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ABSTRACT: Simple two-dimensional models with massless and massive
fermions are studied in the hamiltonian framework. One of the motivations
is to understand better the relationship between the usual (space-like)
and light front forms of field theory. The models include the derivative
coupling model (Schroer, Rothe-Stamatescu), the Thirring, Thirring-Wess
and Schwinger model. The correct quantum Hamiltonians that incorporate
the knowledge of the operator solutions, are derived. While the derivative-
coupling model is found to be almost equivalent to a free theory, the
physical vacuum states of the (massless) Thirring and Thirring-Wess can be
obtained by means of a Bogoliubov transformation in the form of a coherent
state quadratic in composite boson operators. The hermitian point-splitting
is used to derive the interacting currents from the known operator solutions
in the TW and Schwinger models. The axial anomaly is derived in a simple
manner, the truly gauge-invariant currents are found and the Schwinger
mechanism is elucidated.
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INTRODUCTION

Quantum Field Theory (QFT) – language of elementary particle physics

Perturbative solutions/approximations

Non-perturbative (analytic) treatment difficult (cf. F. Strocchi’s recent
book)

rigorous treatments (axiomatic/constructive/algebraic FT) use complicated
mathematics and have gained a limited physical insight

a more physical but still sufficiently rigorous and reliable scheme would
be desirable

area of solvable models is a very good testing ground for NP approaches

Soluble models: simple relativistic field theories in two-dimenional
space-time in which operator solutions of the field equations can be
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found (versions of the model with derivative coupling, Thirring, Federbush,
Thirring-Wess, Schwinger...)

sometimes taken as prototype for more realistic theories (Schwinger m.
for QCD)

Original goal: soluble models – suitable for studying structure of and
relationship between spacelike (SL) and light front (LF) formulations of QFT

explicit non-approximativ solutions of the Heisenberg field equations can
be obtained at the quantum level in both schemes – full physical content can
be extracted

advantages of the LF noticed long time ago (”infinite momentum frame”)

useful for analysis of processes at high energies

no systematic formulation of LF QFT available, partial approaches
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although structure (properties) of the two schemes differ, physical
results (correlation functions) should agree – not always the case

Hamiltonians have different structure in some models

front-form Hamiltonian formulation (Dirac 1949)

LF variables:

xµ = (x+, x−), p.x =
1

2
p+x− +

1

2
p−x+, p.p = m2 ⇒ p̂− = m2/p+,

∂+ =
∂

∂x+
, ∂− =

∂

∂x− , ∂µ∂
µ = 4∂+∂−

ψ†(x) = (ψ1
†,ψ2

†). (1)

x+ – LF time, P+ – LF momentum, P− – LF Hamiltonian, etc.
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Striking differences between the conventional SL and LF theories:
mathematical structure as well as some physical aspects

• nature of field variables: dynamical vs. constrained

• minimal number (3) of dynamical Poincaré generators

• status of the vacuum state: by kinematical reasons, it is an eigenstate of
the FULL Hamiltonian, not just of the free part H0 (due to positivity and
conservation of the LF momentum p+

• consistent Fock expansion of bound states, amplitudes with direct
probabilistic interpretation a la QM

SL form: physical vacuum (the lowest-energy eigenstate of the full
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Hamiltonian) has to be obtained from dynamical calculations, very difficult,
often neglected

possible by a Bogoliubov transformation in some very simple models
(quadratic interaction Hamiltonian after the current bosonization)

important aspect: work with the correct Hamiltonian!

Novel strategy: knowledge of the operator solution taken into account at
the Lagrangian level – Lagrangiansi re-expressed in terms of true degrees
of freedom - free fields – similar to elimination of constraints

OUTLINE

1. SL and LF quantization of the derivative coupling model

2. Klaiber’s formulation of the massless Thirring model, Hamiltonian
treatment, physical vacuum state
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3. Thirring-Wess model – operator solution of the coupled field equations,
Hamiltonian and its physical ground state

4. Schwinger model in the Landau gauge, truly gauge-invariant currents,
axial anomaly, generation of the gauge-boson mass...

5. Summary and conclusions
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SL AND LF DERIVATIVE COUPLING MODEL

The simplest model – illustration of the derivation of the correct
Hamiltonians and SL-LF comparison

The classical Lagrangian density

L =
i

2
Ψγµ

↔
∂µ Ψ− mΨΨ +

1

2
∂µφ∂

µφ−
1

2
µ2φ2 − g∂µφJµ, Jµ = ΨγµΨ. (2)

For µ = 0 known as the Schroer’s model, for axial vector current interaction
as Rothe-Stamatescu model (m = 0, µ #= 0).

Euler-Lagrange eqs.

iγµ∂µΨ = mΨ + g∂µφγ
µΨ,

∂µ∂
µφ+ µ2φ = g∂µJµ. (3)
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Convention: capital Greek letters - interacting Heisenberg fields, small -
free fields

Classically, the vector current is conserved, ∂µJµ(x) = 0 ⇒ free scalar
field (not guaranteed at the quantum level)

classical solution of the Dirac eq.

Ψ(x) = eigφ(x)ψ(x), iγµ∂µψ(x) = mψ(x). (4)

irrespectively if scalar field is free or interacting

φ(x) quantized by
[

a(k1), a†(l1)
]

= δ(k1 − l1),
using notation p̂.x ≡ ω(p1)t − p1x1,ω(p1) =

√

p2
1 + µ2
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φ(x) =
1√
2π

+∞∫

−∞

dk1

√

2ω(k1)

[

a(k1)e−ik̂.x + a†(k1)eik̂.x
]

≡ φ(+)(x) + φ(−)(x). (5)

The free massive fermion field quantized as

ψ(x) =
1√
2π

+∞∫

−∞

dp1
[

u(p1)b(p1)e−ip̂.x + v(p1)d†(p1)eip̂.x
]

,

u†(p1) = (
√

p+,
√

p−), v(p1)† = (
√

p+,−
√

p−),

p± = E(p1) ± p1, E(p1) =
√

p2
1 + m2
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{b(p1), b†(q1} = {d(p1), d†(q1)} = δ(p1 − q1). (6)

Remark Approach here a bit heuristic, operators have to be regularized,
finite-volume treatment.

At the quantum level, the solution has to be regularized:

Ψ(x) = Z1/2(ε)e−igφ(−)(x)e−igφ(+)(x)ψ(x), (7)

where Z(ε) = exp
{

g2
[

φ(+)(x − ε
2),φ

(−)(x + ε
2)

]}

= exp
{

− ig2D(+)(ε)
}

.

Apply the point-splitting regularization to the interacting currents:

Jµ(x) = s lim
ε→0

1

2

{

Z(ε)ψ(x +
ε

2
)eigφ(−)(x+ ε

2)eigφ(+)(x+ ε
2)γµ

×e−igφ(−)(x− ε
2)e−igφ(+)(x− ε

2)ψ(x −
ε

2
) + H.c.

}

=
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=: ψ(x)γµψ(x) : +
g

2π
∂µφ(x). (8)

Symmetric limit (s limε→0
εµεν

ε2
= 1

2g
µν), free field relation

ψ(x +
ε

2
)γµψ(x −

ε

2
) =: ψ(x)γµψ(x) : −

i

π

εµ

ε2
(9)

No need to subtract the VEV part by hand if one defines the (free) current
as a hermitian sum

jµ(x) =
1

2

[

ψ(x +
ε

2
)γµψ(x −

ε

2
) + ψ(x −

ε

2
)γµψ(x +

ε

2
)
]

(10)

Z(ε) cancelled by the opposite factor from commuting two middle terms

The quantum vector current received a correction (”anomaly”, ∂µjµ = 0),
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∂µJµ(x) =
g

2π
∂µ∂

µφ(x) (11)
The only effect: finite mass ”renormalization”:

∂µ∂
µφ(x) + µ̃2 = 0, µ̃2 =

µ2

1 − g2

2π

. (12)

Axial-vector current is conserved (if m = 0):

Jµ
5 (x) =: ψ(x)γµγ5ψ(x) : −

g

2π
εµν∂νφ(x). (13)

Conjugate momenta directly

Πφ = ∂0φ(x) − gJ0, ΠΨ =
i

2
Ψ†(x), ΠΨ† = −

i

2
Ψ(x). (14)
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The Hamiltonian

H = H0B + H
′
,

H0B =

+∞∫

−∞

dx1
[1

2
Π2
φ +

1

2
(∂1φ)2 +

1

2
µ2φ2

]

,

H
′
=

+∞∫

−∞

dx1
[

− iΨ†α1∂1Ψ + mΨ†γ0Ψ + g∂1φJ1
]

. (15)

In the kinetic term the free field ψ(x) taken,

H0F =

+∞∫

−∞

dx1
[

− iψ†α1∂1ψ + mψ†γ0ψ
]

,
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H0F =

+∞∫

−∞

dp1E(p1)
[

b†(p1)b(p1) + d†(p1)d(p1)
]

,

H0B =

+∞∫

−∞

dp1ω(p1)a†(p1)a(p1), ω(p1) =
√

p2
1 + µ2,

(16)

The interacting Hamiltonian becomes

Hint =
g

2
√
π

+∞∫

−∞

dk1
[

c†(k1)a(k1) + a†(k1)c(k1) + a†(k1)c†(k1) + a(k1)c(k1)
]

.

(17)
where the composite boson operators satisfying [c(k1), c†(l1)] = δ(k1 − l1)
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correspond to the vector current

jµ(x) = −
i√
2π

∫
dk1

√
2k0

kµ
{

c(k1)e−ik̂.x − c†(k1)eik̂.x
}

, (18)

The Hamiltonian non-diagonal, a Bogoliubov transformation necessary
for m = 0 implemented by means of a unitary operator U = exp(iS) with

S(γ) = −i

+∞∫

−∞

dk1γ(k)
[

c†(k1)a†(−k1) − c(k1)a(−k1)
]

. (19)

The physical vacuum found as

|Ω〉 = N exp
[

+∞∫

−∞

dk1γ(g)c†(−k1)a†(k1)
]

|0〉. (20)
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nontrivial vacuum structure
Also: momentum operator contains interaction!

THE LF TREATMENT

Covariant Lagrangian in terms of LF space-time and field variables

Llf = iΨ2
†

↔
∂+ Ψ2 + iΨ1

†
↔
∂− Ψ1 − m(Ψ1

†Ψ2 + Ψ2
†Ψ1) +

+ 2∂+φ∂−Φ−
1

2
µ2φ2 − g∂+φJ+ − g∂−φJ−, (21)

Euler-Lagrange equations in the component form read

2i∂+Ψ2 = mΨ1 + 2g∂+φΨ2, 2i∂−Ψ1 = mΨ2 + 2g∂−φΨ1 (22)

Inserting the constraint into the Lagrangian leads to the free LF
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Hamiltonian!

P− =

+∞∫

−∞

dx−

2

[

m
(

ψ1
†ψ2 + ψ2

†ψ1

)

+ µ2φ2
]

(23)

CLEAR CONTRADICTION BETWEEN THE SL and LF FORMALISMS!

WAY OUT:

The solution of the field equations not taken into account!

The solution tells us that there is no ”independent” interacting field – it
is composed out of free fields. The free fields are the true physical degrees
of freedom and the Lagrangian has to be re-expressed in terms of them
first (analogously to inserting a constraint into Lagrangian), then calculate
conjugate momenta and derive the Hamiltonian.
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NOTE: this is not the same as inserting the field equation (Dirac eq.,
Klein-Gordon eq.) into L – the latter leads to vanishing Lagrangian
(extremum of the action)

Dirac eq. implies knowledge of γµ∂µΨ, knowing the solution implies
knowing ∂µΨ

Inserting the solution of the Dirac eq. of the DCM in the form

∂µΨ(x) = −ig∂µφ(x)Ψ(x) + e−igφ(x)∂µψ(x) (24)

into L yields

L =
i

2
ψγµ

↔
∂µ ψ − mψψ +

1

2
∂µφ∂

µφ−
1

2
µ2φ2, (25)

i.e. the interaction part got cancelled! Free form of the Lagrangian, free
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fields and conjugate momenta (Πψ = iψ†,Πφ = ∂0φ) and the Hamiltonian

H =

+∞∫

−∞

dx1
[

− iψ†α1∂1ψ + mψ†γ0ψ +
1

2
Π2
φ +

1

2
(∂1φ)2 +

1

2
µ2φ2

]

, (26)

which is just the sum of free Hamiltonians of the massive scalar
and fermion fields. Correct Heisenberg equations generated with this
Hamiltonian:

−i∂0Ψ(x) = [H,Ψ(x)] (27)
Physical vacuum coincides with the Fock vacuum. The only trace of the
interacting theory is the non-canonical form of the anticommutation relation
of the interacting fermion field and the form of the correlation functions. The
latter expressed in terms of the correlation functions of free fields,

〈vac|Ψα(x)Ψβ(y)|vac〉 = 〈0| : e−igφ(x) : ψα(x)ψβ(y) : eigφ(y) : |0〉 =
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= eg2D(+)(x−y)S(+)
αβ (x − y), (28)

where

D(+)(x − y) = 〈0|φ(x)φ(y)|0〉,

D(+)(z) = −
1

4
θ(z2)

[

N0(µ
√

z2) +

+ isgn(z0)J0(µ
√

z2)
]

+
1

2π
θ(−z2)K0(µ

√

−z2). (29)

The fermionic two-point function is

S(+)
αβ (x − y) = 〈0|ψα(x)ψβ(y)|0〉,

S(+)
αβ (z) =

(

iγµ∂µ + m
)

αβ
D(+)(z). (30)
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Explictly,

S(±)(z) =
i

2π

(

iγµ∂x
µ + m

)
∫

d2p δ(p2 − m2)θ(±p0)e±ip.z =

=
i

4π

∫
dp

E(p)

(

m p−

p+ m

)

e±ip̂.z (31)

Remark: B. Schroer used this model in 1961 (Fort. Physik 1) to
illustrate the concept of ”infraparticle”. His results are ok if one considers
his interacting Lagrangian – which however is not the true Lagrangian of
the model

The LF analysis proceeds analogously:
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Llf = iΨ2
†

↔
∂+ Ψ2 + iΨ1

†
↔
∂− Ψ1 − m(Ψ1

†Ψ2 + Ψ2
†Ψ1) +

+ 2∂+φ∂−φ−
1

2
µ2φ2 − g∂+φJ+ − g∂−φJ−, (32)

Field equations

2i∂+Ψ2 = mΨ1 + 2g∂+φΨ2,

2i∂−Ψ1 = mΨ2 + 2g∂−φΨ1 (33)

solved by

Ψ2(x) = e−igφ(x)ψ2(x), 2i∂+ψ2 = mψ1

Ψ1(x) = e−igφ(x)ψ1(x), 2i∂−ψ1 = mψ2. (34)
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Inserting these solutions into the LF Lagrangian yields the free one:

Llf = iψ2
†

↔
∂+ ψ2+iψ1

†
↔
∂− ψ1−m(ψ1

†ψ2+ψ2
†ψ1)+2∂+φ∂−φ−

1

2
µ2φ2. (35)

Free Hamiltonian follows:

P− =

+∞∫

−∞

dx−

2

[

m
(

ψ1
†ψ2 + ψ2

†ψ1

)

+ µ2φ2
]

. (36)

The same as before. Reason: no kinetic term in LF Hamiltonian present
by construction

Correlation functions coincide with those from the space-like treatment.

〈0|Ψ(x)Ψ(y)|0〉 = e−
g2

π D(+)(x−y)S(+)(x − y). (37)
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S22(x − y) = 〈0|ψ2(x)ψ†
2(y)|0〉 =

∞∫

0

dp+

8π
e
− i

2p+(x−−y−−iε)− i
2

m2

p+(x+−y+−iε)
,

S11(x − y) = 〈0|ψ1(x)ψ†
1(y)|0〉 =

∞∫

0

dp+

8π

m2

p+2
e
− i

2p+(x−−y−−iε)− i
2

m2

p+(x+−y+−iε)
,

S12(x − y) = 〈0|ψ1(x)ψ†
2(y)|0〉 =

∞∫

0

dp+

8π

m

p+
e
− i

2p+(x−−y−−iε)− i
2

m2

p+(x+−y+−iε)
. (38)
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Note that we have introduced the small imaginary parts in time and space
coordinates. This step dictated by the mathematical consistency. Without
the damping factors the integrals would not exist as mathematical objects
[Gradshteyn and Ryzhik]. The scalar-field function is

D(+)(z) = mS(+)
12 (z). (39)

The fermion-field functions are

S(+)
22 (z) = − θ

(

z2
)m

8

√

z+

z−

[

J1

(

m
√

z2
)

− i sgn(z+)N1

(

m
√

z2
)
]

+

+ θ
(

− z2
)

sgn(z+)
im

4π

√

−
z+

z−
K1

(

m
√

−z2
)

,

S(+)
11 (z) = θ

(

z2
)m

8

√

z−

z+

[

J1

(

m
√

z2
)

− i sgn(z+)N1

(

m
√

z2
)
]

−

– Typeset by FoilTEX – 26



− θ
(

− z2
)

sgn(z+)
im

4π

√

−
z−

z+
K1

(

m
√

−z2
)

,

S(+)
12 (z) = − θ

(

z2
)m

8

[

N0

(

m
√

z2
)

+ i sgn(z+)J0(m
√

z2)
]

+

+ θ
(

− z2)
m

4π
K0

(

m
√

−z2
)

(40)

Small imaginary parts in the arguments with appropriate sign are
understood. Calculation of the analogous correlation functions in the
conventional theory is more complicated and requires a clever change of
variables [Bogoliubov and Shirkov].

The scalar-field correlation function diverges for µ = 0 in both schemes.
LF calculation with the massless fermion field inconsistent (yields vanishing
S(+)

11 (z).) The m = 0 limit of the LF fermion correlation function coincides
with the SL case.
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MASSIVE ROTHE-STAMATESCU MODEL – A FEW REMARKS

L =
i

2
Ψγµ

↔
∂µ Ψ−mΨΨ+

1

2
∂µφ∂

µφ−
1

2
µ2φ2−g∂µφJµ

5 , Jµ
5 = Ψγµγ5Ψ. (41)

Non-trivial physics found in literature (Belvedere and Rodrigues in a series
of papers) : axial anomaly, anomalous dimension of the fermion field,
relation to the massive Thirring and sine-Gordon models...

Based on the definition of the vector current:

jµ
ε (x) = Ψ(x + ε)γµΨ(x) exp

(

ig

x+ε∫

x

dyλε
λν∂νφ(y)

)

− V EV. (42)

”an extended treatment”
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”conservative approach”:

Field equations:

iγµ∂µΨ = mΨ + g∂µφγ
µγ5Ψ,

∂µ∂
µφ+ µ2φ2 = g∂µJµ

5 = 2imgΨγ5Ψ. (43)

Scalar field is no longer free, Dirac eq. seems to have an operator solution
similar to the one from the DCM:

Ψ(x) = e−igγ5φ(x)ψ(x). (44)

Check:

iγµ∂µΨ(x) = iγµ
[

− igγ5∂µφ(x)Ψ(x) + e−igγ5φ(x)∂µψ(x)
]

=

= g∂µφ(x)γµγ5Ψ(x) + e+igγ5φ(x)iγµ∂µψ(x), (45)
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where iγµ∂µψ = mψ. The sign in the last exponential is opposite due to
γµγ5 = −γ5γµ.

Thus, the massive RS model is not exactly solvable. The original
massless RS model (Rothe and Stamatescu, Annals of Physics 1977): The
massless axial current is conserved, hence scalar field is free. Dirac eq. is
exactly solvable but inserting the solution to the Lagrangian generates the
free Hamiltonian. Similar to the massive derivative-coupling model.

iterative (perturbative) approach in the Heisenberg picture?
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MASSLESS THIRRING MODEL

Thirring model played important role in history of QFT (see Wightman’s
Cargese lectures and Klaiber’s paper)

operator solution due to B. Klaiber (Boulder 1967), n-point correlation
functions constructed, basis of the Coleman’s (perturbative) bosonization

all aspects clarified?

not quite true: a series of papers by Faber and Ivanov (discovery of a
broken phase claimed based on Nambu – Jona-Lasinio BCS-like Ansatz for
the ground state)

similar conclusions done by Fujita et al. using the Bethe Ansatz solution

systematic Hamiltonian study based on the model’s solvability not given
so far (however some ideas and methods by S. Korenblit are close to ours
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– LM and P. Grange, PLB (2013))

Classical Lagrangian density

L =
i

2
Ψγµ

↔
∂µ Ψ−

1

2
gJµJµ, Jµ = ΨγµΨ. (46)

Field equations and current conservation

iγµ∂µΨ(x) = gJµ(x)γµΨ(x),

∂µJµ(x) = 0. (47)

The general solution is

Ψ(x) = e−i(g/
√
π)

(

αj(x)−βγ5j̃(x)
)

ψ(x),

γµ∂µψ(x) = 0 (48)
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with α + β = 1. ”Potentials” j(x) and j̃(x) connected to the free vector
current by ∂µj(x) = −

√
πjµ(x), ∂µj̃(x) =

√
πεµνjν(x). This corresponds to

replacing Jµ(x) by jµ(x) in the field equation – rather restrictive, does not
represent the most general quantum solution. The latter can be obtained
as follows. Consider the β = 0 case for simplicity

Ψ(x) = ei(g/
√
π)J(x)ψ(x) (49)

with the unknown potential J(x) of the interacting current Jµ(x), i.e.
defining ∂µJ(x) = −

√
πJµ(x). Regularizing (49) like in the DCM model and

calculating the corresponding current using the point-split product of the
above Ψ† and Ψ, we find

Jµ(x) =: ψ(x)γµψ(x) : +
g

2π
Jµ(x) ⇒

Jµ(x) = G(g)jµ(x), G(g) = (1 −
g

2π
)−1. (50)
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Interacting current = rescaled free current. Potential consequences for
Coleman’s bosonization.

Fourier representation

ψ(x) =
1√
2π

∫

dp1
{

b(p1)u(p1)e−ip.x + d†(p1)v(p1)eip.x
}

, p0 = |p1|

{b(p1), b†(q1)} = {d(p1), d†(q1)} = δ(p1 − q1),

b(k1)|0〉 = d(k1)|0〉 = 0. (51)

The spinors u(p1), v(p1) are m = 0 limits of the massive spinors,

u†(p1) =
(

θ(−p1), θ(p1)
)

, v†(p1) =
(

− θ(−p1), θ(p1)
)

. (52)
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Vector current jµ = (: ψ†ψ :, : ψ†α1ψ :):

j0(x) =
1

2π

+∞∫

−∞

dp1

+∞∫

−∞

dq1
{

f0(p
1, q1)

[

b†(p1)b(q1) − d†(p1)d(q1)
]

ei(p̂−q̂).x
]

+

+ g0(p
1, q1)

[

b†(p1)d†(q1)ei(p̂+q̂).x + d(p1)b(q1)e−i(p̂+q̂).x
]}

,

j1(x) =
1

2π

+∞∫

−∞

dp1

+∞∫

−∞

dq1
{

g0(p
1, q1)

[

b†(p1)b(q1) − d†(p1)d(q1)
]

ei(p̂−q̂).x
]

+

+ f0(p
1, q1)

[

b†(p1)d†(q1)ei(p̂+q̂).x + d(p1)b(q1)e−i(p̂+q̂).x
]}

,

f0(p
1, q1) = θ(p1)θ(q1) + θ(−p1)θ(−q1),

g0(p
1, q1) = θ(p1)θ(q1) − θ(−p1)θ(−q1). (53)
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can be represented in terms of composite fermion operators

jµ(x) = −
i√
2π

∫
dk1

√
2k0

kµ
{

c(k1)e−ik̂.x − c†(k1)eik̂.x
}

, (54)

where (Fourier transform)

c(k1) =
i√
k0

∫

dp1
{

θ
(

p1k1)
)[

b†(p1)b(p1 + k1) − d†(p1)d(p1 + k1)
]

+

+ε(p1)θ
(

p1(p1 − k1)
)

d(k1 − p1)b(p1)
}

. (55)

Canonical Fock commutation relation follow
[

c(p1), c†(q1)
]

= δ(p1 − q1), c(k1)|0〉 = 0. (56)

Problem: infrared divergence – the two-point correlation function of a
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massless scalar field in D=1+1 is divergent,

D(+)(x − y) = 〈0|φ(x)φ(y)|0〉 =
1

4π

∫
dk1

|k1|
e−ik̂.x. (57)

True ground state of the massless Thirring model:

Hamiltonian in the usual treatment (kinetic term taken as built from free
field) is

H =

+∞∫

−∞

dx1
[

− iψ†α1∂1ψ +
1

2
g
(

j0j0 − j1j1
)
]

(58)

Not correct. Insert the operator solution to the Lagrangian first:

L = iΨγµ
[

−
ig√
π
∂µjΨ + e

− ig√
π

j
∂µψ

]

−
g

2
jµjµ. (59)
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The first term in the bracket combines with the interaction term reversing
its sign. The correct Hamiltonian is

H =

+∞∫

−∞

dx1
[

− iψ†α1∂1ψ −
1

2
g
(

J0J0 − J1J1
)
]

. (60)

Fock representation: the free Hamiltonian is

H0 =

+∞∫

−∞

dp1|p1|
[

b†(p1)b(p1) + d†(p1)d(p1)
]

. (61)

The interacting Hamiltonian greatly simplifies in terms of composite
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operators c(k1), c†(k1):

Hg = G2(g)
g

π

+∞∫

−∞

dk1|k1|
[

c†(k1)c†(−k1) + c(k1)c(−k1)
]

. (62)

Obviously H = H0 + Hg is not diagonal and |0〉 is not its eigenstate.

DETAILS:

H0 satisfies
[

H0, c(k
1)

]

= −|k1|c(k1),
[

H0, c
†(k1)

]

= |k1|c†(k1). (63)

Remark: mathematically correct treatment requires cut-offs or test
functions to have well defined quantities, here the approach a little heuristic
(but checked in a finite volume)

– Typeset by FoilTEX – 39



To diagonalize H, define the operator T with the same commutation
property:

T =

+∞∫

−∞

dk1|k1|c†(k1)c(k1),

[

T, c(k1)
]

= −|k1|c(k1),
[

T, c†(k1)
]

= |k1|c†(k1). (64)

Consider now the unitary operator U ,

U = eiS, S = −
i

2

+∞∫

−∞

dp1γ(p1)
[

c†(p1)c†(−p1) − c(p1)c(−p1)
]

. (65)
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Form new free and interacting Hamiltonians

Ĥ0 = H0 − T, Ĥg = Hg + T. (66)

By construction, due to
[

S, Ĥ0

]

= 0, Ĥ0 is invariant with respect to U :

Ĥ0 → eiSĤ0e
−iS = Ĥ0 + i

[

S, Ĥ0

]

+ . . . = Ĥ0. (67)

On the other hand, Ĥint transforms non-trivially due to
[

S, c(k1)
]

= iγ(k1)c†(−k1),
[

S, c†(k1)
]

= iγ(k1)c(−k1), γ(−k1) = γ(k1).
(68)

Using the operator identity eABe−A = B + [A,B] + 1
2[A, [A, B]] +

+ 1
3![A, [A, [A, B]]] + . . .:

eiSc(k1)e−iS = c(k1) + i
(

iγ(k1)
)

c†(−k1) +
i2

2

(

iγ(k1)
)2

c(k1) +
i3

3!

(

iγ(k1)
)3

c†(−k1) +
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+ . . . . (69)

Thus

c(k1) → eiSc(k1)e−iS = c(k) cosh γ(k1) − c†(−k1) sinh γ(k1),

c†(k1) → eiSc†(k1)e−iS = c†(k1) cosh γ(k1) − c(−k1) sinh γ(k1).(70)

It follows

Ĥg → eiSĤge
−iS =

+∞∫

−∞

dk1|k1|
{[

c†(k1)c†(−k1) + c(k1)c(−k1)
][ g

2π

(

cosh2 γ(k1) + sinh2 γ(k1)
)

−

− cosh γ(k1) sinh γ(k1)
]

−
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−c†(k1)c(k)
[

4
g

2π
sinh γ(k1) cosh γ(k1) −

(

cosh2 γ(k1) + sinh2 γ(k1)
)]

−

−δ(0)
[

2 sinh γ(k1) cosh γ(k1) + sinh2 γ(k1)
]}

. (71)

The last (divergent) term removed by normal ordering. Diagonal form if
γ(k1) = γd = 1

2arctanh(2G(g)g
π).

Thus we have achieved

eiS
(

Ĥ0 + Ĥg

)

e−iS|0〉 = 0 (72)

and |Ω →= e−iS|0〉 is the new vacuum state. or

|Ω〉 = exp
[

−
1

2
γD

+∞∫

−∞

dp1
[

c†(p1)c†(−p1) − c(p1)c(−p1)
]
]

|0〉. (73)
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Simplification due to the operator identity (Kirzhnits)

eτ [A+B] = eα(τ)Beβ(τ)Ceγ(τ)C (74)

valid if

[A,B] = C, [A, C] = −λA, [B,C] = λB,

α(τ) = γ(τ) =

√

2

λ
tanh

(

√

λ

2
τ
)

, β(τ) =
2

λ
ln cosh

(

√

λ

2
τ
)

. (75)

For our case,

A ≡
+∞∫

−∞

dq1c(q1)c(−q1), B ≡
+∞∫

−∞

dq1c†(q1)c†(−q1), C = −4

+∞∫

−∞

dq1c†(q1)c(q1),
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τ =
1

2
γD, λ = 8, α =

1

2
tanh

(1

2
arctanh

g

π

)

≡ κ. (76)

and the vacuum state becomes

|Ω〉 = Ne
−κ

+∞
R

−∞
dp1c†(p1)c†(−p1)

|0〉. (77)

A coherent state of pairs of effective bosons (bilinear in fermion Fock
operators) with zero total momentum:

P 1|Ω〉 = 0, P 1 =

+∞∫

−∞

dp1p1
[

b†(p1)b(p1) + d†(p1)d(p1)
]

. (78)

The vacuum |Ω〉 is invariant under U(1) and UA(1) transformations (i.e.
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carries vanishing charge and axial charge):

U(α)|Ω〉 = |Ω〉, U(α) = eiαQ, Q =

+∞∫

−∞

dq1
[

b†(q1)b(q1) − d†(q1)d(q1)
]

,

V (β)|Ω〉 = |Ω〉, V (β) = eiβQ5, Q5 =

+∞∫

−∞

dq1ε(q1)
[

b†(q1)b(q1) − d†(q1)d(q1)
]

.

The vacuum state |Ω〉 corresponds to the symmetric phase (is invariant with
respect to axial-vector transformations, i.e. no chiral symmetry breaking) –
in contradiction with the results of Faber and Ivanov true vacuum should be
an eigenstate of the full Hamiltonian! |Ω〉 is such a state

TWO-POINT FUNCTION
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Correlation functions calculated from the known operator solution

Ψ(x) = e(−ig/
√
π)j+(x)ψ(x)e(−ig/

√
π)j−(x). (79)

ψ(x) is the free massless fermion field and j±(x) are the positive and
negative-frequency parts of the integrated current j(x) = j(+)(x) + j(−)(x):

j(+)(x) =
1√
2π

+∞∫

−∞

dq1 c†(q1)
√

2|q1|
[

eiq̂.x − θ
(

λ− |q1|
)]

,

j(−)(x) =
1√
2π

+∞∫

−∞

dq1 c(q1)
√

2|q1|
[

e−iq̂.x − θ
(

λ− |q1|
)]

. (80)

The infared regularization necessary to havemeaningful objects. The scale
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λ introduced. The two-point function defined as

C2(x − y) = 〈vac|Ψ(x)Ψ(y)|vac〉. (81)

What is |vac〉? As a rule, the perturbative vacuum state taken. Commuting
the fermion operators through the exponentials and the exponentials
themselves, one arrives at

C2(x − y) = e
g2

π D(+)(x−y)e−2g
[

D(+)(y−x)+γ5D̃(+)(y−x)
]

〈0|ψ(x)ψ(y)|0〉. (82)

Here, with µ = eγEλ,

D(+)(x) =
1

2π

∫
dk

2|k|
θ(|k|− λ)e−ik.x = −

1

4π
ln

(

− µ2x2 + ix0ε
)

(83)
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Calculation with |Ω〉 more complicated:

〈Ω|Ψ(x)Ψ(y)|Ω〉 = F2(x − y; κ)C2(x − y). (84)

The function F2(x − y;κ) → 1 for κ→ 0.

The other aspects:

canonical quantization may not always be valid for interacting fields:
{

Ψ(x),Ψ†(y)
}

= Z−1δ(x − y), Z−1 = exp
(

g2D(+)(0)
)

Calculation of the spectrum possible using the discrete plane-wave
basis and the Fock expansion. Not trivial since c(k1) composed from
b(p1), d(p1) so that [c(k1), b(p1)] is non-zero.
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FEDERBUSH MODEL

non-trivial massive solvable model

permits us to generalize the Klaiber’s bosonization to the massive case
and search for the true physical ground state generalizing the treatment
tested for the massless Thirring model

The Lagrangian of the Federbush model

L =
i

2
Ψγµ

↔
∂µ Ψ− mΨΨ +

i

2
Φγµ

↔
∂µ Φ− µΦΦ− gεµνJ

µHν,

(85)

describes two species of the fermion field interacting via specific current–
current coupling, where Jµ = ΨγµΨ, Hµ = ΦγµΦ. Unlike the closely
related massive Thirring model, Federbush model is exactly solvable.
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Field equations:

iγµ∂µΨ(x) = mΨ(x) + gεµνγ
µHν(x)Ψ(x)

iγµ∂µΦ(x) = µΦ(x) − gεµνγ
µJν(x)Φ(x). (86)

The ”integrated currents” j(x) and h(x)

Jµ(x) =
εµν√
π
∂νj(x), Hµ(x) =

εµν√
π
∂νh(x), (87)

enter into the solutions in an ”off-diagonal” way:

Ψ(x) = e
−i g√

π
h(x)

ψ(x), Φ(x) = e
i g√

π
j(x)

φ(x). (88)

The exponentials of the composite fields are more singular than in the
massless case and have to be defined using the ”triple-dot ordering”
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(Wightman, Schroer) which generalizes the normal ordering (subtractions
of the vacuum expactation values order by order). We avoid this by
bosonization of the massive current.

ψ(x) and φ(x) are free fields:

iγµ∂µψ(x) = mψ(x), iγµ∂µφ(x) = µφ(x). (89)

The usual treatment yields

H =

+∞∫

−∞

dx1
[

−
i

2
ψ†α1

↔
∂1 ψ+mψ†γ0ψ−

i

2
φ†α1

↔
∂1 φ+µφ†γ0φ−gj0h1+gj1h0

]

.

(90)
again in contrast with the LF Hamiltonian (obtained after inserting two
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fermion constraints)

P− =

+∞∫

−∞

dx−

2

[

m
(

ψ1
†ψ2 + ψ2

†ψ1

)

+ µ
(

φ1
†φ2 + φ2

†φ1

)]

. (91)

The free one!

The new approach – inserting the solutions into the Lagrangian:

L =
i

2
ψ†γ0γµ

↔
∂µ ψ − mψψ +

i

2
φ†γ0γµ

↔
∂µ φ− µφφ+ gεµνj

µhν. (92)

Free fields only, opposite sign in the interaction piece in comparison with
the conventional derivation (like in Thirring model).

The discrepancy removed: the SL and LF Hamiltonians acquire the
same interacting structure
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g(j0h1 − j1h0) vs. g(j+h− − j−h+).

LF massive bosonization simple (like massless SL), the SL complicated
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THIRRING – WESS MODEL

L =
i

2
Ψγµ

↔
∂µ Ψ−

1

4
G̃µνG̃

µν+µ2
0B̃µB̃µ−eJµB̃µ, G̃µν = ∂µB̃ν−∂νB̃µ. (93)

L. Brown, Nuovo Cim. (1962), W. Thirring & J. Wess, Ann. Phys. (1964)

TW paper – Ansaetze, Brown: point-splitting with the ”gauge-field”
exponential, not correct and necessary;

Coupled field equations (massless Dirac + Proca (massive Bµ)):

iγµ∂µΨ(x) = eγµB̃µ(x)Ψ(x), (94)
∂µG̃µν + µ2

0B̃
ν = eJν, (95)

QUANTIZATION: free fields will be useful
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Massless fermion field

ψ(x) =
1√
2π

∫

dp1
{

b(p1)u(p1)e−ip.x + d†(p1)v(p1)eip.x
}

, p0 = |p1| (96)

{b(p1), b†(q1)} = {d(p1), d†(q1)} = δ(p1 − q1), b(k1)|0〉 = d(k1)|0〉 = 0.

The spinors u(p1), v(p1) are m = 0 limits of the massive spinors,

u†(p1) =
(

θ(−p1), θ(p1)
)

, v†(p1) =
(

− θ(−p1), θ(p1)
)

. (97)

Massive vector field B0(x) (B1(x) from ∂0B0 + ∂1B1 = 0 – see below):

B0(x) =
1√
2π

∫
dk1

√

2E(k1)

k1

µ0

[

a(k1)e−ik̂.x + a†(k1)eik̂.x
]

,

B1(x) =
1√
2π

∫
dk1

√

2E(k1)

E(k1)

µ0

[

a(k1)e−ik̂.x + a†(k1)eik̂.x
]

,
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[

a(p1), a†(q1)
]

= δ(p1 − q1). (98)

Taking ∂ν of the Proca eq. yields ∂µB̃µ = 0. With this condition, the Dirac
eq. is solved in terms of B̃0(x) and the free fermion field ψ(x), γµ∂µψ = 0:

Ψ(x) = exp
{

−
ie

2
γ5

+∞∫

−∞

dy1ε(x1 − y1)B̃0(y1, t)
}

ψ(x),

ε(x) = θ(x) − θ(−x), ∂xε(x) = 2δ(x). (99)

Normal-ordering of the exponential understood. Product of two fermion
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operators has to be regularized by the point-splitting, xµ ± εµ

2 :

Ψ(x±
ε

2
) = exp

{

−
ie

2
γ5

+∞∫

−∞

dy1ε(x1±
ε1

2
−y1)B̃0(y1, t±

ε0

2
)
}

ψ(x±
ε

2
). (100)

Jµ(x) =
1

2

[

Ψ†(x +
ε

2
)γ0γµΨ(x −

ε

2
) + H.c.

]

,

Jµ
5 (x) =

1

2

[

Ψ†(x +
ε

2
)γ0γµγ5Ψ(x −

ε

2
) + H.c.

]

. (101)

We find, by means of

ψ†(x +
ε

2
)γ0γµψ(x −

ε

2
) =: ψ(x)†γ0γµψ(x) : −

i

2π
Tr

(γαεαγµ

ε2

)

(102)
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(analogously for Jµ
5 (x)) and using the definition of the symmetric limit:

Jµ(x) = jµ(x) +
e

π
B̃µ(x), Jµ

5 (x) = jµ
5 (x) +

e

π
εµνB̃ν(x). (103)

jµ(x) and jµ
5 (x) are free currents (normal-ordered products).

crucial: the expression in the exponential contains a term of order O(ε)
which cancels a singularity in the free-field contraction ⇒ a finite term,
representing contributions due to the interaction on the quantum level

vector current is obviously conserved, axial anomaly a(x) equal to

a(x) =
g

2π
εµνG̃µν(x). (104)

Similar to the conventional result in the Schwinger model although no
exponential of the integral over gauge field inserted ! (??)
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Derivation of the Hamiltonian requires solution of the field eqs. for B̃µ(x)

The Proca equations become, due to the operator relation ∂µB̃µ = 0 and
the form of the interacting current, SOLUBLE. Indeed, with an appropriate
choice of the Green’s function, the equation

∂µ∂
µB̃ν + µ2B̃ν = ejν, µ2 = µ2

0 +
e2

π
(105)

can be inverted. Define
(

∂µ∂
µ + µ2

)

DR(x − y) = δ(2)(x − y),
(

∂µ∂
µ + µ2

)

Bµ(x) = 0, (106)

then

B̃ν(x) = Bν(x) + e

∞∫

−∞

d2yDR(x − y)jν(y). (107)
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Then the Hamiltonian can be expressed in terms of the independent field
variables (just free massless fermion field and its vector current, plus free
B0(x) (and a zero mode b1(t) in a finite-volume treatment with periodic
boundary conditions) Explicitly,

DR(x − y) = −
1

2π2

+∞∫

−∞

d2l
e−il(̇x−y)

l2 − µ2
0 + il0η

, (108)

or, after l0 integration,

DR(x − y) = −
i

2π

+∞∫

−∞

dl1
eil1(x1−y1)

2E(l1)

[

e−i(E(l1)−iη/2)(x0−y0) − H.c.
]

θ(x0 − y0),

(109)
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The interacting Hamiltonian found as

Hint = −
e2

π

+∞∫

−∞

dk1

E(k1)

[

a†(k1)a(k1) +
(E2(k1)

µ2
−

1

2

)

×

×
[

a†(k1)a†(−k1) + a(k1)a(−k1)
]
]

+

+
e2

2πµ2

+∞∫

−∞

dk1|k1|
[

c†(k1)c†(−k1) + c(k1)c(−k1)
]

−
ie√
π

+∞∫

−∞

dk1

√

2E(k1)

k1

√

2µ|k1|
×

×
[
(

E(k1) + |k1|
)[

a†(k1)c†(−k1) − a(k1)c(−k1)
]

+
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+
(

E(k1) − |k1|
)[

a†(k1)c(k1) − c†(k1)a(k1)
]
]

. (110)

Non-diagonal, Bogoliubov transformation needed

−L ≤ x1 ≤ L, ψ(t,−L) = −ψ(t, L),

Bµ(t,−L) = Bµ(t, L) ⇒ Bµ(x) = Bµ
N(x) + bµ(t),

periodic BC : k1
n =

2π

L
n, n = 0,±1,±2 . . . ,

antiperiodic BC : p1
n =

2π

L
n, n = ±

1

2
,±

3

2
, . . . . (111)
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SCHWINGER MODEL IN THE LANDAU GAUGE

L =
i

2
Ψγµ

↔
∂µ Ψ−

1

4
FµνF

µν − eJµAµ − G(x)∂µAµ +
1

2
(1 − γ)G2(x),

Fµν = ∂µAν − ∂νAµ, Jµ(x) = Ψ(x)γµΨ(x). (112)

Two terms with the auxiliary field G(x) instead of usual −λ
2

(

∂µAµ(x)
)2.

The gauge-fixing term in the Lagrangian guarantees restriction to an
arbitrary covariant gauge in which neither the condition ∂µAµ(x) = 0 nor
the Maxwell equations can be satisfied at the operator level:

∂µFµν(x) = eJν(x) − ∂νG(x), (113)
∂µAµ(x) = (1 − γ)G(x), ∂µ∂

µG(x) = 0. (114)
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Choose γ = 1: the gauge condition is satisfied at the operator level and
the solution of the Dirac equation

iγµ∂µΨ(x) = eγµAµ(x)Ψ(x) (115)

is completely analogous to the Thirring-Wess model case:

Ψ(x) = exp
{

−
ie

2
γ5

+∞∫

−∞

dy1ε(x1 − y1)A0(y1, t)
}

ψ(x), γµ∂µψ = 0. (116)

Again, the vector and axial-vector currents calculated via point-splitting.

IMPORTANT: the gauge freedom has been restricted (fixed) only
partially, the above Lagrangian is still invariant with respect to gauge
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transformations parametrized by the gauge function obeying

∂µ∂
µΛ(x) = 0 ⇒ ∂2

0Λ = ∂2
1Λ ⇒

∂0

∂1
Λ =

∂1

∂0
Λ. (117)

In order to work with the original theory, we will have to impose a condition
on physical states

G(+)(x)|phys〉 = 0, (118)
which generalizes the Gupta-Bleuler condition ∂µA(+)µ|phys〉 = 0.

The massive vector field in a gauge theory á la Lowenstein and Swieca:

The Ansatz (∂̃µ = εµν∂ν)

Aµ = −
√
π

e

(

∂̃µΣ + ∂µη̃
)

. (119)
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In the ∂µAµ = 0 gauge, one gets ∂µ∂µη̃ = 0

Fµν =

√
π

e
εµν∂ρ∂

ρΣ. (120)

Assuming Jµ = ΨγµΨ = − 1√
π
∂̃µΦ, Jµ

5 = Ψγµγ5Ψ = − 1√
π
∂µΦ, we get

from the (assumed) anomalous divergence of the axial current

∂µJµ
5 =

e

2π
εµνF

µν (121)

that ∂µ∂µΦ = ∂µ∂µΣ or Φ = Σ + h with ∂µ∂µh = 0 and the vector current
is

Jµ = −
1√
π
∂̃µΣ + Lµ, Lµ = −

1√
π
∂̃µh. (122)
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From the Maxwell eqs.

∂̃ν
(

∂ρ∂
ρ +

e2

π

)

Σ−
e2

√
π
Lν = 0 (123)

∂̃µLµ = 0 or
(

∂ρ∂
ρ +

e2

π

)

Σ = 0. (124)
Gauge field became massive – the Schwinger mechanism of the mass
generation for the gauge field.

The above solution of LS crucially depends on the axial anomaly

How is it calculated?

The usual ”gauge-invariant” definition of the currents leads to
(Peskin&Schroeder, Strocchi,. . . )
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Jµ(x) = jµ(x) + e
πAµ, Jµ

5 (x) = jµ(x) + e
πε

µνAν – really GI?

Peskin and Schroeder calculate ∂µjµ
5 (x) = e

2πε
µνFµν inserting the

gauge-field exponential without any gauge fixing

repeat their calculation directly for the vector and axial-vector current:

Jµ
(5)(x) = Ψ†(x +

ε

2
)γ0γµ(γ5) exp

{

− ie

x+ε/2∫

x−ε/2

dzµAµ(z)
}

Ψ(x −
ε

2
). (125)

Both currents are formally gauge invariant under

Ψ(x) → eieΛ(x)Ψ(x), Aµ(x) → Aµ(x) − ∂µΛ(x). (126)

NOTE: the fields are considered to be independent
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The vector current becomes

Jµ(x) =
[

: Ψ†(x)γ0γµΨ(x) : +
︷ ︸︸ ︷

Ψ†(x +
ε

2
)γ0γµΨ(x −

ε

2
)
][

1 − ieενA
ν(x)

]

.

(127)
CRUCIAL STEP: contraction of the FREE current taken

The result is precisely

Jµ(x) = jµ(x) +
e

π
Aµ(x), Jµ

5 (x) = jµ
5 (x) +

e

π
εµνAν(x), (128)

i.e. NOT gauge-invariant (GI). This fact is hidden since one usualy
calculates directly the divergence which gives the ”familiar” anomaly

a(x) = e
2πε

µνFµν(x).

What is the result in the Landau gauge? - BACK TO OUR
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OPERATOR SOLUTION

Ψ(x) = exp
{

−
ie

2
γ5

+∞∫

−∞

dy1ε(x1 − y1)A0(y1, t)
}

ψ(x), γµ∂µψ = 0. (129)

OBSERVATION: we have the transformation law Aµ → Aµ − ∂µΛ, i.e.

A0(x) → A0(x) − ∂0Λ(x), ∂µ∂µΛ = 0,

THIS COMPLETELY DETERMINES THE TRANSFORMATION LAW
FOR THE INTERACTING FERMION FIELD since the free fermion field
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ψ(x) does not transform!

Ψ(x) → exp
{ie

2
γ5

+∞∫

−∞

dy1ε(x1 − y1)∂0Λ(y1, t)
}

Ψ(x) = exp
{ie

2
γ5∂0

∂1
Λ

}

Ψ(x).

(130)
IN OTHER WORDS, knowledge of the exact operator solution tells us
how the full (interacting) fermion field transforms (Ψ(x) and Aµ(x) are not
independent!) and we should modify the ”gauge exponential” in such a way
that the currents given by the regularized (point-split) products of fermion
fields are invariant under the specific transformations (130)

Check: Lagrangian is invariant w. r. to this particular gauge freedom
Direct calculation also: the correct gauge-invariant form of the current is

Jµ
(5)(x) = Ψ†(x +

ε

2
)γ0γµ(γ5) exp

{

− ieγ5εµνA
µ(x)εν

}

Ψ(x −
ε

2
), (131)
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so that the gauge variations in the exponential cancel (due to the presence
of γ5, one has to calculate free-field contraction in a component form, but
the result is the usual one)

RESULT: the interacting currents contain no gauge-field terms, they
coincide with the free ones!

no axial anomaly⇒ no Schwinger mechanism

weird, strange, stupid, wrong???

FIND OUT IN A REGULARIZED TREATMENT – FINITE VOLUME

restrict −L ≤ x1 ≤ L and impose antiperiodic boundary conditions for
the (free) fermion field and periodic ones for the gauge field:

ψ(t,−L) = −ψ(t, L), Aµ(t,−L) = Aµ(t, L)

⇒ Aµ(x) = Aµ
N(x) + Aµ

0(t). (132)

– Typeset by FoilTEX – 73



The zero (Fourier) mode or x1-independent part of the gauge field present

Rewrite Lagrangian, field equations... in terms of (anti)periodic fields

Dirac eq. and its solution becomes

iγ0∂0Ψ + iγ1∂1Ψ = e
(

γ0A0
N − γ1A1

N

)

Ψ + e
(

γ0a0
0 − γ1A1

0(t)
)

Ψ (133)

Ψ(x) = exp
{

ieγ5

t∫

t0

dτA1
0(τ) − ieγ5x1a0

0

}

×

× exp
{

−
ie

2
γ5

+L∫

−L

dy1εN(x1 − y1)A0
N(x1 − y1)

}

ψ(x). (134)

The gauge condition becomes ∂0A0
N(x) + ∂1A1

N(x) = 0 (from the term
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−GN(x)∂µAµ
N(x)) and A0

0(t) = 0. The gauge transformations act also in
the sector of zero modes (ZM):

Aµ
N(x) → Aµ

N(x) − ∂µΛN(x),

A0
0(t) → A0

0(t) − ∂0Λ0(t), A1
0(t) → A1

0(t) + ∂1Λ0(t) = A1
0(t).(135)

The ZM A1
0(t) is gauge invariant! No need to add a term in the exponential

to compensate for its non-invariance. The GI currents have the form

Jµ
(5)(x) = exp

{

− ieγ5ε0A1
0(t)

}

ψ(x +
ε

2
)γ0γµ(γ5)ψ(x −

ε

2
). (136)

Contraction in the discrete basis has the same singular structure⇒

Jµ(x) = jµ(x) +
e

π
(0, A1

0(t)), Jµ
5 (x) = jµ

5 (x) +
e

π
(A1

0(t), 0). (137)
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Both currents are gauge invariant since A1
0(t) component is GI by itself.

The divergences are

∂µJµ(x) = ∂µjµ(x) +
e

π
(0, ∂xA1

0(t)) = 0, (138)

∂µJµ
5 (x) = ∂µjµ

5 (x) +
e

π
(∂0A

1
0(t), 0) =

e

π
∂0A

1
0(t) #= 0. (139)

From the ZM part of the Maxwell eq. one directly has

∂2
0A

1
0(t) = −

e2

π
A1

0(t). (140)

The Schwinger mechanism works in the zero-mode sector only. The
massive Schwinger boson with µ2 = e2

π exists, at least in a finite volume.
The continuum limit has to be studied.
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Further steps:

• indefinite-metric space

• solution of the Maxwell eqs. possible

• Hamiltonian in terms of independent field variables and its symmetries

IN DETAIL:

There should be no dynamical gauge degrees of freedom in two
dimensions (Coulomb gauge tells that) except for a zero mode (cf. Hetrick
and Hosotani, Phys. Rev. D (1988) and other works), so we may expect
that the Aµ

N(x) field are unphysical; we will treat them as ghost with zero
norm acting in an indefinite metric space (K. Haller)
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Covariant gauge: all gauge degrees of freedom kept, quantized as
independent, the physical picture restored by a condition on allowed
physical states. This condition guarantees validity of the Gauss law
for expectation values. In the usual covariant-gauge formulation, in the
Feynman version, the free two-dimensional gauge field satisfies the simple
equation ∂µ∂µAν(x) = 0. In the continuum formulation, it can be expanded
as

Aµ(x) =

∫
dk1

√

4πE(k1)

[

a(µ)e−ik̂.x + a(µ)†eik̂.x
]

. (141)

The covariant form of the canonical quantization rule

[

Aµ(x0, x1),Πν(x0, y1)
]

= igµνδ(x1 − y1), (142)

Π1(x) = F 10(x), Π0(x) = −G(x) (143)
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leads to

[a(0)(k1), a(0)†(l1)] = −δ(k1 − l1), [a(1)(k1), a(1)†(l1)] = δ(k1 − l1). (144)

Opposite sign in the first commutator causes well known problems with
the usual probabilistic interpretation of the theory: norm of the states with
odd number of time-like photons is negative (number operator contains
additional minus sign to satisfy N |10〉 = |10〉 ⇒ Hamiltonian has negative
expactation values).

We have ∂µAµ(x) = G(x) (in Feynman gauge γ = 0) in our formulation.
From this we obtain

∂µAµ(x) = −i

∫
dk1

√
4π

[(

a(0)(k1) − ε(k1)a(1)(k1)
)

e−ik̂.x −

−
(

a(0)†(k1) − ε(k1)a(1)†(k1)
)

eik̂.x
]

. (145)
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Defining the linear combination a†
Q(k1) = − 1√

2

(

a(0) − ε(k1)a(1)
)

with the
property

[

aQ(k1), a†
Q(l1)

]

= 0, we have

G(x) = −i

∫
dk1

√
4π

[

aQ(k1)e−ik̂.x − a†
Q(k1)eik̂.x

]

. (146)

For a meaningful theory, we also have to define another linear combination
a†

R(k1) = 1√
2

(

a(0) + ε(k1)a(1)
)

,
[

aR(k1), a†
R(l1)

]

= 0,
[

aQ(k1), a†
R(l1)

]

= δ(k1 − l1).
These commutator rules follow from the CR Eq.(144) and ensure that the
”ghost” states created by a†

Q, a†
R have zero norm. This is a necessary

condition for unphysical degrees of freedom.
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The expansion Aµ(x) now takes the form (Feynman g.)

A0(x) =

∫
dk1

√
8πk0

[(

aR(k1) − aQ(k1)
)

e−ik̂.x +
(

a†
R(k1) − a†

Q(k1)
)

eik̂.x
]

,(147)

A1(x) =

∫
dk1

√
8πk0

k1

|k1|
[(

aR(k1) + aQ(k1)
)

e−ik̂.x +
(

a†
R(k1) + a†

Q(k1)
)

eik̂.x
]

.

For odd number of the ”time-like” photons there is a negative norm
– indefinite-metric space – corrected by the metric operator η that
anticommutes with A0 – the self-adjointness dictates conjugation a∗

Q(k1) =
aR(k1), etc.

The (modified) Maxwell eqs.

∂µ∂
µÃν = ejν − ∂νG (148)
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can now be inverted:

Ãµ(x) = Aµ(x)+e

+∞∫

−∞

dy2DR0(x−y)jµ(y)−
+∞∫

−∞

dy2DR0(x−y)∂µG(y). (149)

NEXT STEPS:

• Insert the solutions Ψ(x) and Ãµ to the Lagrangian and derive the
Hamiltonian in terms of ψ(x), jµ(x), Aµ(x) and G(x).

• remove the residual gauge freedom, related to spurious (unphysical)
variables – a unitary transformation to the Coulomb gauge representation
(”gauge fixing” by unitary transformation – cf. F. Lenz et al., Ann. Phys.
(1994)) – all operators, Hamiltonian,... have to be transformed
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• find a mechanism for the vacuum degeneracy (cf. spurion operators of
Lowenstein and Swieca) – the gauge zero mode may play a role (cf. the
light-front case, L. Martinovic, Phys. Lett. B (2001) - role of large gauge
transformations – the covariant (Landau) gauge admits transformations
of the form cx1)

• analyze these residual large gauge transformations and also chiral
symmetry of the resultant Hamiltonian, if there is a problem with the
would-be Goldstone boson (U(1) problem), how to construct the θ-
vacuum and how to calculate the fermion condensate

SUMMARY AND CONCLUSIONS

• Dynamics of solvable models reformulated in terms of free fields which
are the true dofs – structure of the LF and SL Hamiltonians unifies

– Typeset by FoilTEX – 83



• careful definition of interacting quantum currents - point-splitting
regularization

• Derivative-coupling model is almost a free theory – free SL and
LF Hamiltonians, correlation functions composed from free two-point
functions

• True ground state of the Thirring model found by a Bogoliubov
transformation – a coherent state effectively quartic in fermion Fock
operators, no chiral symmetry breaking

• In terms of free fields, LF and SL Hamiltonians of the Federbush model
have the same structure, but the SL one has to be diagonalized ⇒
massive version of Klaiber’s bosonization required – complicated;
LF Hamiltonian diagonal, massive bosonization as simple as the SL
massless case
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model very suitable for a comparison of the non-perturbative structure of
the two quantization schemes (LF vs. SL)

• axial anomaly in the Thirring-Wess model follows directly from the explicit
form of the solution of the Dirac equation when currents regularized
by a (hermitian) point-splitting, non-diagonal Hamiltonian, a Bogoliubov
transformation required to find its physical ground state

• Schwinger model in the (reformulated) covariant gauge (Landau)
revisited, solution of the Dirac eq. in terms of the original fields (no
Ansaetze)
usual definition of GI currents problematic, the invariance with respect to
the residual gauge freedom in the covariant gauge dictates the form of
the truly GI currents ⇒ axial anomaly present only in the ZM sector, as
well as the dynamical-mass generation
gauge field quantized in terms of ghost modes, condition on physical
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states

WORKOUT THEOTHER PHYSICAL PROPERTIES OF THE SCHWINGER
MODEL IN THE FINITE-VOLUME FOMULATION:

large gauge transformations, vacuum degeneracy, chiral symmetry,
fermion condensate
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