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1. Motivation

Why are magnetic fields so interesting to study in quantum systems?

The phenomenolgical side:
magnetic fields are realized in a variety
of systems!

- non central HI collisions 
  (some debate here, relevant at thermal
  equilibrium? → see “Where to go from here”)
- expansion of the early universe

- dense neutron stars
- Chiral Magnetic Effect 
  (strong CP problem)

- … 

The “mathematical / theoretical”  side:
magnetic fields are a nice tool to play with!

- (inverse) magnetic catalysis as a
  tuning knob of chiral symmetry breaking

- confinement ? (probing EM charged,
  confined objects – transition from charged
  quarks to neutral mesons)
- QCD phase diagram

direct test of the topology of YM theories

(largely unexplored!)

Plus: a lot of intuition from quantum mechanics

strongest magnetic field produced in a lab: 10  G⁵
magnetars 10¹³ G
heavy ion collisions 10¹  G⁷

1.2 GW LANL 100T 
pulsed magnet
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2. Chiral Symmetry and Magnetic Fields

prelude: dynamical chiral symmetry breaking

This years Nobel Price:

but as we look at a proton we realize: 
only about 1% of its mass is explained by the Higgs mechanism!

→ Dynamical chiral symmetry breaking is a fundamental feature of the strong interaction   

assume two light flavor QCD:

isospin baryon 
number

broken by anomaly

dynamically broken

signaled by non vanishing fermion condensate (“chiral condensate”):

→ Non-perturbative feature – a “true” quantum effect
→ light pions – pseudo Nambu-Goldstone bosons 
     (three of them since there are three broken symmetry generators)

 
First glimpse: the famous NJL model (Phys. Rev 122 (1961) 345 & Phys. Rev 124 (1961) 246)
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2. Chiral Symmetry and Magnetic Fields

Specific issue: Inverse magnetic catalysis VS. magnetic catalysis

Magnetic Catalysis

a little bit of history:  Schwinger 1951 
→ (bare) fermion propagator in external field (to all orders) “proper time method”

Ritus 1972 → an equivalent approach (later more!)

Modern times: Gusynin, Miransky, Shovkoy 1995:
- effective dimensional reduction

- catalysis of dynamical symmetry breaking by a magnetic field

… in NJL & (ladder) QED: 

… and a very intuitive picture!

superconductors: Cooper pairs are charged (MWC theorem!), magnetic moments are antiparallel 
→ magnetic field tends to break up this condensate

QCD: chiral condensate electrically neutral, magnetic moments of the quarks are aligned
→ enhancement of the condensate

thus even at weakest interaction (at T=0): chiral symmetry breaking!
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2. Chiral Symmetry and Magnetic Fields

Specific issue: Inverse magnetic catalysis VS. magnetic catalysis

Inverse Magnetic Catalysis

but along came the lattice … 

Bruckmann, 
Bali, Endrodi
et al.
(2012)
and other
similar studies

- around non monotonic
  behavior shows up 

→ symmetry restoration

- reason unclear, but perhaps 
  two possible contributors:

1. Hadronic dofs: 

- mesonic fluctuations tend to restore chiral symmetry
- Transition from neutral Nambu-Goldstone bosons to their charged constituents

→ Mermin-Wagner-Coleman theorem (Fukushima & Hidaka 2013)
Not enough! (Kamikado & Kanazawa 2013)

2. Backcoupling from the gluonic sector

- medium modifications, charged sea of virtual quark-antiquark pairs
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3. Magnetic Fields in quantum systems

we want to study Abelian background fields! but how to include such thing??

- perturbation theory: introduce sources that particles couple too ...
BUT:  - a magnetic field violates Poincare invariance

→standard Fourier expansion impossible
actually that is not completely true … 

→ Schwinger's proper time method (can comment on that later if you wish)  
  

- will hardly find non interacting asymptotic states

In reality magnetic fields are often large and have to be included to every order!

→ can treat them quasi classical!

How about we don't do a Fourier expansion of our n-point functions but instead do

an expansion in the eigenfunctions of the dirac operator including the magnetic field?

→ Ritus' method, comes with a challenge: 

     electrically charged and neutral particles will live in different eigensystems

→ there will be no “momentum conservation” at vertices
     (which we normally would get from orthogonality and completeness of the eigensystem)
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3. Magnetic Fields in quantum systems

Ritus method:

warning: - some technique here, but we can learn something!
 - this will be a rather sloppy derivation!

begin with dirac equation: 

(constant, along z)

2-point Greens function can only depend on:

all those commute with     , thus have same eigenfunctions:

other operators commuting with  are    corresponding 
to the eigenvalues → still plane waves in 0,2,3 direction

There is one other operator commuting with all those: 

Nucl. Phys. B 747 (2006) 266, 
Ann. Phys. 69 (1972) 555
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3. Magnetic Fields in quantum systems

Essentially we are solving for eigenfunctions of a plane wave operator in 
three dimensions with a harmonic oscillator in the other dimension 

spin projector along z
Klein-Gordon like 
scalar function

The solution is:

Ansatz:

orbital angular momentum 

total angular momentum
(Landau level)

spin

= 2|eH|l

note: no dependence on p2!
→ dimensional reduction

effectively a 3-dimensional system!
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3. Magnetic Fields in quantum systems

Our new found eigensystem is orthogonal and complete:

Everything in complete analogy with standard textbook Feynman rules!

thus:

write down processes 
of interest in position space

(where the quantum theory 
/ the Lagrangian is defined)

transform into Ritus space get interaction with classical 
vector potential for free 
(to all orders!)
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4. Quenched Quark DSE

We would like to study chiral symmetry breaking, hence want to use the
quark Dyson Schwinger Equation to get a handle on the chiral condensate

now can expand this in the Ritus basis → effect of magnetic field implicitly included

quenched gluon propagator (from lattice: Eur. Phys. J C 68 (2010) 165, ask me for details )

→ obviously still Fourier expanded, since electrically neutral
however: will see later (unquenched): the gluon does feel the magnetic field!
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4. Quenched Quark DSE

challenge: At qqg vertex there will be no “momentum conservation”!
→ no delta functions from orthonormality, that make life easy

instead:

=

Ritus eigenfunctions

plane wave

 … modulo dressing functions and other tensor structures

Sorry for this mess! But we can learn something here:

1. The Landau level (LL) is not conserved, but the total angular momentum of quark and 
gluon (spin 1) is conserved. → There can be transitions between LL

2. What we see here is a “modified” or smeared “momentum” conservation, something like
a form factor.
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4. Quenched Quark DSE

composing all the bits and pieces gives:

which unfortunately is impossible to solve numerically!

However … 

we note that suppresses large values of k_T, hence for not too small eH we can
keep only leading terms in   

therefore

enough equations for now ...
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Results!

- mass function enhanced → Magnetic Catalysis!

- falling flank shifted, since
  there is another scale involved

- flat in the UV (no additional divergences
from “quark” self energy) lowest landau level dominance !

(but some contribution from higher levels)

4. Quenched Quark DSE
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4. Quenched Quark DSE

Chiral Condensate

order parameter for chiral symmetry breaking

- the lowest Landau level approximation:
good only at the 10% level

    + converges only asymptotically
(I have calculated this for much much
larger magnetic fields)

magnetic catalysis

quadratic here
(not resolved due 
  to our approximation)

compare to lattice: PRD 86 (2012) 071502 
χPT:  PRD 83 (2011) 114028

dim. consid.: PLB 402 (1997) 351
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4. Quenched Quark DSE

There is more!

Spin polarization ... insertion of σ¹²

 … essentially the lowest Landau level contribution to the chiral condensate,
since all other LL are degenerate wrt. 2 spin directions and thus cancel on average.

Polarization of the QCD vacuum …

tends towards its saturation μ → 1 for large magnetic fields 
(this corresponds exactly to the validity of the lowest LL approximation)

sensitive to the magnetic susceptibilty for small eH … unfortunately not reliable within my approx. :( 

note: expect finite T to break this up
(as T tends to break up a lot of condensates ...)
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4. Quenched Quark DSE

saturation

spin expectation value

- similar behavior as the chiral condensate 
(obviously, since they are related)

polarization of the vacuum

should be linear for small eH!

→ need reliable numerical method to 
 evaluate this range 
→ magnetic susceptibilty
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5. Unquenched Gluons

Inverse Magnetic Catalysis – back coupling from the gluons ?

effective “bare” propagator (quenched)

magnetic field talks to those

gluon DSE:

medium modification! 
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5. Unquenched Gluons

Polarization structure of the gluon – not that trivial anymore!

note:           ...

1.  … is a symmetric tensor → 10 components
2.  … respects 
3.  ... respects Furry's theorem

this leaves 4 linear independent components!

write    in its eigenbasis:
(eigenvalue zero)

for a constant magnetic field this gives the projectors:
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5. Unquenched Gluons

2 flavor, lowest Landau level unquenched only:

magnetic catalysis is reduced!
→ gluon propagates through
     magnetized medium full
     of virtual quark-antiquark    
     pairs

magnetic field breaks isospin

Hints towards

inverse magnetic catalysis 

at finite T and μ !

a1 = 0.047 GeV^2 a2 = 0.0095 GeV^1.5

Unquenched QCD – gluons vs. quarks (T=0)

→ significant reduction of chiral symmetry breaking!
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5. Unquenched Gluons

almost no effect on the polarization 
of the QCD vacuum

spin expectation value

magnetic polarization
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Summary

What do we learn from this?

We investigated the influence of a strong magnetic field onto Landau gauge QCD

- chiral condensate and polarization structure 

- most important: Decrease in magnetic catalysis from back-reaction YM sector
on quarks

- For chiral condensate find linear dependence of the magnetic field for
  (predicted from lattice, χPT)
   turning into      asymptotically as predicted from dimensional
   considerations

- This is an exploratory study! Quantitative features depend on the truncations used
  → can be expanded easily

- Finite T and µ straightforward! → inverse magnetic catalysis

 
PS: For details: Dynamical quark mass generation in a strong magnetic field,

NM, J. Bonnet, C.S. Fischer, arXiv:1401.1647[hep-ph]
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6. Where to go from here?

First step: Unquenched QCD at Finite T and µ + hadronic fluctuations
→  Inverse Magnetic Catalysis

But there is more! 

- Magnetic Fields of extreme strength are produced during heavy ion collisions
→ some discussions whether they are relevant when systems thermalizes

… who cares? why not magnetic fields in QCD far from equilibrium ?

→ will effect particle production 

in early phases of HI collision
→ very relevant for thermalization scenarios

(input for hydro!)
→ phenomenology CP- and P-odd effects

– observables vs. theory 

strongest magnetic field produced in a lab: 10  G⁵
magnetars 10¹³ G
heavy ion collisions 10¹  G⁷
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6. Where to go from here?

Chiral Magnetic Effect (Kharzeev, McLerran, Warringa, Fukushima...) 

B

+

-

note: axial anomaly relates chirality of 
fermions to topological charge of YM
background

intuitive picture:

-  magnetic field aligns spins of positive and
   negative fermions at LLL in opposite directions

- charge, chirality, momentum of fermions are 
  correlated

right-handed positive charged quarks propagate 
along the magnetic field

this current is usually canceled by left handed 
quarks …

… unless there is a chiral imbalance, i.e.
     finite axial chemical potential 

 

Note: This is an anomaly effect! We can test a non-trivial topology of the QCD vacuum.
→ CP violation in QCD! Non zero Chern-Simons topological charge!
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Sources
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Backup
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