# Studying tetraquark candidates using lattice QCD 

"Lunch Club", Justus-Liebig-Universität Gießen, Germany
Marc Wagner
in collaboration with Abdou Abdel-Rehim, Constantia Alexandrou, Joshua Berlin, Mattia Dalla Brida, Jan Daldrop, Mario Gravina, Giannis Koutsou, Luigi Scorzato, Annabelle Uenver, Carsten Urbach, Christian Wiese

Februray 14, 2014


## Introduction, motivation (1)

- The nonet of light scalar mesons $\left(J^{P}=0^{+}\right)$

$$
\begin{aligned}
& -\sigma \equiv f_{0}(500), I=0,400 \ldots 550 \mathrm{MeV} \\
& -\kappa \equiv K_{0}^{*}(800), I=1 / 2,682 \pm 29 \mathrm{MeV} \quad(\bar{s} s \ldots), \\
& -a_{0}(980), I=1,980 \pm 20 \mathrm{MeV} \\
& \quad f_{0}(980), I=0,990 \pm 20 \mathrm{MeV} \\
& (\bar{u} d, \bar{d} u, \bar{u} s, \bar{d} s \ldots ?) \\
& (\bar{u} u+\bar{d} d \ldots ?)
\end{aligned}
$$

is poorly understood:

- All nine states are unexpectedly light (should rather be close to the corresponding $J^{P}=1^{+}, 2^{+}$states around $1200 \ldots 1500 \mathrm{MeV}$ ).
- The ordering of states is inverted compared to expectation:
* E.g. in a $q \bar{q}$ picture the $I=1 a_{0}(980)$ states must necessarily be formed by two $u / d$ quarks, while the $I=1 / 2 \kappa$ states are made from an $s$ and a $u / d$ quark; since $m_{s}>m_{u / d}$ one would expect $m(\kappa)>m\left(a_{0}(980)\right)$.


## Introduction, motivation (2)

* In a tetraquark picture the quark content could e.g. be the following: $\kappa \equiv \bar{s} u(\bar{u} u+\bar{d} d)$ (one $s$ quark, three light quarks) $a_{0}(980) \equiv \bar{s} u \bar{d} s$ (two $s$ quarks, two light quarks); this would naturally explain the observed ordering.
- Certain decays also support a tetraquark interpretation: e.g. $a_{0}(980)$ readily decays to $K+\bar{K}$, which indicates that besides the two light quarks required by $I=1$ also an $s \bar{s}$ pair is present.
$\rightarrow$ Study such states by means of lattice QCD to confirm or to rule out their interpretation in terms of tetraquarks.


## Introduction, motivation (3)

- Examples of heavy mesons, which are tetraquark candidates:
$-D_{s 0}^{*}(2317)^{ \pm}, D_{s 1}(2460)^{ \pm}$,
- charmonium states $X(3872), Z(4430)^{ \pm}, Z(4050)^{ \pm}, Z(4250)^{ \pm}, \ldots$
- $\bar{c} c \bar{c} c$ (experimentally not yet observed, predicted by theory) ...?
[W. Heupel, G. Eichmann and C. S. Fischer, Phys. Lett. B 718, 545 (2012) [arXiv:1206.5129 [hep-ph]]]
$-b b(\bar{u} \bar{d}-\bar{d} \bar{u})$ (experimentally not yet observed, predicted by theory) ...?
[P. Bicudo and M. Wagner, Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274 [hep-ph]].]


## Outline

(1) Wilson twisted mass study of $a_{0}(980)$ :
[C. Alexandrou et al. [ETM Collaboration], JHEP 1304, 137 (2013) [arXiv:1212.1418 [hep-lat]]]

- Wilson twisted mass fermions (generated by the ETM Collaboration).
[R. Baron et al., JHEP 1006, 111 (2010) [arXiv:1004.5284 [hep-lat]]]
- Computations at light $u / d$ quark masses corresponding to $m_{\pi} \gtrsim 280 \mathrm{MeV}$.
- No disconnected diagrams/closed fermion loops.
(2) Recent technical advances:
- Wilson + clover fermions (generated by the PACS-CS Collaboration).
[S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D 79, 034503 (2009) [arXiv:0807.1661 [hep-lat]]]
- Computations close to physically light $u / d$ quark masses.
- Inclusion of disconnected diagrams/closed fermion loops.
(3) Exploring a possibly existing $\bar{c} c \bar{c} c$ tetraquark.
(4) Static-static-light-light tetraquarks (close to $b b(\bar{u} \bar{d}-\bar{d} \bar{u})$ ).


## Lattice QCD hadron spectroscopy (1)

- Lattice QCD: discretized version of QCD,

$$
\begin{aligned}
& S=\int d^{4} x\left(\sum_{\psi \in\{u, d, s, c, t, b\}} \bar{\psi}\left(\gamma_{\mu}\left(\partial_{\mu}-i A_{\mu}\right)+m^{(\psi)}\right) \psi+\frac{1}{2 g^{2}} \operatorname{Tr}\left(F_{\mu \nu} F_{\mu \nu}\right)\right) \\
& F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right] .
\end{aligned}
$$

- Let $\mathcal{O}$ be a suitable "hadron creation operator", i.e. an operator formed by quark fields $\psi$ and gluonic fields $A_{\mu}$ such that $\mathcal{O}|\Omega\rangle$ is a state containing the hadron of interest ( $|\Omega\rangle$ : QCD vacuum).
- More precisely: ... an operator such that $\mathcal{O}|\Omega\rangle$ has the same quantum numbers ( $J^{\mathcal{P C}}$, flavor) as the hadron of interest.
- Examples:
- Pion creation operator: $\mathcal{O}=\int d^{3} x \bar{u}(\mathbf{x}) \gamma_{5} d(\mathbf{x})$.
- Proton creation operator: $\mathcal{O}=\int d^{3} x \epsilon^{a b c} u^{a}(\mathbf{x})\left(u^{b, T}(\mathbf{x}) C \gamma_{5} d^{c}(\mathbf{x})\right)$.


## Lattice QCD hadron spectroscopy (2)

- Determine the mass of the ground state of the hadron of interest from the exponential behavior of the corresponding correlation function $\mathcal{C}$ at large Euclidean times $t$ :

$$
\begin{aligned}
\mathcal{C}(t) & =\langle\Omega| \mathcal{O}^{\dagger}(t) \mathcal{O}(0)|\Omega\rangle=\langle\Omega| e^{+H t} \mathcal{O}^{\dagger}(0) e^{-H t} \mathcal{O}(0)|\Omega\rangle= \\
& \left.=\sum_{n}|\langle n| \mathcal{O}(0)| \Omega\right\rangle\left.\right|^{2} \exp \left(-\left(E_{n}-E_{\Omega}\right) t\right) \approx(\text { for " } t \gg 1 \text { ") } \\
& \approx|\langle 0| \mathcal{O}(0)| \Omega\rangle\left.\right|^{2} \exp (-\underbrace{\left(E_{0}-E_{\Omega}\right)}_{m \text { (hadron) }} t) .
\end{aligned}
$$

- Usually the exponent is determined by identifying the plateau value of a so-called effective mass:

$$
\begin{aligned}
& m_{\text {effective }}(t)=\frac{1}{a} \ln \left(\frac{\mathcal{C}(t)}{\mathcal{C}(t+a)}\right) \approx \quad(\text { for " } t \gg 1 \text { ") } \\
& \quad \approx \quad E_{0}-E_{\Omega}=m \text { (hadron) }
\end{aligned}
$$



## Part 1:

Wilson twisted mass study of $a_{0}(980)$

## Tetraquark creation operators

- $a_{0}(980)$ :
- Quantum numbers $I\left(J^{P}\right)=1\left(0^{+}\right)$.
- Mass $980 \pm 20 \mathrm{MeV}$.
- Tetraquark creation operators:
- Two light quarks needed, due to $I=1$, e.g. $u \bar{d}$.
- $a_{0}(980)$ decays to $K \bar{K}$... suggests an additional $s \bar{s}$ pair.
- $K \bar{K}$ molecule type (models a bound $K \bar{K}$ state):

$$
\mathcal{O}_{a_{0}(980)}^{K \bar{K} \text { molecule }}=\sum_{\mathbf{x}}\left(\bar{s}(\mathbf{x}) \gamma_{5} u(\mathbf{x})\right)\left(\bar{d}(\mathbf{x}) \gamma_{5} s(\mathbf{x})\right) .
$$



antidiquark

- Diquark type (models a bound diquark-antidiquark):

$$
\mathcal{O}_{a_{0}(980)}^{\text {diquark }}=\sum_{\mathbf{x}}\left(\epsilon^{a b c} \bar{s}^{b}(\mathbf{x}) C \gamma_{5} \bar{d}^{c, T}(\mathbf{x})\right)\left(\epsilon^{a d e} u^{d, T}(\mathbf{x}) C \gamma_{5} s^{e}(\mathbf{x})\right)
$$

## Wilson twisted mass lattice setup

- Gauge link configurations generated by the ETM Collaboration.
[R. Baron et al., JHEP 1006, 111 (2010) [arXiv:1004.5284 [hep-lat]]]
- 2+1+1 dynamical Wilson twisted mass quark flavors, i.e. $u, d, s$ and $c$ sea quarks (twisted mass lattice QCD isospin and parity are slightly broken).
- Various light $u / d$ quark masses corresponding pion masses $m_{\pi} \approx 280 \ldots 460 \mathrm{MeV}$.
- Singly disconnected contributions/closed fermion loops neglected, i.e. no $s$ quark propagation within the same timeslice ("no quark antiquark pair creation/annihilation").


## Numerical results $a_{0}(980)(1)$

- Effective mass, molecule type operator:

$$
\mathcal{O}_{a_{0}(980)}^{K \bar{K} \text { molecule }}=\sum_{\mathbf{x}}\left(\bar{s}(\mathbf{x}) \gamma_{5} u(\mathbf{x})\right)\left(\bar{d}(\mathbf{x}) \gamma_{5} s(\mathbf{x})\right) .
$$

- The effective mass plateau indicates a state, which is roughly consistent with the experimentally measured $a_{0}(980)$ mass $980 \pm 20 \mathrm{MeV}$.
- Conclusion: $a_{0}(980)$ is a tetraquark state of $K \bar{K}$ molecule type $\ldots$ ?



## Numerical results $a_{0}(980)$ (2)

- Effective mass, diquark type operator:

$$
\mathcal{O}_{a_{0}(980)}^{\text {diquark }}=\sum_{\mathbf{x}}\left(\epsilon^{a b c} \bar{s}^{b}(\mathbf{x}) C \gamma_{5} \bar{d}^{c, T}(\mathbf{x})\right)\left(\epsilon^{a d e} u^{d, T}(\mathbf{x}) C \gamma_{5} s^{e}(\mathbf{x})\right)
$$

- The effective mass plateau indicates a state, which is roughly consistent with the experimentally measured $a_{0}(980)$ mass $980 \pm 20 \mathrm{MeV}$.
- Conclusion: $a_{0}(980)$ is a tetraquark state of diquark type ...? Or a mixture of $K \bar{K}$ molecule and a diquark-antidiquark pair?



## Numerical results $a_{0}(980)$ (3)

- Study both operators at the same time, extract the two lowest energy eigenstates by diagonalizing a $2 \times 2$ correlation matrix ("generalized eigenvalue problem" ):

$$
\begin{aligned}
& \mathcal{O}_{a_{0}(980)}^{K \bar{K} \text { molecule }}=\sum_{\mathbf{x}}\left(\bar{s}(\mathbf{x}) \gamma_{5} u(\mathbf{x})\right)\left(\bar{d}(\mathbf{x}) \gamma_{5} s(\mathbf{x})\right) \\
& \mathcal{O}_{a_{0}(980)}^{\text {diquark }}=\sum_{\mathbf{x}}\left(\epsilon^{a b c} \bar{s}^{b}(\mathbf{x}) C \gamma_{5} \bar{d}^{c, T}(\mathbf{x})\right)\left(\epsilon^{a d e} u^{d, T}(\mathbf{x}) C \gamma_{5} s^{e}(\mathbf{x})\right) .
\end{aligned}
$$

- Now two orthogonal states roughly consistent with the experimentally measured $a_{0}(980)$ mass $980 \pm 20 \mathrm{MeV} \ldots$ ?



## Two-particle creation operators (1)

- Explanation: there are two-particle states, which have the same quantum numbers as $a_{0}(980), I\left(J^{P C}\right)=1\left(0^{++}\right)$,
$-K+\bar{K}(m(K) \approx 500 \mathrm{MeV})$,
$-\eta_{s}+\pi\left(m\left(\eta_{s} \equiv \bar{s} \gamma_{5} s\right) \approx 700 \mathrm{MeV}, m(\pi) \approx 300 \mathrm{MeV}\right.$ in our lattice setup),
which are both around the expected $a_{0}(980)$ mass $980 \pm 20 \mathrm{MeV}$.
- What we have seen in the previous plots might actually be two-particle states (our operators are of tetraquark type, but they nevertheless generate overlap [possibly small, but certainly not vanishing] to two-particle states).
- To determine, whether there is a bound $a_{0}(980)$ tetraquark state, we need to resolve the above listed two-particle states $K+\bar{K}$ and $\eta_{s}+\pi$ and check, whether there is an additional 3rd state in the mass region around $980 \pm 20 \mathrm{MeV}$; to this end we need operators of two-particle type.


## Two-particle creation operators (2)

- Two-particle operators:
- Two-particle $K+\bar{K}$ type:

$$
\mathcal{O}_{a_{0}(980)}^{K+\bar{K} \text { two-particle }}=\left(\sum_{\mathbf{x}} \bar{s}(\mathbf{x}) \gamma_{5} u(\mathbf{x})\right)\left(\sum_{\mathbf{y}} \bar{d}(\mathbf{y}) \gamma_{5} s(\mathbf{y})\right)
$$

- Two-particle $\eta_{s}+\pi$ type:

$$
\mathcal{O}_{a_{0}(980)}^{\eta_{s}+\pi \text { two-particle }}=\left(\sum_{\mathbf{x}} \bar{s}(\mathbf{x}) \gamma_{5} s(\mathbf{x})\right)\left(\sum_{\mathbf{y}} \bar{d}(\mathbf{y}) \gamma_{5} u(\mathbf{y})\right) .
$$



## Numerical results $a_{0}(980)$ (4)

- Study all four operators ( $K \bar{K}$ molecule, diquark, $K+\bar{K}$ two-particle, $\eta_{s}+\pi$ two-particle) at the same time, extract the four lowest energy eigenstates by diagonalizing a $4 \times 4$ correlation matrix (left plot).
- Still only two low-lying states around $980 \pm 20 \mathrm{MeV}$, the 2nd and 3rd excitation are $\approx 750 \mathrm{MeV}$ heavier.
- The signal of the low-lying states is of much better quality than before (when we only considered tetraquark operators)
$\rightarrow$ suggests that the observed low-lying states have much better overlap to the two-particle operators and are most likely of two-particle type.




## Numerical results $a_{0}(980)$ (5)

- When determining low-lying eigenstates from a correlation matrix, one does not only obtain their mass, but also information about their operator content, i.e. which percentage of which operator is present in an extracted state:
$\rightarrow$ The ground state is a $\eta_{s}+\pi$ state ( $\gtrsim 95 \%$ two-particle $\eta_{s}+\pi$ content).
$\rightarrow$ The first excitation is a $K+\bar{K}$ state ( $\gtrsim 95 \%$ two-particle $K+\bar{K}$ content).




## Numerical results $a_{0}(980)$ (6)

- What about the 2 nd and 3 rd excitation? ... Are these tetraquark states? ... What is their nature?
- Two-particle states with one relative quantum of momentum (one particle has momentum $+p_{\min }=+2 \pi / L$ the other $-p_{\min }$ ) also have quantum numbers $I\left(J^{P C}\right)=1\left(0^{++}\right)$; their masses can easily be estimated:
$-p_{\text {min }}=2 \pi / L \approx 715 \mathrm{MeV}$ (the results presented correspond to a small lattice with spatial extension $L=1.73 \mathrm{fm}$ );

$$
\begin{aligned}
& -m\left(K\left(+p_{\min }\right)+\bar{K}\left(-p_{\min }\right)\right) \approx 2 \sqrt{m(K)^{2}+p_{\min }^{2}} \approx 1750 \mathrm{MeV} \\
& -m\left(\eta\left(+p_{\min }\right)+\pi\left(-p_{\min }\right)\right) \approx \sqrt{m(\eta)^{2}+p_{\min }^{2}}+\sqrt{m(\pi)^{2}+p_{\min }^{2}} \approx \\
& \quad \approx 1780 \mathrm{MeV} ;
\end{aligned}
$$

these estimated mass values are consistent with the observed mass values of the 2 nd and 3rd excitation
$\rightarrow$ suggests to interpret these states as two-particle states.


## Numerical results $a_{0}(980)(7)$

- Summary:
- In the $a_{0}(980)$ sector (quantum numbers $I\left(J^{P C}\right)=1\left(0^{++}\right)$) we do not observe any low-lying (mass $\lesssim 1750 \mathrm{MeV}$ ) tetraquark state, even though we employed operators of tetraquark structure ( $K \bar{K}$ molecule, diquark).
- The experimentally measured mass for $a_{0}(980)$ is $980 \pm 20 \mathrm{MeV}$.
- Conclusion: $a_{0}(980)$ does not seem to be a strongly bound tetraquark state (either of molecule or of diquark type) ... maybe an ordinary quark-antiquark state or a rather unstable resonance.


## Part 2: <br> Recent technical advances

## Wilson + clover lattice setup

- Gauge link configurations generated by the PACS-CS Collaboration.
[S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D 79, 034503 (2009) [arXiv:0807.1661 [hep-lat]]]
- $2+1$ dynamical Wilson + clover quark flavors, i.e. $u, d$ and $s$ sea quarks. $\rightarrow$ In contrast to twisted mass parity and isospin are exact symmetries, i.e. no pion and kaon mass splitting, easy separation of $P=+,-$ states, $\ldots$
- Light $u / d$ quark masses corresponding to pion masses $m_{\pi} \approx 150 \mathrm{MeV}$ and $m_{\pi} \approx 300 \mathrm{MeV}$.
$\rightarrow$ Computations close to physically light $u / d$ quark masses possible.
- Singly disconnected contributions/closed fermion loops included.
$\rightarrow s$ quark propagation within the same timeslice ("quark antiquark pair creation/annihilation taken into account").


## Closed fermion loops (1)

- In our previous Wilson twisted mass study of $a_{0}(980)$ we neglected singly disconnected contributions/closed fermion loops:
$\rightarrow$ We could not consider a $q \bar{q}$ operator,

$$
\mathcal{O}_{a_{0}(980)}^{q \bar{q}}=\sum_{\mathbf{x}}(\bar{d}(\mathbf{x}) u(\mathbf{x}))
$$

because cross correlations between this operator and any of the four-quark operators $\mathcal{O}_{a_{0}(980)}^{K \bar{K} \text { molecule }}, \mathcal{O}_{a_{0}(980)}^{\text {diquark }}, \mathcal{O}_{a_{0}(980)}^{K+\bar{K} \text { two-particle }}$ or $\mathcal{O}_{\substack{a_{0}(980)}}^{\eta_{s}+\pi \text { two-particle }}$ correspond to closed fermion loops.
$\rightarrow$ Also correlations between the four-quark operators include closed fermion loops; therefore, we introduced a source of systematic error, which is difficult to estimate or to control.


## Closed fermion loops (2)

- Technical aspects of disconnected diagrams/closed fermion loops:
- Blue: point-to-all propagators applicable.
- Red: due to $\sum_{\mathrm{x}}$, timeslice-to-all propagators needed.
- Timeslice-to-all propagators can be estimated stochastically.
- Using several stochastic timeslice-to-all propagators results in a poor signal-to-noise ratio.
$\rightarrow$ Combine three point-to-all (blue) and one stochastic timeslice-to-all (red) propagator.



## Closed fermion loops (3)

- Effective masses from a $4 \times 4$ correlation matrix $\left(\mathcal{O}_{a_{0}(980)}^{q \bar{q}}, \mathcal{O}_{a_{0}(980)}^{K \bar{K} \text { molecule }, ~}\right.$ $\left.\mathcal{O}_{a_{0}(980)}^{\eta_{s} \pi \text { molecule }}, \mathcal{O}_{a_{0}(980)}^{\text {diquark }}\right)$ at $m_{\pi} \approx 300 \mathrm{MeV}$ :
- Lowest (two) energy level(s) roughly consistent with $K+\bar{K}, \eta+\pi$ and a possibly existing additional $a_{0}(980)$ state.
- For physically interesting statements we need smaller errors and to include $\mathcal{O}_{a_{0}(980)}^{K+K}$ two-particle and $\mathcal{O}_{a_{0}(980)}^{\eta_{s}+\pi \text { two-particle }}$ (work in progress).




## Work in progress, outlook

- Enlarge correlation matrices such that
- $q \bar{q}$ operators,
- tetraquark operators (mesonic molecules, diquark-antidiquark pairs),
- two-meson operators
are included.
- Perform computations at pion mass $m_{\pi} \approx 150 \mathrm{MeV}$.
- Address various physical questions/systems (tetraquark candidates with different flavor structure, search for additional bound states, ...).


# Part 3: <br> Exploring a possibly existing $\bar{c} c \bar{c} c$ tetraquark 

## $\bar{c} c \bar{c} c$ tetraquark ...? (1)

- Recently a $\bar{c} c \bar{c} c$ tetraquark has been predicted
- using a coupled system of covariant Bethe-Salpeter equations,
- mass $m(\bar{c} c \bar{c} c)=(5.3 \pm 0.5) \mathrm{GeV}$,
- predominantly of mesonic molecule type (two $\eta_{c}$ mesons),
- rather strongly bound $\left(2 \times m\left(\eta_{c}\right)=6.0 \mathrm{GeV}\right)$, binding energy $\Delta E=m(\bar{c} c \bar{c} c)-2 \times m\left(\eta_{c}\right) \approx-(0.7 \pm 0.5) \mathrm{GeV}$.
[W. Heupel, G. Eichmann and C. S. Fischer, Phys. Lett. B 718, 545 (2012) [arXiv:1206.5129 [hep-ph]]]
- Should be within experimental reach (PANDA experiment).
$\rightarrow$ Investigate the existence of this $\bar{c} c \bar{c} c$ state using lattice QCD.


## $\bar{c} c \bar{c} c$ tetraquark ...? (2)

- Use the same techniques and setup as discussed for the $a_{0}(980)$ meson.
- First attempt:

- Molecule type $\bar{c} c \bar{c} c$ creation operator (models a bound $\eta_{c} \eta_{c}$ state):

$$
\mathcal{O}_{\bar{c} c c c c}^{\eta_{c} \eta_{c} \text { molecule }}=\sum_{\mathbf{x}}\left(\bar{c}(\mathbf{x}) \gamma_{5} c(\mathbf{x})\right)\left(\bar{c}(\mathbf{x}) \gamma_{5} c(\mathbf{x})\right) .
$$

- Inconclusive results:
* Neither an indication for a $\bar{c} c \bar{c} c$ state significantly below $2 \times m\left(\eta_{c}\right)$...
* ... nor can the existence of such a state be ruled out (the effective mass still decreases at large temporal separations $t$, which signals a trial state $\mathcal{O}_{\bar{c} c \overline{\eta_{c}} \eta_{c}}$ molecule $|\Omega\rangle$, which has a poor ground state overlap; the ground state could be $\left|\eta_{c}+\eta_{c}\right\rangle$ or $|\bar{c} c \bar{c} c\rangle$ of different structure).


## $\bar{c} c \bar{c} c$ tetraquark ...? (3)

- The molecule type $\bar{c} c \bar{c} c$ creation operator used generates a trial state with the two $\eta_{c}$ mesons essentially on top of each other.
- In a possibly existing $\bar{c} c \bar{c} c$ tetraquark state the two $\eta_{c}$ mesons could be quite far separated, which would imply a poor overlap of the above trial state with the $\bar{c} c \bar{c} c$ state.
- Therefore, we also employed an improved molecule type $\bar{c} c \bar{c} c$ creation operator:
$\mathcal{O}_{\bar{c} c \bar{c} c}^{\eta_{c} \eta_{c} \text { molecule }}(d)=\sum_{\mathbf{x}}\left(\bar{c}(\mathbf{x}) \gamma_{5} c(\mathbf{x})\right) \sum_{\mathbf{n}= \pm \mathbf{e}_{x}, \pm \mathbf{e}_{y}, \pm \mathbf{e}_{z}}\left(\bar{c}(\mathbf{x}+d \mathbf{n}) \gamma_{5} c(\mathbf{x}+r \mathbf{n})\right)$
( $d$ models the size of the mesonic molecule, the separation of the two $\eta_{c}$ mesons).


## $\bar{c} c \bar{c} c$ tetraquark ...? (4)

- Still no sign of a $\bar{c} c \bar{c} c$ state significantly below $2 \times m\left(\eta_{c}\right)$..
- Left plot: $d \approx 0.00 \mathrm{fm}, 0.45 \mathrm{fm}, 0.72 \mathrm{fm}$.
- Right plot: solving a generalized eigenvalue problem.


- We plan to explore the dependence of the results on the quark masses, in particular the existence of a bound four-quark state (lattice results strongly indicate that two $B$ mesons can form a bound $b b(\bar{u} \bar{d}-\bar{d} \bar{u})$ state) ...


## Part 4: <br> Static-static-light-light tetraquarks

## Static-static-light-light tetraquarks (1)

- Study possibly existing $Q Q \bar{q} \bar{q}$ (heavy-heavy-light-light) tetraquark states:
- Use the static approximation for the heavy quarks $Q Q$ (reduces the necessary computation time significantly).
- Most appropriate for $Q Q \equiv b b$.
- Could also yield information for $Q Q \equiv c c$.
- Proceed in two steps:

(1) Compute the potential of two heavy quarks $Q Q$ in the background of two light antiquarks $\bar{q} \bar{q}$ by means of lattice QCD
$\mathcal{O}_{Q Q \bar{q} \bar{q}}=(C \Gamma)_{A B}\left(Q_{C}\left(\mathbf{x}_{1}\right) \bar{q}_{A}^{(1)}\left(\mathbf{x}_{1}\right)\right)\left(Q_{C}\left(\mathbf{x}_{2}\right) \bar{q}_{B}^{(2)}\left(\mathbf{x}_{2}\right)\right)$
$\left(R=\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|, \bar{q}^{(1)} \bar{q}^{(2)} \in\{u d-d u, u u, d d, u d+d u\}\right.$, $C=$ charge conjugation matrix, $\Gamma=$ any $\gamma$ combination)
$\rightarrow$ many different channels/quantum numbers.
[M.W., PoS LATTICE 2010, 162 (2010) [arXiv:1008.1538 [hep-lat]]]
[M.W., Acta Phys. Polon. Supp. 4, 747 (2011) [arXiv:1103.5147 [hep-lat]]]



## Static-static-light-light tetraquarks (2)

(2) Solve the non-relativistic Schrödinger equation for the relative coordinate of the heavy quarks $Q Q$.

- Clear indication for a bound state for $Q Q \equiv b b$ in a specific channel:
- Quantum numbers: $I\left(J^{P}\right)=0\left(0^{+}\right), 0\left(1^{+}\right)$
 (degeneracy with respect to the heavy spin).
- Binding energy: $E \approx-50 \mathrm{MeV}$.
[P. Bicudo and M. Wagner, Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274 [hep-ph]]]
- No four-quark binding in other channels.
- Next steps:
- Extend from $Q Q \bar{q} \bar{q}$ to $Q \bar{Q} q \bar{q}$ (experimentally more realistic/interesting).
- Establish connection to computations with four quarks of finite mass.

