Light tetraquark bound-states/Beyond Rainbow-Ladder

Walter Heupel, Gernot Eichmann, Christian Fischer, Tobias Göcke

JLU Giessen

(arXiv:1206.5129, arXiv:1402.5042)

June 11, 2014

Table of contents

Guiding principles

- Strong coupling
 - Non-perturbative

Strong coupling α_s

Guiding principles

- Strong coupling
 - Non-perturbative
- Confining theory
 - Single quarks cannot be observed

Linear Rising Potential

QCD forces and heavy quark bound state, G.S.Bali

Guiding principles

- Strong coupling
 - Non-perturbative
- Confining theory
 - Single quarks cannot be observed
- Colorless observables
 - "Classical" objects

"Classical" singlet states

Meson

Guiding principles

- Strong coupling
 - Non-perturbative
- Confining theory
 - Single quarks cannot be observed
- Colorless observables
 - "Classical" objects
 - "Exotic" objects

"Exotic" singlet states

Reasons to investigate tetraquarks

• There is no reason from QCD why they should not exist

Reasons to investigate tetraquarks

- There is no reason from QCD why they should not exist
- Strong hints in experiments eg. Z_c(3900, 4020, ...), X(3872) ...

Reasons to investigate tetraquarks

- There is no reason from QCD why they should not exist
- Strong hints in experiments eg. Z_c(3900, 4020, ...), X(3872) ...
- Hints on the lattice eg. Prelovsec et.al (2010)

Reasons to investigate tetraquarks

- There is no reason from QCD why they should not exist
- Strong hints in experiments eg. *Z*_c(3900, 4020, ...), *X*(3872) ...
- Hints on the lattice eg. Prelovsec et.al (2010)

Reasons to investigate light scalar tetraquarks

Solves the "scalar puzzle"

Light scalar (σ) - 0⁺⁺

The bad

- Contains scattering states, glueballs, mesons, tetraquarks
- No bound state (σ) in old $\pi \pi$ -scattering analysis
- \bullet "were exiled to the gulag of particle physics" $_{\mbox{\tiny Jaffee}\ (2006)}$

Light scalar (σ) - 0⁺⁺

The bad

- Contains scattering states, glueballs, mesons, tetraquarks
- No bound state (σ) in old $\pi \pi$ -scattering analysis
- "were exiled to the gulag of particle physics" Jaffee (2006)

and the good

- Pole mass of $\approx 441 + i272$ MeV Leutwyler *et.al* (2006), Pelaez *et.al* (2008) deduced from experiments KLOE(2002), E791(2001), BES(2005)
- Hints on the lattice for light scalars Mathur et.al (2007)
- They are back in the PDG! f0(500)

Meson nonet • Wrong mass order in the nonet

Meson nonet

• Wrong mass order in the nonet

Meson nonet

- Wrong mass order in the nonet
- 0⁺⁺ : L=1
- Decay channels are puzzeling

Meson nonet

- Wrong mass order in the nonet
- 0⁺⁺ : L=1
- Decay channels are puzzeling
- Width of *f*₀ contradics OZI-rule

Scalar Puzzle - Meson nonet vs. tetraquark nonet

Tetraquark nonet

• Right mass ordering

Scalar Puzzle - Meson nonet vs. tetraquark nonet

Tetraquark nonet

• Right mass ordering

Scalar Puzzle - Meson nonet vs. tetraquark nonet

Tetraquark nonet

- Right mass ordering
- 0⁺⁺ : L(3)=0
- Decay channels are better understandable

Tetraquark nonet

- Right mass ordering
- 0⁺⁺ : L(3)=0
- Decay channels are better understandable
- Width of *f*₀ follows from the "gluon-less" decay

Bound-state equations in QFT

Features and ingredients

- Requires dressed propagators and suitable interaction
- Selfconsistent eigenvalue problem
- Determines mass and wavefunction

DSE tower

Kernel

$$K(p,q) = rac{\delta \Sigma(p)}{\delta S(q)}$$

Truncation scheme

- Effective gluon Maris-Tandy
- Fixed to $f_{\pi}=131~{
 m MeV}$ and $m_{\pi}=138~{
 m MeV}$
- Reproduces a variety of hadron observables

Quark propagator

Solution on the \mathbb{R}^+ -axis:

Solution in the C-plane:

Properties

• Dynamical chiral Symmetry breaking

Tetraquark bound-state equation I

- Neglect 3- and 4-body interactions.
- Keep pair interaction. Treat overcounting properly.
- 512 wave functions, depend on 9 variables

Approximation

Ansatz for the 2-body T-matrix:

Jouy I-mau	17.		
		—	
=	; =		
<u> </u>		—	

Tetraquark bound-state equation II

2-body problem - Meson/Meson-Diquark/Antidiquark picture

- Interaction via quark-exchange instead of a gluon-exchange.
- 2 amplitudes, depend on 2 variables.
- 2-loop structure instead of 1-loop.

Tetraquarks Beyond Rainbow-Ladder

Results

What can be learned from the 2body equation

- Bound 0⁺ tetraquark state at \approx 403 MeV.
- The Pion-Pion wavefunction is dominant.
- Quarkmass dependence of the tetraquark resembles the pion.
- Possible narrow cccc state at 5.3 GeV??

Tetraquarks Beyond Rainbow-Ladder

Results

What can be learned from the 4body equation - Prepreliminary

- Bound 0⁺ tetraquark state at \approx 425 MeV.
- Discrepancy between 2body and 4body approach.
- Low mass for cccc a feature or caused by neglecting 3- and 4-body terms low numerics?

Conclusion and outlook

Conclusion

- The 0⁺ tetraquark boundstate equation was derived and solved in the mmdd picture and in the 4body approach.
- \bullet A mass of \approx 403 MeV was found in both approches.
- The molecular picture of the 0⁺ tetraquark is favoured by the calculation in the mmdd picture.

Conclusion and outlook

Conclusion

- The 0⁺ tetraquark boundstate equation was derived and solved in the mmdd picture and in the 4body approach.
- \bullet A mass of \approx 403 MeV was found in both approches.
- The molecular picture of the 0⁺ tetraquark is favoured by the calculation in the mmdd picture.

Outlook

- Solve for other quantum numbers and flavours.
- Solve the 4-body equation with better numerics and the full structure.

Beyond Rainbow-Ladder in bound state equations - Motivation

Simple Maris-Tandy model is a viable tool to investigate phenomenology:

- Meson, baryon and tetraquark masses.
- Electromagnetic form factors.
- Anamolous magnetic moment ...

But:

- Properties beyond the ground state are of qualitative nature at best.
- The vector-axialvector splitting is incorrect.
- The scalar meson is too light. ...

Beyond Rainbow-Ladder in bound state equations - Introduction

From the DSE to the BSE

• BSE interaction kernel can be derived consistently from quark selfenergy.

- If done properly, the kernel preserves important symmetries.
- Example: If the vertex chiraly transforms as a quark, the (AxWTI) is fullfilled. Munzcek (1986)

Beyond Rainbow-Ladder in bound state equations - Introduction

How to?

• Given by a functional derivative ('cutting'):

$$K_{ab}^{cd}(x, y, z, z') = \frac{\delta \Sigma^{cd}(x, y)}{\delta S^{ab}(z, z')}$$

• In the Rainbow-Ladder case:

Beyond Rainbow-Ladder in bound state equations -Introduction

Beyond Rainbow-Ladder in bound state equations - Introduction

But...

• What if the vertex itself depends on the quark?

- The vertex has to be cutted aswell.
- Could be done by cutting a vertex DSE:
 - Taking functional derivatives numerically is difficult.
 - Solving for the correct 5-point function is difficult.

Beyond Rainbow-Ladder in bound state equations - Introduction

But...

• What if the vertex itself depends on the quark?

- The vertex has to be cutted aswell.
- Could be done by cutting a vertex model:
 - If the vertex depends on quarks, an explicit cutting is feasible.
 - It allows for exploratory investigations of the structure of the quark-gluon vertex on the spectrum.

First case: Ball-Chiu vertex model

Ball-Chiu construction

• From its Slavnov-Taylor identity

$$(p_1^{\mu}-p_2^{\mu})\Gamma(p_1,p_2)=S^{-1}(p_2)-S^{-1}(p_1),$$

the longitudinal part of the vertex can be constrained. A non-singular solution is

$$\Gamma^{BC}_{\mu}(p_1, p_2) = \left[\gamma_{\mu} \frac{A(p_1^2) + A(p_2^2)}{2} + 2 \varkappa k_{\mu} \frac{A(p_1^2) - A(p_2^2)}{p_1^2 - p_2^2} + i2p_{\mu} \frac{B(p_1^2) - B(p_2^2)}{p_1^2 - p_2^2} \mathbb{1} \right]$$

Key ideas

- The derivative has to be taken into all all 'directions' of the quark, even the unphysical ones: $\gamma_5, \gamma^{\mu}\gamma_5, \sigma^{\mu\nu}$.
- After taking the derivative, set all quantities back to physical point.
- Rewrite the dressing functions:

$$S^{-1}(p) = i \not P A(p^2) + \mathbbm{1} B(p^2) + \gamma_5 C(p^2)$$

Key ideas

- The derivative has to be taken into all all 'directions' of the quark, even the unphysical ones: $\gamma_5, \gamma^{\mu}\gamma_5, \sigma^{\mu\nu}$.
- After taking the derivative, set all quantities back to physical point.
- Rewrite the dressing functions:

$$A(p^{2}) = \frac{1}{4p^{2}} Tr[p'S^{-1}]$$
$$B(p^{2}) = \frac{1}{4} Tr[\mathbb{1}S^{-1}]$$
$$C(p^{2}) = \frac{1}{4} Tr[\gamma_{5}S^{-1}] \dots$$

The 'problem'

- For the pion, the additional terms stemming from cutting the vertex do **not** contribute.
- In order to fullfill the AxWTI, the kernel has to solve:

The 'problem'

- For the pion, the additional terms stemming from cutting the vertex do **not** contribute.
- In order to fullfill the AxWTI, the kernel has to solve:

• The 3rd Ball-Chiu component breaks the AxWTI.

The solution

• Add a '0' to the vertex

$$\Gamma_{\mu}^{ABC} = \Gamma_{\mu}^{BC} + i2 \gamma_5 k_{\mu} \frac{C(p_1^2) - C(p_2^2)}{p_1^2 - p_2^2}$$

- This vertex gives a contribution to the pion kernel after cutting.
- The vertex and the cutted vertex together preserve the AxWTI.

Cutting the Ball-Chiu vertex - the result

Gell-Mann-Oakes-Renner

Second case: Munczek-vertex model

Construction principle

- Has the same chiral transformation property as the quark. 'Automatically' preserves the AxWTI.
- Given in coordinate space.

Allows a consistent derivation of the kernel and the BSE.

- Longitudinal part restricted by the Slavnov-Taylor identity.
- Linear in the inverse quark.

Second case: Munczek-vertex model

Construction principle

- Has the same chiral transformation property as the quark. 'Automatically' preserves the AxWTI.
- Given in coordinate space.

Allows a consistent derivation of the kernel and the BSE.

- Longitudinal part restricted by the Slavnov-Taylor identity.
- Linear in the inverse quark.

$$\Gamma^{\mu}(p_1, p_2) = \int_{0}^{1} d\alpha [\gamma^{\mu} A(p^2) + 2p^{\mu} A'(p^2) p' + i2p^{\mu} B'(p^2)]_{p=p_1+\alpha(p_1-p_2)}.$$

Second case: Munczek-vertex model

Kernel

• The kernel can be stated in a closed form

$$\mathcal{K}_{II}\left[\Gamma(P,p)\right]_{ab} = -\int_{q} \int_{0}^{1} d\alpha \left[\frac{\partial}{\partial q^{\nu}} \left(\Gamma_{ac}(q+\alpha(q-p);P)\right)\right] \\ \times S_{cd}(q+\frac{1}{2}P)\gamma^{\mu}_{db}D^{\mu\nu}(q-p).$$
(1)

• Because of the derivative, the kernel is different for each quantum number.

Cutting the Munczek vertex - The result

Gell-Mann-Oakes-Renner

Cutting the Munczek vertex - The result

	f_{π}	m_{π}	m_{σ}	$m_ ho$	m _{a1}
RL	0.093	0.137	0.65	0.73	0.83
MV	0.094	0.134	0.46	0.58	0.71

Spectrum

- The cutted Munczec-vertex is stable and can be used for all quantum numbers. Reason: Given in coordinate space.
- No improvement of the spectrum compared to the Rainbow-Ladder case.
- A simple Ball-Chiu like vertex seems not to be enough to increase the $\pi \sigma$ and the $\rho a1$ splitting.
- The cure for this are likely additional transversal parts proportional to $\sigma^{\mu\nu}.$ $_{\rm Roberts\ et.al\ (2009)}$

Conclussion

Summary

- A procedure to cut vertices depending explicitly on the quark was presented.
- The method was applied to the Ball-Chiu vertex and the Munczek vertex.
- The Ball-Chiu vertex had to be continued into the unphysical region to preserve the AxWTI.
- The Munczek vertex worked out of the box. But the spectrum turned out to be not improved.

Outlook

- The Munczec vertex could be improved by additional transverse terms proportional to $\sigma^{\mu\nu}$.
- The functional derivative could be done numerically.

The end

Thank you for your attention!

