

Institut für Theoretische Physik

Electric and magnetic properties of hot partonic matter

Thorsten Steinert

Gießen, 01.11.2013

Electromagnetic fields in peripheral heavy-ion collisions

- Huge electromagnetic fields in Heavy Ion Collisions!
- What is the response of the QGP to these fields?

Parton-Hadron-String-Dynamics I

- •QGP consists of strongly interacting off-shell partons
- •We need a transport model for off-shell particles with finite width:

Parton-Hadron-String-Dynamics (PHSD)

$$2p^{\mu}\partial_{\mu}^{x}i\bar{G}^{\lessgtr} - \left\{\bar{\Sigma}^{\delta} + \operatorname{Re}\bar{\Sigma}^{R}, i\bar{G}^{\lessgtr}\right\} - \left\{i\bar{\Sigma}^{\lessgtr}, \operatorname{Re}\bar{G}^{R}\right\} = i\bar{\Sigma}^{<}i\bar{G}^{>} - i\bar{\Sigma}^{>}i\bar{G}^{<}$$
$$\left\{\bar{M}, iG^{\lessgtr}\right\} - \left\{i\bar{\Sigma}^{\lessgtr}, \operatorname{Re}\bar{G}^{R}\right\} = i\bar{\Sigma}^{<}i\bar{G}^{>} - i\bar{\Sigma}^{>}i\bar{G}^{<}$$

 $\{\bar{F}(p,x),\bar{G}(p,x)\}=\partial^p_{\mu}\bar{F}(p,x)\partial^{\mu}_{x}\bar{G}(p,x)-\partial^{\mu}_{x}\bar{F}(p,x)\partial^p_{\mu}\bar{G}(p,x)$

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

Parton-Hadron-String-Dynamics II

•Solve the equation with the testparticle approximation

$$F_{XP} = iG^{<}(X, P) \sim \sum_{i=1}^{N} \delta^{(3)}(\mathbf{X} - \mathbf{X}_{i}(t))\delta^{(3)}(\mathbf{P} - \mathbf{P}_{i}(t))\delta(P_{0} - \epsilon_{i}(t))$$

$$\begin{aligned} \frac{d\mathbf{X}_{i}}{dt} &= \frac{1}{1 - C_{(i)}} \frac{1}{2\epsilon_{i}} \left[2\mathbf{P}_{i} + \nabla_{P_{i}} \operatorname{Re}\Sigma_{(i)}^{ret} + \frac{\epsilon_{i}^{2} - \mathbf{P}_{i}^{2} - M_{0}^{2} - \operatorname{Re}\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \nabla_{P_{i}}\Gamma_{(i)} \right] \\ \frac{d\mathbf{P}_{i}}{dt} &= -\frac{1}{1 - C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\nabla_{X_{i}} \operatorname{Re}\Sigma_{(i)}^{ret} + \frac{\epsilon_{i}^{2} - \mathbf{P}_{i}^{2} - M_{0}^{2} - \operatorname{Re}\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \nabla_{X_{i}}\Gamma_{(i)} \right] \\ \frac{d\epsilon_{i}}{dt} &= \frac{1}{1 - C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\frac{\partial \operatorname{Re}\Sigma_{(i)}^{ret}}{\partial t} + \frac{\epsilon_{i}^{2} - \mathbf{P}_{i}^{2} - M_{0}^{2} - \operatorname{Re}\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial t} \right] \end{aligned}$$

Effectiv selfenergies described by Dynamical QuasiParticle Model (DQPM)

 ΛT

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

> A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Dynamical QuasiParticle Model I

<u>Basic idea:</u> Interacting quasi-particles

- massive quarks and gluons (g, q, q_{bar}) with spectral functions :

$$\rho_i(\omega, T) = \frac{4 \ \omega \ \Gamma_i(T)}{(\omega^2 - \vec{p}^2 - M_i^2(T))^2 + 4 \ \omega^2 \ \Gamma_i^2(T)}$$

 $(i=q,\bar{q},g)$

• running coupling (pure glue):

$$\alpha_s(T) = \frac{g^2(T)}{4\pi} = \frac{12\pi}{(11N_c - 2N_f)\ln[\lambda^2(T/T_c - T_s/T_c)^2]}$$

•quarks

• gluons:

mass:
$$M_{q(\bar{q})}^2(T) = \frac{N_c^2 - 1}{8N_c} g^2 \left(T^2 + \frac{\mu_q^2}{\pi^2}\right)$$

width: $\Gamma_{q(\bar{q})}(T) = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2 T}{8\pi} \ln\left(\frac{2c}{g^2} + 1\right)$

$$\begin{split} M_g^2(T) = & \frac{g^2}{6} \left(\left(N_c + \frac{N_f}{2} \right) T^2 + \frac{N_c}{2} \sum_q \frac{\mu_q^2}{\pi^2} \right) \\ \Gamma_g(T) = & \frac{1}{3} N_c \frac{g^2 T}{8\pi} \ln \left(\frac{2c}{g^2} + 1 \right) \end{split}$$

DQPM: Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Dynamical QuasiParticle Model II

fit to lattice (IQCD) results (e.g. entropy density) from Y. Aoki et al., JHEP 0906 088 (2009)

with 3 parameters: $T_s/T_c=0.56$; c=14.4; =2.42

→ quasiparticle properties (mass, width)

Bratkovskaya et al., Nucl. Phys. A 856, 162 (2011)

Testparticle Approximation

Propagation:

•Use equations of motion for the testparticle propagation

Collisions:
•Close particles collide
$$|\vec{r_1} - \vec{r_2}| \le \sqrt{\frac{\sigma_{tot}(\sqrt{s})}{\pi}}$$

•Final state choosen by Monte Carlo

Expectation values:

•Sum up properties of interest

$$\langle \hat{A} \rangle = \sum_{i} A(\mathbf{X}_{i}, \mathbf{P}_{i}, \epsilon_{i})$$

Initialisation I

Density of particle species:

$$N_{q(g)} = d_{q(g)} \int_{0}^{\infty} \frac{d\omega}{2\pi} \int \frac{d^3p}{(2\pi)^3} 2\omega \rho_{q(g)}(\omega, \mathbf{p}) n_{F(B)}$$

Four-momenta are choosen by Monte Carlo with respect to the distribution function I:

$$I(\omega, p) = \frac{d_q}{2\pi^3} p^2 \omega \rho_q(\omega, p^2) n_F((\omega - \mu_q)/T)$$

with $d_q = 18 =$ Spin x Flavor x Color

Initialisation II

•Initialize testparticles homogeneously in a finite box of V = 9x9x9 fm³ with periodic boundary conditions.

•For homogeneos systems the equations of motion simplify dramatically :

$$\mathbf{X}_{i}(t + dt) = \mathbf{X}_{i}(t) + \mathbf{P}_{i}(t)/\epsilon_{i}(t)dt$$
$$\mathbf{P}_{i}(t + dt) = \mathbf{P}_{i}(t)$$
$$\epsilon_{i}(t + dt) = \epsilon_{i}(t)$$

Extracting transport coefficients

•Wait for thermodynamical equilibrium, then extract the desired properties of interest.

Already done for the shear and bulk viscosity!

V. Ozvenchuk et al., PRC 87 (2013) 064903

Electric conductivity I

Additional force on particles of charge q_ie:

 $\frac{d}{dt}p_z^j = q_j eE_z$

lacksquare

+

Electric conductivity II

W. Cassing, T.S. et al., PRL 110, 182301 (2013)

Drude model

Charged particles are accelerated by the electric field and deaccelerated by collisions:

$$m\dot{v} + \frac{m}{\tau}v_D = -eE$$

Equilibrium for v=v_D: $v_D = -\frac{e\tau}{m}E$

Drude formula:
$$\sigma_0 = \frac{j}{E} = \frac{-env_D}{E} = \frac{e^2 \tau n}{m}$$

Electric conductivity III

•relaxation time approach in DQPM: Drude formula: $\frac{\sigma_0(T)}{T} \approx \frac{2}{9} \frac{e^2 n_q(T)}{M_q(T)\Gamma_q(T)T}$

W. Cassing, T.S. et al., PRL 110, 182301 (2013)

Fermions in magentic fields I

Start with the Dirac equation in an external field:

$$\begin{pmatrix} \mathbb{1}_2 E & 0_2 \\ 0_2 & \mathbb{1}_2 E \end{pmatrix} \psi(p) = H_{Dirac} \psi(p) = \gamma^0 \begin{pmatrix} \mathbb{1}_2 m & -\boldsymbol{\sigma} \mathbf{D} \\ \boldsymbol{\sigma} \mathbf{D} & \mathbb{1}_2 m \end{pmatrix} \psi(p)$$

$$D_{\mu} = p_{\mu} - qeA_{\mu}$$
 $\mathbf{A} = \frac{1}{2}\mathbf{B} \times \mathbf{x}$

Klein-Gordon form:

 $2\psi_{2}^{\dagger}(p)E^{2}\psi_{2}(p) = 2\psi_{2}^{\dagger}(p)(\mathbb{1}_{2}m^{2} + (\boldsymbol{\sigma}\mathbf{D})^{2})\psi_{2}(p)$

Fermions in magentic fields II

Neglect quadratic terms in B:

$$(\boldsymbol{\sigma}\mathbf{D})^2 = \mathbf{D}^2 - qe\boldsymbol{\sigma}\mathbf{B}$$

 $\mathbf{D}^2 = (\mathbf{p} - qe\mathbf{A})^2 = \mathbf{p}^2 - qe\mathbf{LB}$

Hamiltonian with magnetic field:

$$H_{Dirac} = \sqrt{\mathbf{p}^2 + m^2 - qe(\mathbf{L} + \boldsymbol{\sigma})\mathbf{B}}$$
$$\approx E - \frac{qe}{2E}(\mathbf{L} + \boldsymbol{\sigma})\mathbf{B}$$

Magnetic moment I

Response to magnetic field proportional to magnetic moment μ : $\Delta E_{mag} = -\mu \cdot \mathbf{B}$

•We need angular momentum L and spin S:

$$\boldsymbol{\mu} = \boldsymbol{\mu}_L + \boldsymbol{\mu}_S = \frac{qe}{2E} (\mathbf{L} + 2\mathbf{S})$$

Angular momentum due to Lorentz force:

$$\mathbf{F}_L = \frac{qe}{E} (\mathbf{p} \times \mathbf{B})$$

Angular momentum

•Angular momentum from rotation in magnetic field:

RA

$$\mathbf{L} = (\mathbf{r} - \mathbf{r}_0) \times \mathbf{p}$$

$$L_y = \frac{-p_{\perp}^2}{qeB}$$
•Energy is independent from field strengh:
$$\mathbf{L} = -\mu_L B = -\frac{-p_{\perp}^2}{2BE} B = \frac{p_{\perp}^2}{2E}$$

Spin

•Spins orient parallel to the magnetic field $\,ec{S} \parallel ec{B}\,$

•results in a finite magnetization of the QGP:

$$M = \frac{\langle \mu_S \rangle}{V}$$

We need spinflips!

____ 1

 \mathbf{D}

Magnetization proportional to magnetic field:

$$P_{\uparrow,\downarrow} = \exp\left(-\frac{qeB}{ET}\right)$$

$$M = \chi_S B$$

Magnetic moment II

For not too strong fields the susceptibility and the energy change are independent from the field strengh!

Note: Lattice QCD: $0.1 < eB < 1.1 GeV^2$

Magnetic moment III

Both rise with temperature (T>T_):

 $\Delta E_{mag,L}(T) = 0.29816 \cdot (T - 95.8592)^{2.81977} \ [MeV]$ $\chi_S(T) = 0.01736 - \frac{2.38671}{T}$

Critical magnetic field I

- •The angular momentum behaves diamagnetic!
- •The spin behaves paramagnetic!

$$\Delta E(T,B) = \Delta E_{mag,L}(T) - \chi_S(T)B^2$$

There is a critical field $B_c(T)$ for which both contributions cancel out:

$$B_c(T) = \sqrt{\frac{\Delta E_{mag,L}}{\chi_S}}$$

Critical magnetic field II

- •No thermal spin polarisation for huge magnetic fields.
- •All spins point in the same direction:

$$\mu_S = \frac{qe}{2E} n_{q+\bar{q}}$$

•Energy rises linear with the field strength:

$$\Delta E(T,B) = \Delta E_{mag,L}(T) - \mu_S(T)B$$

•The critical field strength decreases:

$$B_c(T) = \frac{\Delta E_{mag,L}}{\mu_S}$$

Critical magnetic field III

•Shows a minimum close to the critical temperature!

•Larger than the strongest fields at RHIC: $eB_{max} = 0.0869 \text{ GeV}^2$

Electric conductivity III

•Rises like the total quarkdensity:

Finite quark-chemical potential

- •Only small changes in the masses and the widths!
- •Increase of the total quarkdensity ~ μ_0^2

Magnetic moment IV

•Scales also like the total quarkdensity: $\sim (1 + a \mu_q^2)$

Changes for finite quark-chemical potential seem mainly driven by increase of charged particles!

Correction factor

The effects of finite quark-chemical potential decrease with increasing temperature!

Realistic fields I

•Apply Gaussian shaped fields to a QGP with T=200 MeV

•Matches the conditions in a $\sqrt{s}=200$ GeV AuAu collision

Realistic fields II

- •The fields last only for ≈0.4 fm/c
- •Response to constant fields is 20 times larger
- •An up quark needs ≈18 fm/c for a complete circle

$$\tau_{circle} = \frac{2\pi E}{qeB}$$

•The fields last to short to induce proper effects!

Summary

- •Rise with temperature T in the vicinity above T_c:
 - $\sigma_0/T \sim T$ $\mu_S \sim T^{-1}$ $\mu_L \sim T^{2.8}$
- •Rise with quark-chemical potential ~ $(1+c \mu_{a}^{2}/T^{2})$
- •B_c is much higher than the currently accessible fields in HIC.
- => QGP response is diamagnetic!
- •No huge effects in heavy ion collision.

PHSD group

Wolfgang Cassing (Giessen Univ.) Volodya Konchakovski (Giessen Univ.) Olena Linnyk (Giessen Univ.) Thorsten Steinert (Giessen Univ.) Elena Bratkovskaya (FIAS & ITP Frankfurt Univ.) Vitalii Ozvenchuk (HGS-HIRe, FIAS & ITP Frankfurt Univ.) Rudy Marty (FIAS, Frankfurt Univ.) Hamza Berrehrah (FIAS, Frankfurt Univ.) Daniel Cabrera (ITP&FIAS, Frankfurt Univ.) Andrej Ilner (Frankfurt Univ.)

HIC for FAIR Helmholtz International Center

External Collaborations: SUBATECH, Nantes Univ. : Jörg Aichelin Christoph Hartnack Pol-Bernard Gossiaux Texas A&M Univ.: Che-Ming Ko JINR, Dubna: Vadim Voronyuk Viatcheslav Toneev Kiev Univ.: Mark Gorenstein