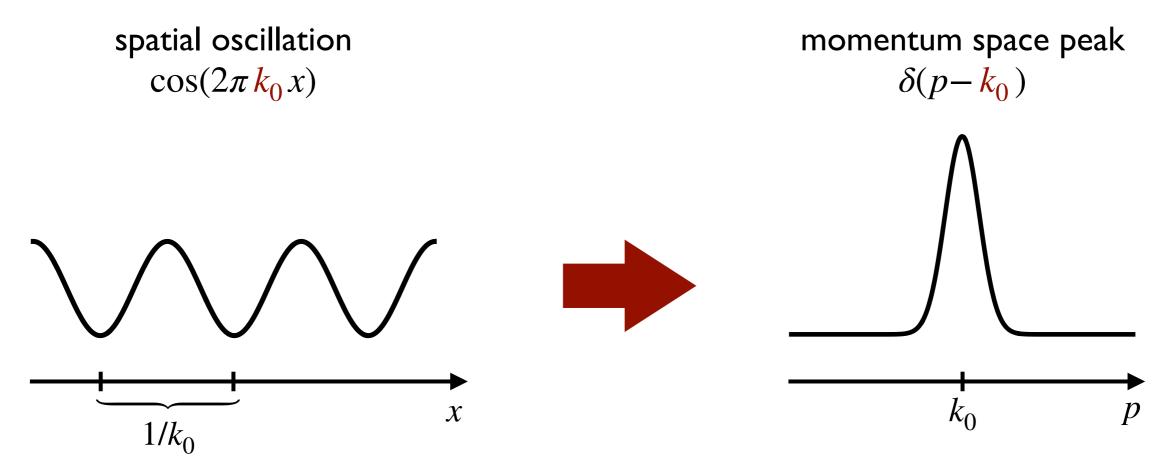
energy dispersion of particle ϕ :

$$E_{\phi}(\mathbf{p}^2) = \sqrt{Z \mathbf{p}^2 + W(\mathbf{p}^2)^2 + m_{\text{eff}}^2}$$

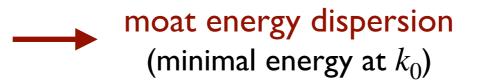


WHERE DOES THE MOAT COME FROM?

heuristic picture:



• particles subject to a spatial modulation are favored to have finite momentum k_0

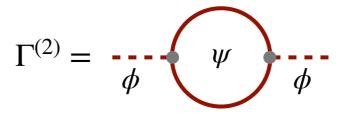


• typical for inhomogeneous/crystalline phases or a quantum pion liquid ($Q\pi L$)

WHERE CAN MOAT REGIMES APPEAR?

simplistic consideration:

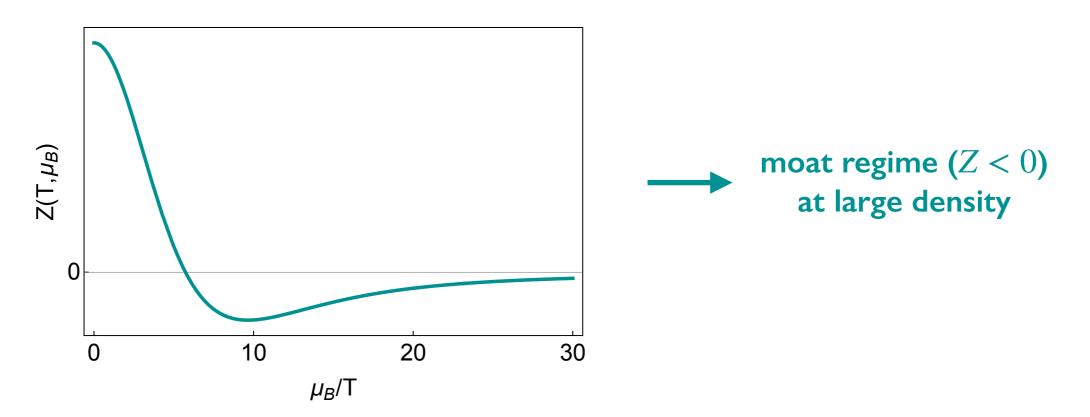
- consider "meson" coupled to a massless quark in I+I dimensions
- I-loop meson self-energy



• Z in dispersion relation is the coefficient of p^2 in $\Gamma^{(2)}$

polygamma function (not a quark)

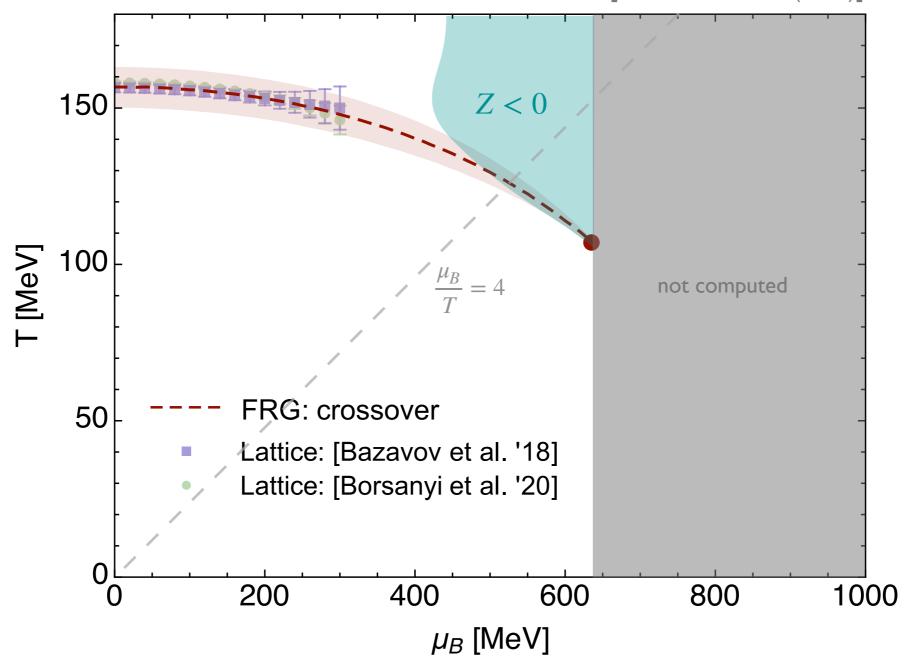
$$Z(T,\mu_B) = \frac{1}{2} \frac{\partial^2}{\partial p^2} \Gamma^{(2)} \bigg|_{p=0} \propto -\operatorname{Re} \psi^{(2)} \bigg(\frac{1}{2} + \frac{i}{2\pi} \frac{\mu_B}{3T} \bigg)$$



WHERE CAN MOAT REGIMES APPEAR?

At large μ_B in the QCD phase diagram:

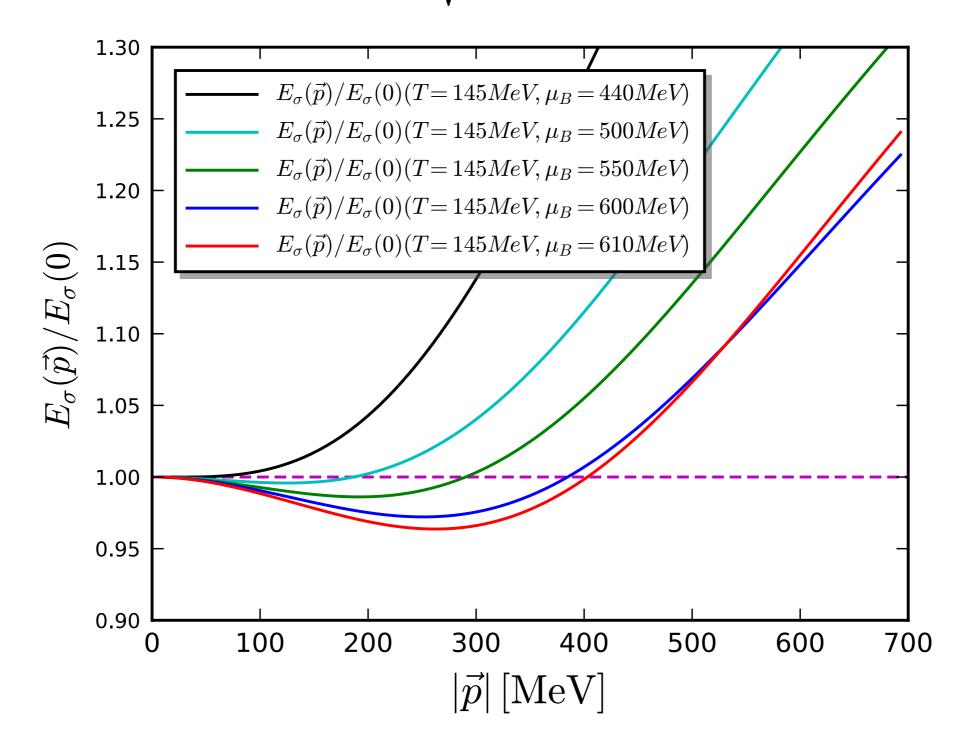
[Fu, Pawlowski, FR (2019)]



indication for extended region with Z < 0 in QCD: moat regime

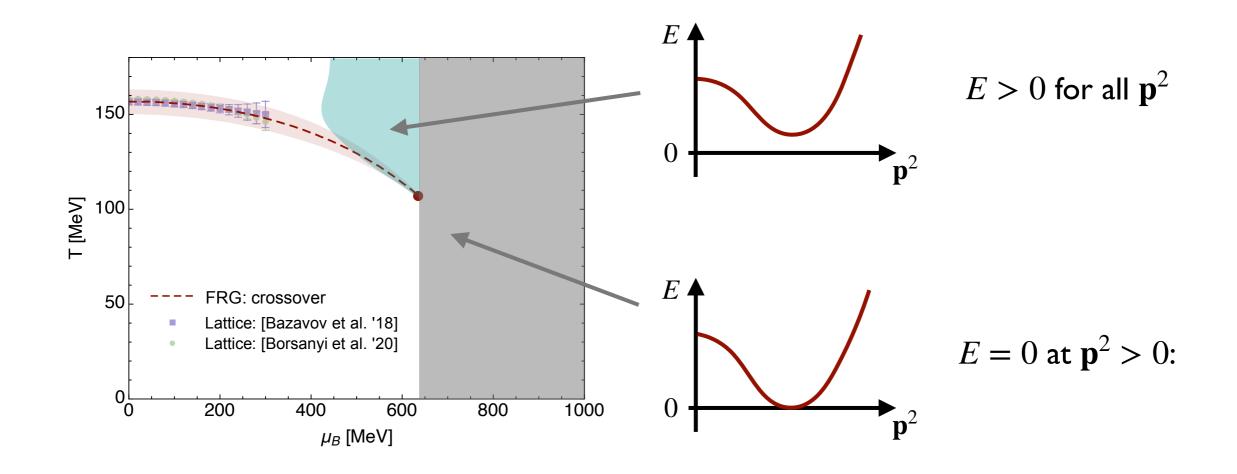
MOAT REGIME IN THE QCD PHASE DIAGRAM

• preliminary result for the energy dispersion of pions/sigmas $E_{(\pi/\sigma)} = \sqrt{Z_{(\pi/\sigma)}(p^2)p^2 + m_{(\pi/\sigma)}^2}$ $E_{\sigma}(\mathbf{p}^2) = \sqrt{Z_{\sigma}(\mathbf{p}^2) \mathbf{p}^2 + m_{\sigma}^2}$



IMPLICATIONS OF THE MOAT

The energy gap might close at lower T and larger μ_B :

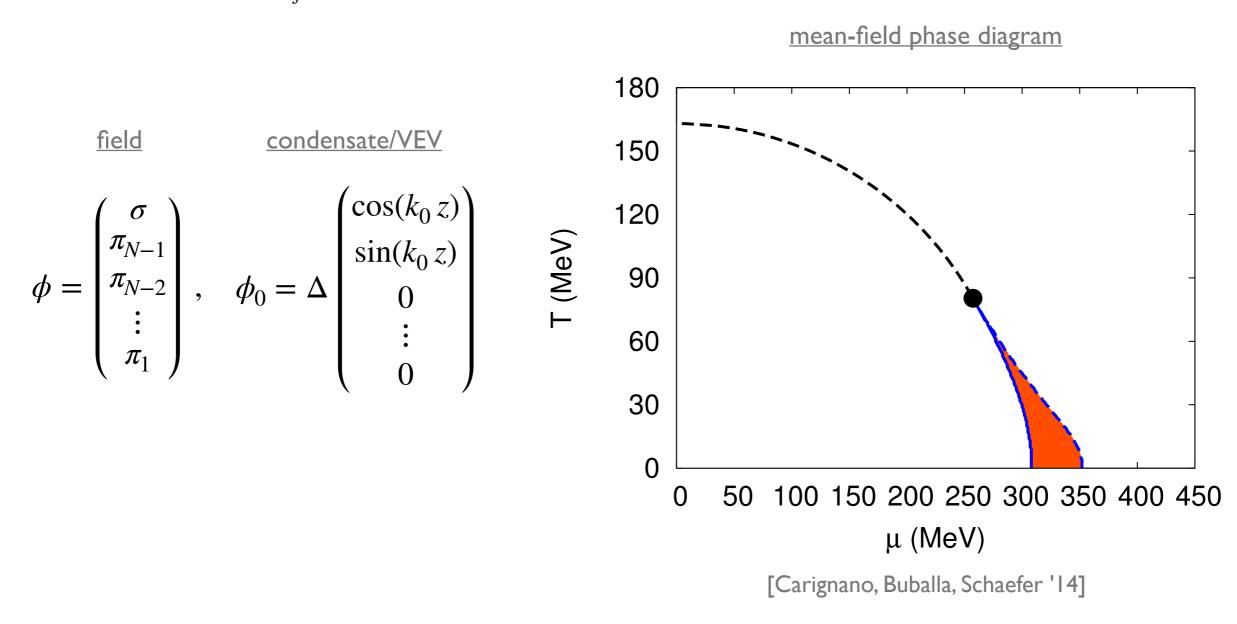


instability towards formation of an inhomogeneous condensate

INHOMOGENEOUS PHASE

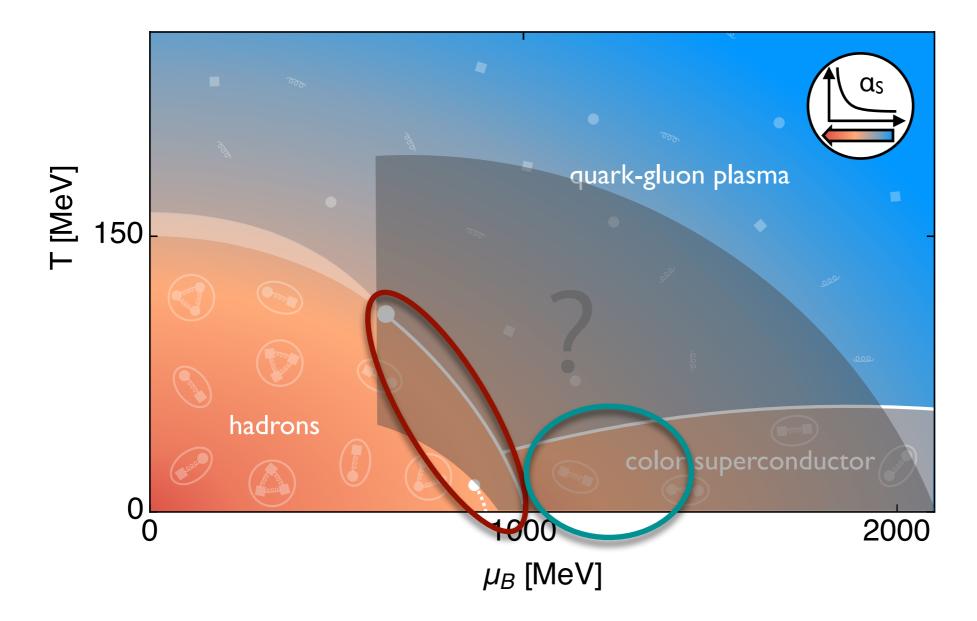
emerges if energy gap closes

- $E_{\phi}(k_0^2) = 0$: particles with momentum k_0 condense
- basic example: $O(N_f)$ chiral density wave



IMPLICATIONS OF THE MOAT

option I: moat is a precursor for an inhomogeneous phase



possibilities: inhomogeneous chiral condensate or crystalline CSC

INHOM. PHASES & FLUCTUATIONS I

Inhomogeneous phases are mostly studied in mean-field. But associated spontaneous symmetry breaking gives rise to massless modes (Goldstones). Their fluctuations must be relevant!

Two types of symmetry breaking for inhomogeneous phases:

- continuous spatial symmetries (rotations, translations) broken down to discrete ones
- global flavor symmetries are broken (e.g. $O(N_f) \rightarrow O(N_f 2)$ for chiral density wave)

It has been argued that Id modulations are favored against higher-dimensional ones [Abuki, Ishibashi, Suzuki '12]

Goldstone bosons from spatial symmetry breaking (e.g. phonons) lead to Landau-Peierls instability of I d inhomogeneous condensates (e.g. chiral density wave)

• Goldstones lead to logarithmic divergences

Id condensate is destroyed; the system is disordered

• algebraically instead of exponentially decaying correlations still possible

quasi-long-range order (e.g. liquid crystal)

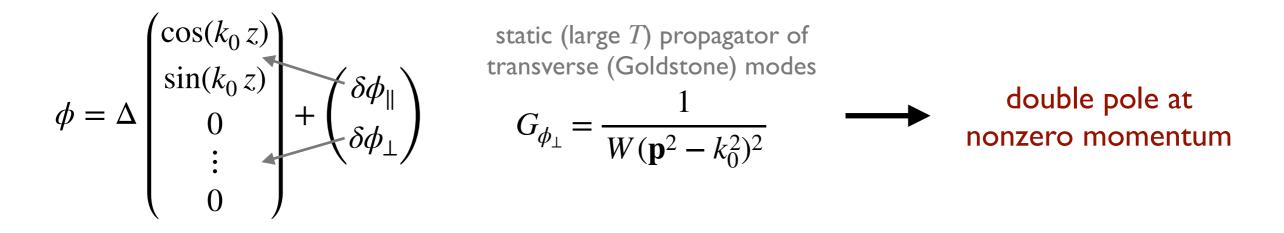
[Landau, Lifshitz, Stat. Phys. I, §137] [Lee, Nakano, Tsue, Tatsumi, Friman '15]

Option 2: moat is a precursor for a liquid-crystal-like phase

INHOM. PHASES & FLUCTUATIONS 2

even "worse" for fluctuations of Goldstones from broken flavor symmetry

• basic example: fluctuations around O(N) chiral density wave



tadpole corrections in any dimension lead to linear IR divergences at finite T:

$$\phi_{\perp} \sim T \int \frac{d^d \mathbf{p}}{(2\pi)^d} G_{\phi_{\perp}} \sim \frac{T}{W} k_0^{d-3} \int_{|\mathbf{p}| \sim k_0} \frac{d|\mathbf{p}|}{(|\mathbf{p}| - k_0)^2}$$

transverse fluctuations $\delta \phi_{\perp}$ disorder the system: no inhomogeneous phase for N > 2not even quasi-long-range order

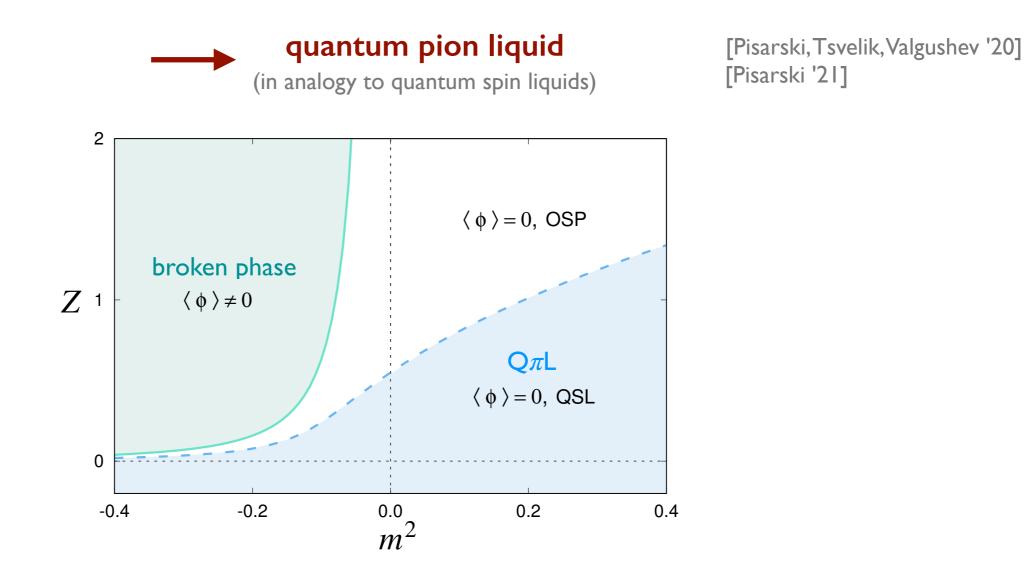
(rigorous for O(N) chiral density wave at $N \to \infty$)

[Pisarski, Tsvelik, Valgushev '20, Pisarski '21]

QUANTUM PION LIQUID

in this case we are left with another unusual disordered phase:

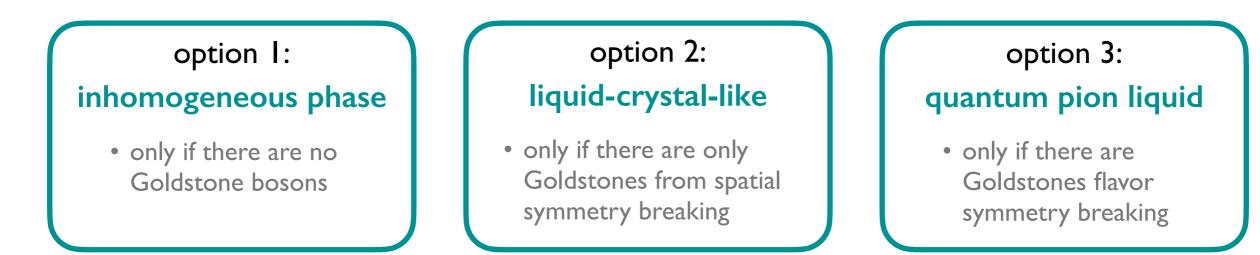
- disordered phase with a moat spectrum (E > 0 for all \mathbf{p}^2)
- instead of double pole, $G_{\phi_{\perp}}$ has complex poles $|\mathbf{p}| = m_r + im_i$
- lead to spatial modulations: $\langle \phi(x)\phi(0) \rangle \sim e^{-m_r x} \cos(m_i x)$ for large x

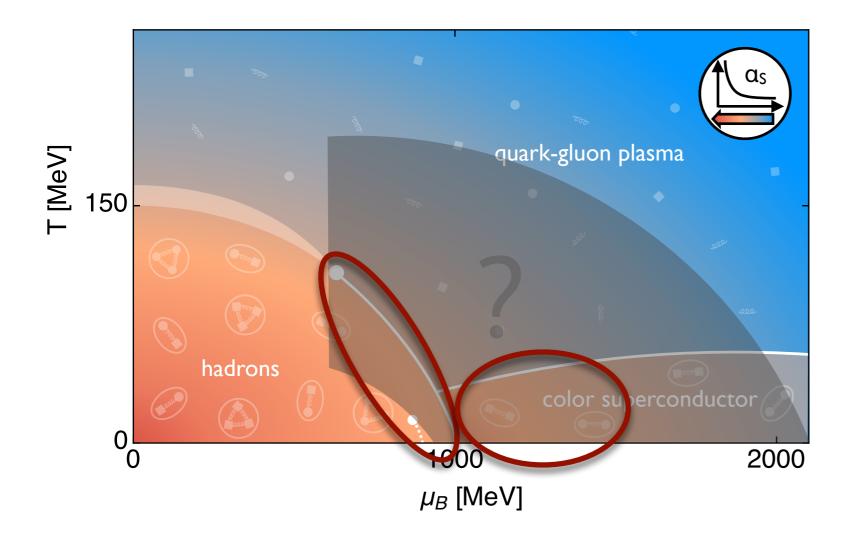


Option 3: moat signals a quantum pion liquid

IMPLICATIONS OF THE MOAT

the moat regime could be an indication that dense QCD has:

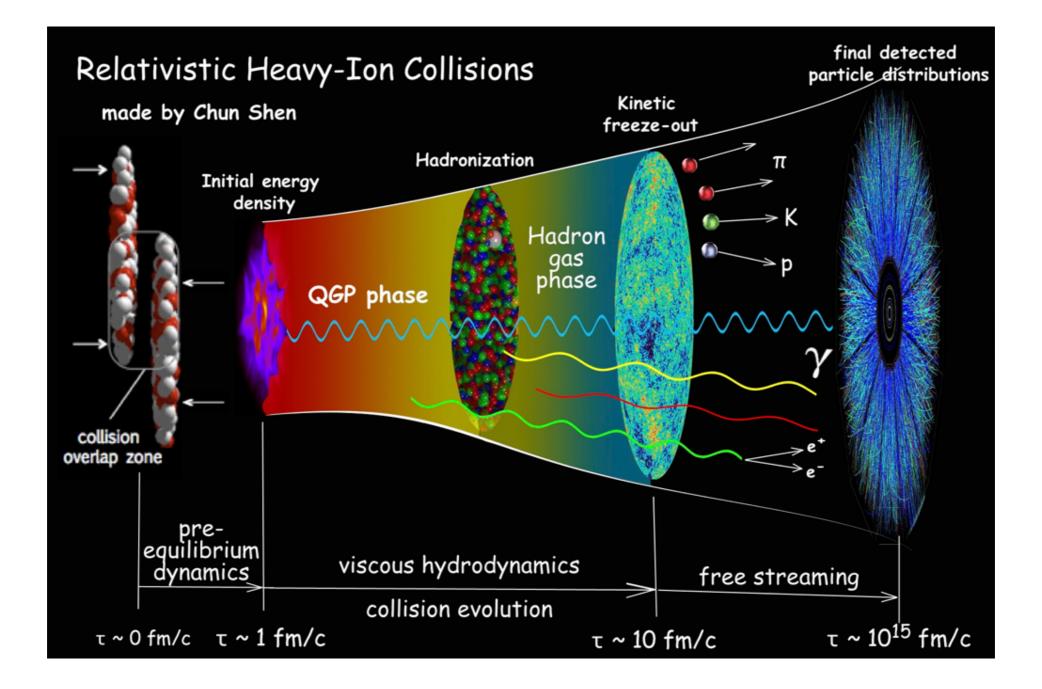




this will occur in the regions where inhomogeneous phases are expected

SIGNATURES OF MOATS IN HEAVY-ION COLLISIONS

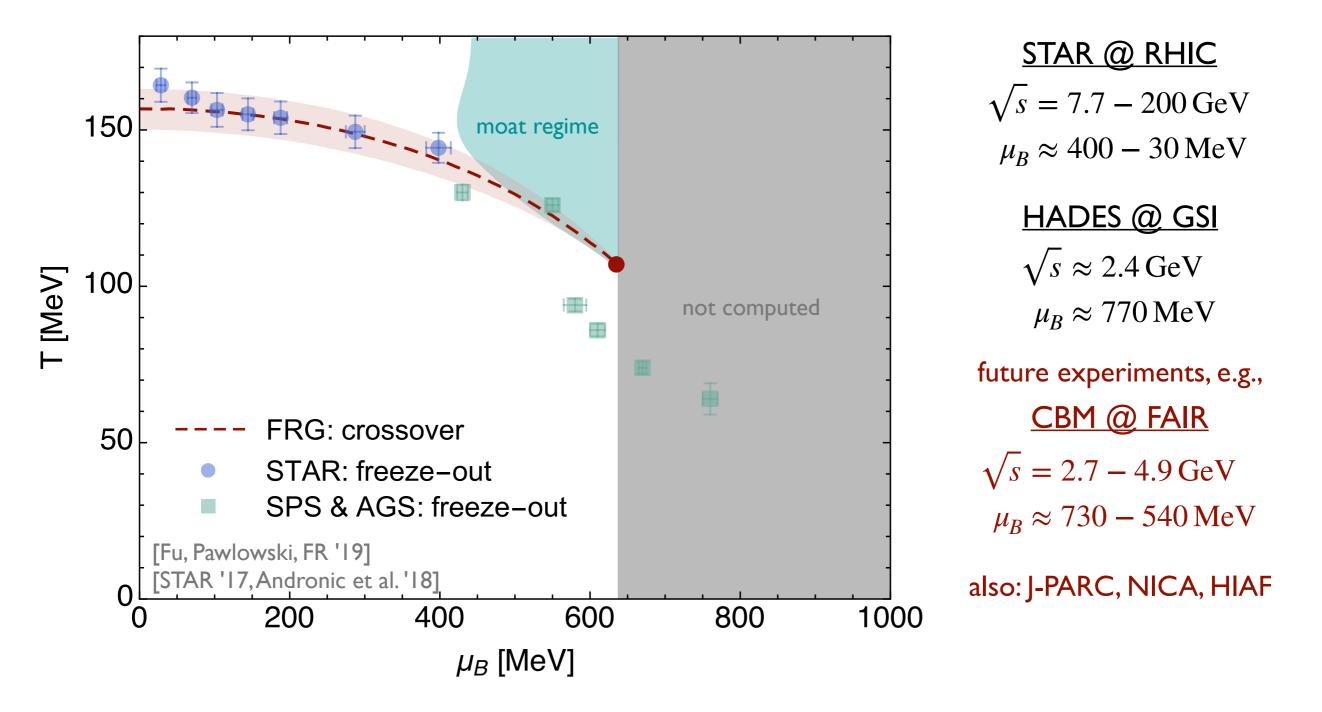
PROBING THE PHASE DIAGRAM



imprints of the phase structure at freeze-out?

PROBING THE PHASE DIAGRAM

Vary the beam energy to study the phase diagram different densities (smaller energy \leftrightarrow lager μ)



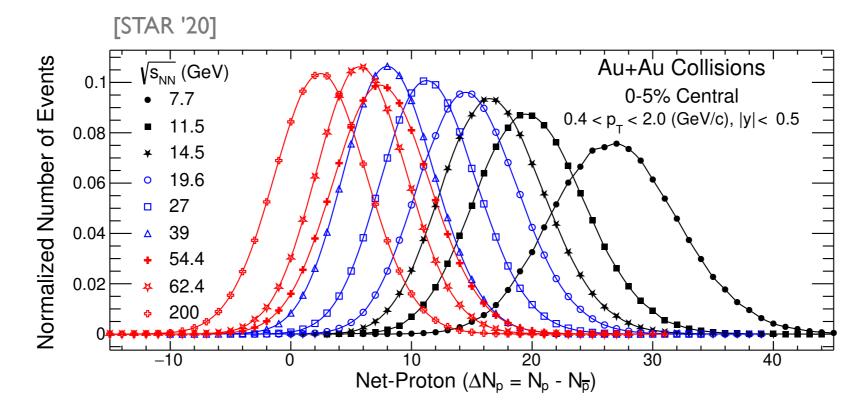
What are the signatures of the the phase diagram in heavy-ion collisions?

PARTICLE NUMBER DISTRIBUTION

The challenge: signatures have to be extracted from hadronic final states

A solution: consider distributions

• count particles from many collisions at fixed energy, get particle number distribution



• extract particle number correlations from the measured probability distribution $P(N_P)$:

$$\left\langle (N_P - \langle N_P \rangle)^n \right\rangle = \sum_{N_P} (N_P - \langle N_P \rangle)^n P(N_P)$$

look for signatures of the phase diagram in particle number correlations

• prominent example: CEP search

SEARCH FOR MOAT REGIMES [Pisarski, FR '21]

Moats arise in regimes with spatial modulations in the phase diagram at large μ_B

Characteristic feature: minimal energy at nonzero momentum

 \Rightarrow enhanced particle production at nonzero momentum

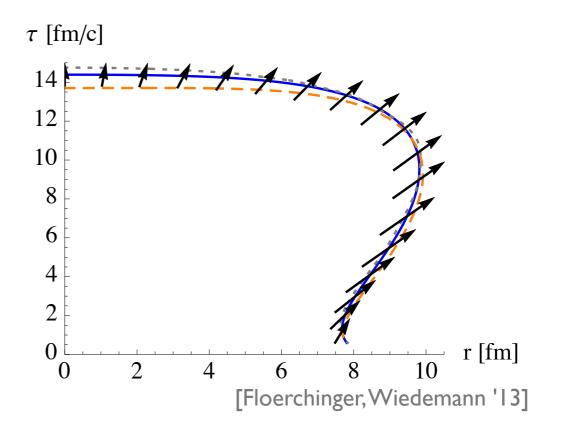
 \rightarrow look for signatures in the **momentum dependence** of particle numbers and correlations

• particle numbers are observables!

• particles freeze out at certain temperature T_f

 $\bullet \qquad \text{defines 3d hypersurface:} \\ freeze-out surface \Sigma$

How does the moat regime affect particles on Σ ?



GENERALIZED COOPER-FRYE FORMULA

compute particle numbers on the freeze-out surface

• probability distribution of finding a particle ϕ with momentum p in thermal equilibrium: Wigner function

$$F_{\phi}(p) = 2\pi \rho_{\phi}(p_0, \mathbf{p}) f(p_0)$$

• particles on Σ boosted with fluid velocity $u^{\mu}(x)$:

energy:
$$\breve{p}_0 = u^{\mu}p_{\mu}$$

spatial momentum: $\breve{\mathbf{p}}^2 = (u^{\mu}u^{\nu} - g^{\mu\nu}) p_{\mu}p_{\nu}$

• particle spectrum from integrating particle number current over freeze-out surface:

$$\frac{d^3 N_{\phi}}{d\mathbf{p}^3} = \frac{2}{(2\pi)^3} \int_{\Sigma} d\Sigma_{\mu} \underbrace{\int \frac{dp_0}{2\pi} p^{\mu} \Theta(\breve{p}_0) F_{\phi}(\breve{p})}_{\Theta(\breve{p}_0)} \underbrace{\int \frac{dp_0}{2\pi} p^{\mu} \Theta(\breve{p}_0) F_{\phi}(\breve{p})} \underbrace{\int \frac{dp_0}{2\pi} p^{\mu} \Theta(\breve{p})} \underbrace{$$

~ particle number current density

• reduces to Cooper-Frye formula for free vacuum spectral function: $\rho_{\phi}(p) = \operatorname{sign}(p_0) \,\delta \left| p_0^2 - \left(\mathbf{p}^2 + m^2 \right) \right|$

PARTICLE SPECTRUM IN A MOAT PHASE

use simple models to show general structure

Particle in a moat regime:

• low-energy model of free bosons in a moat regime (Z < 0, W > 0):

$$\mathscr{L}_{0} = \frac{1}{2} \left(\partial_{0}\phi\right)^{2} + \frac{Z}{2} \left(\partial_{i}\phi\right)^{2} + \frac{W}{2} \left(\partial_{i}^{2}\phi\right)^{2} + \frac{m_{\text{eff}}^{2}}{2} \phi^{2}$$

• gives simple in-medium spectral function

$$\rho_{\phi}(p_0, \mathbf{p}^2) = \operatorname{sign}(p_0) \,\delta\left[p_0^2 - E_{\phi}^2(\mathbf{p}^2)\right] \text{ with } E_{\phi}(\mathbf{p}^2) = \sqrt{Z \,\mathbf{p}^2 + W(\mathbf{p}^2)^2 + m_{\text{eff}}^2}$$

• boost symmetry broken! (but spatial rotation symmetry still intact)

Fluid velocity and freeze-out surface from hydro evolution

• boost invariant freeze-out at fixed temperature T_f and fixed proper time $\tau_f (= \sqrt{t^2 - z^2})$

 blast wave approximation for the fluid velocity:

$$u^r = \bar{u} \, \frac{r}{\bar{R}} \, \theta(\bar{R} - r)$$

[Schnedermann, Sollfrank, Heinz (1993)] [Teaney (2003)] radial size of the system

PARTICLE SPECTRUM IN A MOAT PHASE

use simple models to show general structure

model parameters:

• pick a beam energy of $\sqrt{s} = 5 \,\text{GeV}$ and read off thermodynamic and blast wave parameters:

 $T_f = 115 \text{ MeV}$ $\mu_{B,f} = 536 \text{ MeV}$ $\bar{u} = 0.3$ $\bar{R} = 8 \text{ fm}$ $\tau_f = 5 \text{ fm/c}$

[Andronic, Braun-Munzinger, Redlich, Stachel (2018)]

[Zhang, Ma, Chen, Zhong (2016)]

• thermodynamics (used later) from a hadron resonance gas [Braun-Munzinger, Redlich, Stachel (2003)]

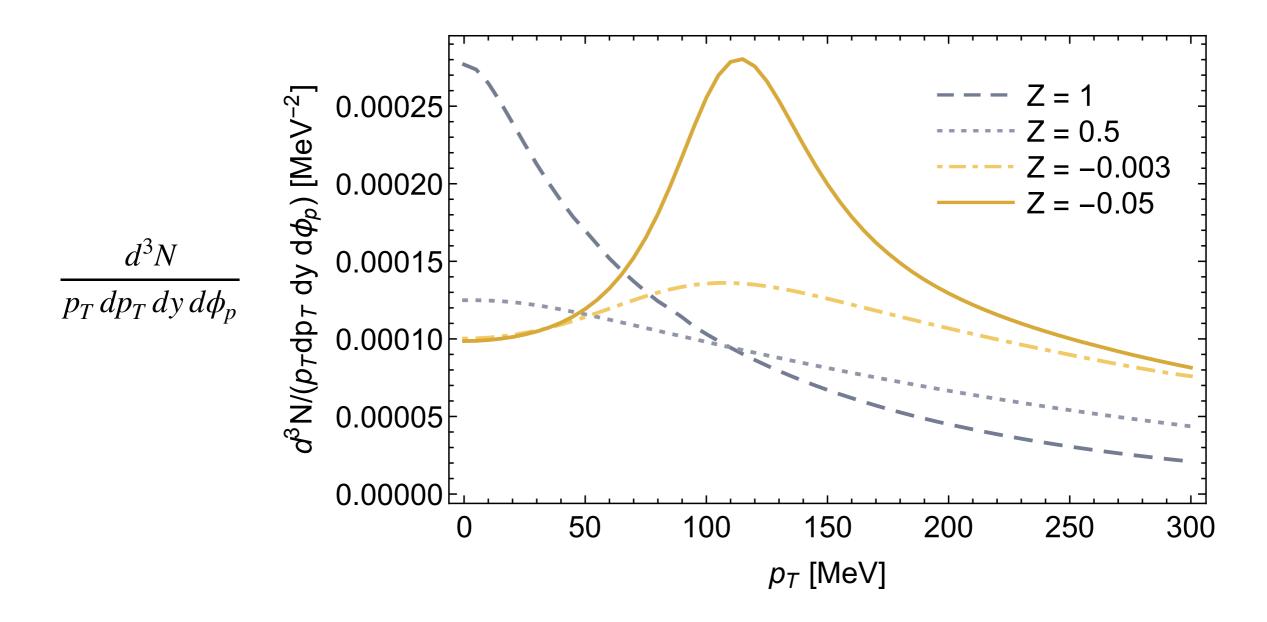
• moat parameters: purely illustrative

if Z < 0: $W = 2.5 \,\text{GeV}^{-2}$

PARTICLE SPECTRUM IN A MOAT PHASE

transverse momentum spectrum (z: beam direction, $p_T = \sqrt{p_x^2 + p_y^2}$)

• compare normal phase (gray, W = 0) to moat phase (yellow, $W = 2.5 \text{ GeV}^{-2}$)



enhanced particle production at nonzero momentum! maximum related to the wavenumber of the spatial modulation

PARTICLE NUMBER CORRELATIONS

- correlations sensitive to in-medium modifications
- difficult to compute in systems with long-range order due to multi-particle correlations
- moat regime is disordered: single particle correlations can capture relevant features

 $\begin{array}{c} & \longrightarrow \\ \textbf{correlations on } \Sigma \text{ from (generalized) Cooper-Frye formula} & [Pisarski, FR (2021)] \\ [Floerchinger (unpublished)] \\ & \text{n-particle} \\ \textbf{correlation:} & \left\langle \prod_{i=1}^{n} \frac{d^3 N_{\phi}}{d\mathbf{p}_i^3} \right\rangle = \left[\prod_{i=1}^{n} \frac{2}{(2\pi)^3} \int d\Sigma_i^{\mu} \int \frac{dp_i^0}{2\pi} (p_i)_{\mu} \Theta(\breve{p}_i^0) \right] \left\langle \prod_{i=1}^{n} F_{\phi}(\breve{p}_i) \right\rangle$

```
thermodynamic average
```

- fluctuations, e.g., of thermodynamic quantities lead to fluctuations of F_{ϕ}
- consider small fluctuations T, μ_B, u with $\kappa_i^{\mu}(x) = (T(x), \mu_B(x), u^{\mu}(x))_i$:

$$\left\langle F_{\phi} F_{\phi} \right\rangle_{c} = \frac{\partial F_{\phi}}{\partial \kappa_{i}^{\mu}} \frac{\partial F_{\phi}}{\partial \kappa_{j}^{\nu}} \bigg|_{\bar{\kappa}} \left\langle \delta \kappa_{i}^{\mu} \delta \kappa_{j}^{\nu} \right\rangle + \mathcal{O}(\delta \kappa^{3})$$

connected correlator

fluctuations of T, μ_B , u

THERMODYNAMIC CORRELATIONS

- correlations $\langle ... \rangle$ from thermodynamic average
- weight configurations with the change in entropy due to fluctuations, Δs^{μ} [Landau, Lifshitz (vol. 5)]

generating functional of (connected) thermodynamic correlations

$$W[J] = \ln \int \mathscr{D}\kappa(x) \exp \int d\Sigma_{\mu} \left[\Delta s^{\mu}(x) + J(x)_{i\nu} \hat{v}^{\mu} \delta \kappa_{i}^{\nu}(x) \right]$$

- connected n-particle correlations $\langle \delta \kappa^n \rangle_c$ from $\frac{\delta^n W[J]}{\delta J^n} \Big|_{J=0}$
- change of entropy in an ideal fluid $(T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} + p\Delta^{\mu\nu})$ with Gaussian fluctuations:

$$\hat{v}_{\mu}\Delta s^{\mu} = -\frac{1}{2}\delta\kappa_{i\mu}(x) \mathcal{F}_{ij}^{\mu\nu}(x) \delta\kappa_{j\nu}(x)$$

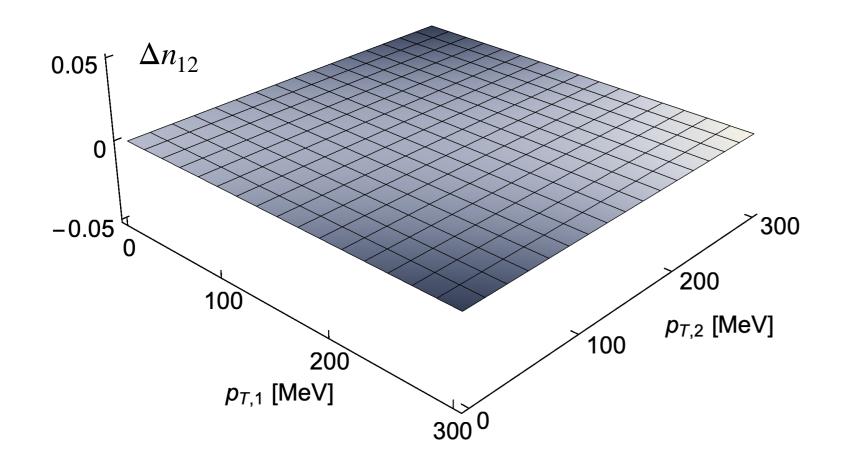
$$\int \mathcal{F}_{ij}^{\mu\nu} = \frac{1}{T} \begin{pmatrix} \hat{u} \frac{\partial s}{\partial T} & \hat{u} \frac{\partial s}{\partial \mu_B} & s\hat{v}^{\nu} \\ \hat{u} \frac{\partial s}{\partial \mu_B} & \hat{u} \frac{\partial n}{\partial \mu_B} & n\hat{v}^{\nu} \\ \hat{v}_{\mu} & n\hat{v}^{\mu} & -\hat{u} (Ts + \mu_B n)g^{\mu\nu} \end{pmatrix}_{ij}$$

PARTICLE NUMBER CORRELATIONS

• Gaussian fluctuations: only nontrivial correlation is two-point function (all others are products thereof (Wick's theorem))

$$\left\langle \frac{d^{3}N_{\phi}}{d\mathbf{p}_{1}^{3}} \frac{d^{3}N_{\phi}}{d\mathbf{p}_{2}^{3}} \right\rangle_{c} = \frac{4}{(2\pi)^{6}} \int d\Sigma^{\mu} \int \frac{dp_{1}^{0}}{2\pi} \frac{dp_{2}^{0}}{2\pi} (p_{1})_{\mu} (\hat{v} \cdot p_{2}) \Theta(\breve{p}_{1}^{0}) \Theta(\breve{p}_{2}^{0}) \left(\frac{\partial F_{\phi}(\breve{p}_{1})}{\partial \kappa_{i}^{\rho}} \frac{\partial F_{\phi}(\breve{p}_{2})}{\partial \kappa_{j}^{\sigma}} \right) \right|_{\bar{\kappa}} \left(\mathscr{F}_{ij}^{\rho\sigma}(w) \right)^{-1}$$

• look at normalized two-particle correlation $\Delta n_{12} = \left\langle \left(\frac{d^{3}N}{d\mathbf{p}^{3}} \right)^{2} \right\rangle_{c} / \left\langle \frac{d^{3}N}{d\mathbf{p}^{3}} \right\rangle^{2}$



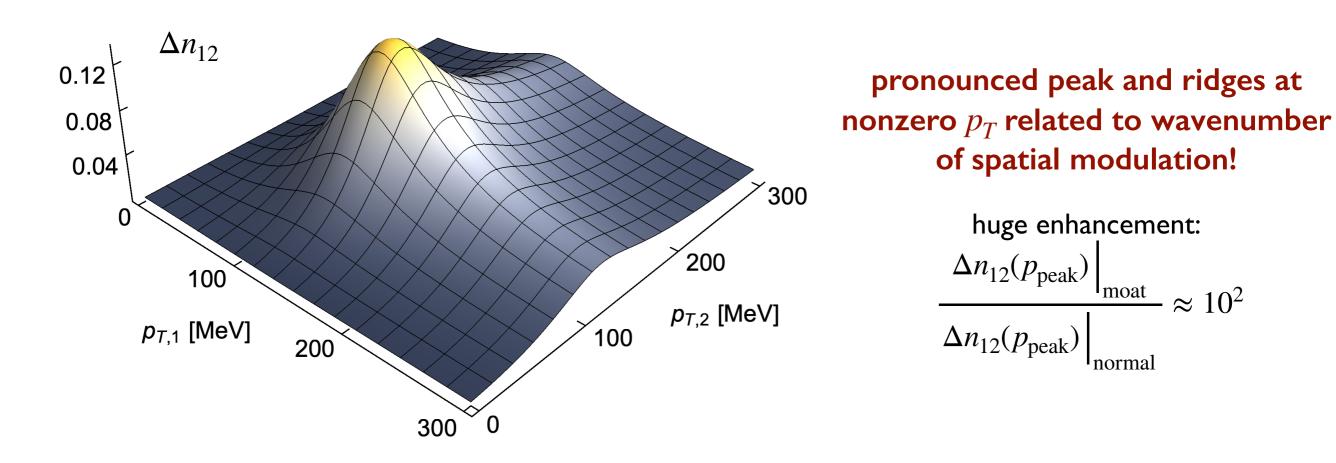
(relatively) flat two-particle p_T correlation in the normal phase

PARTICLE NUMBER CORRELATIONS

• Gaussian fluctuations: only nontrivial correlation is two-point function (all others are products thereof (Wick's theorem))

$$\left\langle \frac{d^{3}N_{\phi}}{d\mathbf{p}_{1}^{3}} \frac{d^{3}N_{\phi}}{d\mathbf{p}_{2}^{3}} \right\rangle_{c} = \frac{4}{(2\pi)^{6}} \int d\Sigma^{\mu} \int \frac{dp_{1}^{0}}{2\pi} \frac{dp_{2}^{0}}{2\pi} (p_{1})_{\mu} (\hat{v} \cdot p_{2}) \Theta(\breve{p}_{1}^{0}) \Theta(\breve{p}_{2}^{0}) \left(\frac{\partial F_{\phi}(\breve{p}_{1})}{\partial \kappa_{i}^{\rho}} \frac{\partial F_{\phi}(\breve{p}_{2})}{\partial \kappa_{j}^{\sigma}} \right) \right|_{\bar{\kappa}} \left(\mathscr{F}_{ij}^{\rho\sigma}(w) \right)^{-1}$$

• look at normalized two-particle correlation $\Delta n_{12} = \left\langle \left(\frac{d^{3}N}{d\mathbf{p}^{3}} \right)^{2} \right\rangle_{c} / \left\langle \frac{d^{3}N}{d\mathbf{p}^{3}} \right\rangle^{2}$



moat phase

SUMMARY

Moats arise in regimes with spatial modulations

- expected to occur at large μ_B
- are precursors for inhomogeneous-, liquid-crystal-like or quantum pion liquid phases

Enhanced production of moat particles at nonzero momentum

- characteristic peaks (and ridges) in particle spectra and correlations at nonzero p_{T}

Opportunity to discover novel phases with low-energy heavy-ion collisions through differential measurements of particles and their correlations at small momenta

So far: basic description of qualitative effects To do: quantitative description of moat regimes