
Thorsten Steinert

Gießen,  01.11.2013

Electric and magnetic properties

of hot partonic matter



Electromagnetic fields in peripheral heavy-ion collisions

 
 Huge electromagnetic fields in Heavy Ion Collisions!

 What is the response of the QGP to these fields?
V. Voronyuk et al., Phys. Rev. C83 054911 (2011) 



Parton-Hadron-String-Dynamics I

 

   Parton-Hadron-String-Dynamics (PHSD)

W. Cassing, E. Bratkovskaya,  PRC 78 (2008) 034919;
NPA831 (2009) 215; 

W. Cassing, EPJ  ST 168 (2009) 3

QGP consists of strongly interacting off-shell partons

We need a transport model for off-shell particles with 
finite width:



Parton-Hadron-String-Dynamics II

 Effectiv selfenergies described by

Dynamical QuasiParticle Model (DQPM)

W. Cassing, E. Bratkovskaya,  PRC 78 (2008) 034919;
NPA831 (2009) 215; 

W. Cassing, EPJ  ST 168 (2009) 3

  A. Peshier, W. Cassing, PRL 94 (2005) 172301;
  Cassing,  NPA 791 (2007) 365: NPA 793 (2007)  

Solve the equation with the testparticle approximation



Basic idea:  Interacting quasi-particles 
    -  massive quarks and gluons (g, q, qbar) with spectral functions :

  DQPM: Peshier, Cassing, PRL 94 (2005) 172301;
   Cassing,  NPA 791 (2007) 365: NPA 793 (2007)  

 mass:

width:

 gluons:

 running coupling (pure glue):

quarks

Dynamical QuasiParticle Model I



Bratkovskaya et al., Nucl. Phys. A 856, 162 (2011)  

with 3 parameters: Ts/Tc=0.56;  c=14.4;  =2.42

 fit to lattice (lQCD) results (e.g. entropy density)
  from Y. Aoki et al., JHEP 0906 088 (2009)

   quasiparticle properties (mass, width)

Dynamical QuasiParticle Model II



 

Testparticle Approximation

Use equations of motion for the testparticle propagation

Propagation:

Collisions:

Expectation values:

Close particles collide

Final state choosen by Monte Carlo

Sum up properties of interest



 

Initialisation I

Density of particle species:

Four-momenta are choosen by Monte Carlo 
with respect to the distribution function I:

with d
q
= 18 = Spin x Flavor x Color



 

Initialisation II

Initialize testparticles homogeneously in a finite box

of V = 9x9x9 fm3 with periodic boundary conditions.

For homogeneos systems the equations of

motion simplify dramatically :



 

V. Ozvenchuk et al., PRC 87 (2013) 064903 

Wait for thermodynamical equilibrium, then  
iextract the desired properties of interest.

Already done for the shear and bulk viscosity!

Extracting transport coefficients



Electric conductivity I

Additional force on particles of charge q
j
e:



Electric conductivity II

induced current jz electric conductivity

W. Cassing, T.S. et al., PRL 110, 182301 (2013) 

0.01 GeV2



Drude model

Drude formula:

Charged particles are accelerated by the 
electric field and deaccelerated by collisions:

Equilibrium for v=v
D
:



Electric conductivity III

relaxation time approach in DQPM:

W. Cassing, T.S. et al., PRL 110, 182301 (2013) 

Drude formula:



Fermions in magentic fields I

Start with the Dirac equation in an external field:

Klein-Gordon form:



Fermions in magentic fields II

Neglect quadratic terms in B:

Hamiltonian with magnetic field:



Magnetic moment I

Response to magnetic field proportional 
to magnetic moment μ:

We need angular momentum L and spin S:

Angular momentum due to Lorentz force:



Angular momentum

Angular momentum from rotation in magnetic field:

Energy is independent from field strengh: μ



Spin

Spins orient parallel to the magnetic field

results in a finite magnetization of the QGP:

We need spinflips! Magnetization propor-
tional to magnetic field:



Magnetic moment II

For not too strong fields the susceptibility and the 
energy change are independent from the field strengh!

0.02 GeV20.02 GeV2

Note:  Lattice QCD: 0.1 < eB < 1.1 GeV2



Magnetic moment III

Both rise with temperature (T>T
c
):



Critical magnetic field I

The angular momentum behaves diamagnetic!

The spin behaves paramagnetic!

There is a critical field B
c
(T) for 

which both contributions cancel out:



Critical magnetic field II
●No thermal spin polarisation for hugeimagnetic fields.

●All spins point in the same direction:

●Energy rises linear with the field strength:

●The critical field strength decreases:



Critical magnetic field III

Shows a minimum close to the critical temperature!

Larger than the strongest fields at RHIC:     



Electric conductivity III

Rises like the total quarkdensity:



Finite quark-chemical potential
Only small changes in the masses and the widths!

Increase of the total quarkdensity  MNM μ
q

2



Magnetic moment IV

Scales also like the total quarkdensity:

Changes for finite quark-chemical potential seem 
mainly driven by increase of charged particles!



Correction factor
The correction factor is a function of temperature (T>T

c
):

The effects of finite quark-chemical potential 
decrease with increasing temperature!



Realistic fields I

●Apply Gaussian shaped fields to a QGP with T=200 MeV

●Matches the conditions in a √s=200 GeV AuAu collision



Realistic fields II

●The fields last to short to induce proper effects!

●The fields last only for ≈0.4 fm/c

●An up quark needs ≈18 fm/c for a complete circle

●Response to constant fields is 20 times larger



Summary
Rise with temperature T in the vicinity above T

c
:

σ
0
/T

  
 MN  T

μ
S 
 MN  T-1

μ
L
 MN  T2.8

Rise with quark-chemical potential  MN  (1+c μ2
q
/T2)

B
c
 is much higher than the currently  

iaccessible fields in HIC.

=> QGP response is diamagnetic!

●No huge effects in heavy ion collision.
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