Light tetraquark bound-states/Beyond Rainbow-Ladder

Walter Heupel, Gernot Eichmann, Christian Fischer, Tobias Göcke

JLU Giessen

(arXiv:1206.5129, arXiv:1402.5042)
June 11, 2014

Table of contents

(1) Tetraquarks
(2) Beyond Rainbow-Ladder

QCD boundstates

Guiding principles

- Strong coupling
- Non-perturbative

Strong coupling α_{s}

World Summary of α_{s}, S.Bethke

QCD boundstates

Guiding principles

- Strong coupling
- Non-perturbative
- Confining theory
- Single quarks cannot be observed

Linear Rising Potential

QCD forces and heavy quark bound state, G.S.Bali

QCD boundstates

Guiding principles

- Strong coupling
- Non-perturbative
- Confining theory
- Single quarks cannot be observed
- Colorless observables
- "Classical" objects

QCD boundstates

Guiding principles

- Strong coupling
- Non-perturbative
- Confining theory
- Single quarks cannot be observed
- Colorless observables
- "Classical" objects
- "Exotic" objects

"Exotic" singlet states

Tetraquark

Tetraquarks

Reasons to investigate tetraquarks

- There is no reason from QCD why they should not exist

Tetraquarks

Reasons to investigate tetraquarks

- There is no reason from QCD why they should not exist
- Strong hints in experiments eg. $z_{c}(3000,4020, \ldots), x(3872) \ldots$

Tetraquarks

Reasons to investigate tetraquarks

- There is no reason from QCD why they should not exist
- Strong hints in experiments eg. $Z_{c}(3900,4020, \ldots), x(3872) \ldots$
- Hints on the lattice eg. Prelousec et.al (2010)

Tetraquarks

Reasons to investigate tetraquarks

- There is no reason from QCD why they should not exist
- Strong hints in experiments eg. $Z_{c}(3900,4020, \ldots), x(3872) \ldots$
- Hints on the lattice eg. Prelousec et.al (2010)

Reasons to investigate light scalar tetraquarks

- Solves the "scalar puzzle"

Light scalar $(\sigma)-0^{++}$

The bad

- Contains scattering states, glueballs, mesons, tetraquarks
- No bound state (σ) in old $\pi \pi$-scattering analysis
- "were exiled to the gulag of particle physics" Jaffee (2006)

Light scalar $(\sigma)-0^{++}$

The bad

- Contains scattering states, glueballs, mesons, tetraquarks
- No bound state (σ) in old $\pi \pi$-scattering analysis
- "were exiled to the gulag of particle physics" Jaffee (2006)

and the good

- Pole mass of $\approx 441+i 272 \mathrm{MeV}$ Leutwyler et.al (2006), Pelaez et.al (2008) deduced from experiments $\operatorname{kloE}(2002)$, E791(2001), BES(2005)
- Hints on the lattice for light scalars Mathur et.al (2007)
- They are back in the PDG! f0(500)

Scalar Puzzle - Meson nonet vs. tetraquark nonet

Meson nonet

- Wrong mass order in the nonet

Scalar Puzzle - Meson nonet vs. tetraquark nonet

Meson nonet

- Wrong mass order in the nonet
- $0^{++}: L=1$

Scalar Puzzle - Meson nonet vs. tetraquark nonet

Meson nonet

- Wrong mass order in the nonet
- $0^{++}: L=1$
- Decay channels are puzzeling

Scalar Puzzle - Meson nonet vs. tetraquark nonet

Meson nonet

- Wrong mass order in the nonet
- $0^{++}: L=1$
- Decay channels are puzzeling
- Width of f_{0} contradics OZI-rule

Scalar Puzzle - Meson nonet vs. tetraquark nonet

Tetraquark nonet

- Right mass ordering

Scalar Puzzle - Meson nonet vs. tetraquark nonet

Tetraquark nonet

- Right mass ordering
- $0^{++}: ~ L(3)=0$

Scalar Puzzle - Meson nonet vs. tetraquark nonet

Tetraquark nonet

- Right mass ordering
- $0^{++}: ~ L(3)=0$
- Decay channels are better understandable

Scalar Puzzle - Meson nonet vs. tetraquark nonet

Tetraquark nonet

- Right mass ordering
- $0^{++}: ~ L(3)=0$
- Decay channels are better understandable
- Width of f_{0} follows from the "gluon-less" decay

Bound-state equations in QFT

Bethe-Salpeter equation

Features and ingredients

- Requires dressed propagators and suitable interaction
- Selfconsistent eigenvalue problem
- Determines mass and wavefunction

The model

DSE tower

Quark propagator:

$=$ \qquad -1

Gluon propagator:

$$
m_{0 r m}{ }^{-1}=\text { rrmom }^{-1}+
$$

Ghost propagator:

$$
\ldots-o^{-1}=
$$

\qquad -1

Ghost-gluon vertex:

Quark-gluon vertex:

The model

Full quark DSE

$$
--^{-1}=\text { 先 }^{-1}+\frac{-i p A\left(p^{2}\right)+B\left(p^{2}\right)}{A^{2}\left(p^{2}\right) p^{2}+B^{2}\left(p^{2}\right)}
$$

Kernel

$$
K(p, q)=\frac{\delta \Sigma(p)}{\delta S(q)}
$$

The model

Truncated DSE

Truncation scheme

- Effective gluon maris-Tandy
- Fixed to $f_{\pi}=131 \mathrm{MeV}$ and $m_{\pi}=138 \mathrm{MeV}$
- Reproduces a variety of hadron observables

The model

Truncated DSE

Corresponding BSEs

Quark propagator

Solution on the \mathbb{R}^{+}-axis:

Solution in the \mathbb{C}-plane:

Properties

- Dynamical chiral Symmetry breaking

Tetraquark bound-state equation I

4-body problem - Quark picture

- Neglect 3- and 4-body interactions.
- Keep pair interaction. Treat overcounting properly.
- 512 wave functions, depend on 9 variables

Approximation

Ansatz for the pair interaction T-matrix:

Ansatz for the 2-body T-matrix:

Tetraquark bound-state equation II

2-body problem - Meson/Meson-Diquark/Antidiquark picture

- Interaction via quark-exchange instead of a gluon-exchange.
- 2 amplitudes, depend on 2 variables.
- 2-loop structure instead of 1-loop.

Results

What can be learned from the 2body equation

- Bound 0^{+}tetraquark state at $\approx 403 \mathrm{MeV}$.
- The Pion-Pion wavefunction is dominant.
- Quarkmass dependence of the tetraquark resembles the pion.
- Possible narrow ccc $\bar{c} \bar{c}$ state at 5.3 GeV ??

Results

What can be learned from the 4body equation - Prepreliminary

- Bound 0^{+}tetraquark state at $\approx 425 \mathrm{MeV}$.
- Discrepancy between 2body and 4body approach.
- Low mass for $c c \bar{c} \bar{c}$ a feature or caused by neglecting 3- and 4-body terms low numerics?

Conclusion and outlook

Conclusion

- The 0^{+}tetraquark boundstate equation was derived and solved in the mmdd picture and in the 4body approach.
- A mass of $\approx 403 \mathrm{MeV}$ was found in both approches.
- The molecular picture of the 0^{+}tetraquark is favoured by the calculation in the mmdd picture.

Conclusion and outlook

Conclusion

- The 0^{+}tetraquark boundstate equation was derived and solved in the mmdd picture and in the 4body approach.
- A mass of $\approx 403 \mathrm{MeV}$ was found in both approches.
- The molecular picture of the 0^{+}tetraquark is favoured by the calculation in the mmdd picture.

Outlook

- Solve for other quantum numbers and flavours.
- Solve the 4-body equation with better numerics and the full structure.

Beyond Rainbow-Ladder in bound state equations Motivation

Simple Maris-Tandy model is a viable tool to investigate phenomenology:

- Meson, baryon and tetraquark masses.
- Electromagnetic form factors.
- Anamolous magnetic moment ...

But:

- Properties beyond the ground state are of qualitative nature at best.
- The vector-axialvector splitting is incorrect.
- The scalar meson is too light. ...

Beyond Rainbow-Ladder in bound state equations Introduction

From the DSE to the BSE

- BSE interaction kernel can be derived consistently from quark selfenergy.

- If done properly, the kernel preserves important symmetries.
- Example: If the vertex chiraly transforms as a quark, the (AxWTI) is fullfilled. Munzeek (1986)

Beyond Rainbow-Ladder in bound state equations Introduction

How to?

- Given by a functional derivative ('cutting'):

$$
K_{a b}^{c d}\left(x, y, z, z^{\prime}\right)=\frac{\delta \Sigma^{c d}(x, y)}{\delta S^{a b}\left(z, z^{\prime}\right)}
$$

- In the Rainbow-Ladder case:

Beyond Rainbow-Ladder in bound state equations Introduction

By the way

- Origin of the name Rainbow-Ladder.

Beyond Rainbow-Ladder in bound state equations Introduction

But...

- What if the vertex itself depends on the quark?

- The vertex has to be cutted aswell.
- Could be done by cutting a vertex DSE:
- Taking functional derivatives numerically is difficult.
- Solving for the correct 5-point function is difficult.

Beyond Rainbow-Ladder in bound state equations Introduction

But...

- What if the vertex itself depends on the quark?

- The vertex has to be cutted aswell.
- Could be done by cutting a vertex model:
- If the vertex depends on quarks, an explicit cutting is feasible.
- It allows for exploratory investigations of the structure of the quark-gluon vertex on the spectrum.

First case: Ball-Chiu vertex model

Ball-Chiu construction

- From its Slavnov-Taylor identity

$$
\left(p_{1}^{\mu}-p_{2}^{\mu}\right) \Gamma\left(p_{1}, p_{2}\right)=S^{-1}\left(p_{2}\right)-S^{-1}\left(p_{1}\right)
$$

the longitudinal part of the vertex can be constrained.
A non-singular solution is

$$
\begin{aligned}
\Gamma_{\mu}^{B C}\left(p_{1}, p_{2}\right) & =\left[\gamma_{\mu} \frac{A\left(p_{1}^{2}\right)+A\left(p_{2}^{2}\right)}{2}\right. \\
& \left.+2 k k_{\mu} \frac{A\left(p_{1}^{2}\right)-A\left(p_{2}^{2}\right)}{p_{1}^{2}-p_{2}^{2}}+i 2 p_{\mu} \frac{B\left(p_{1}^{2}\right)-B\left(p_{2}^{2}\right)}{p_{1}^{2}-p_{2}^{2}} \mathbb{1}\right]
\end{aligned}
$$

Cutting the Ball-Chiu vertex

Key ideas

- The derivative has to be taken into all all 'directions' of the quark, even the unphysical ones: $\gamma_{5}, \gamma^{\mu} \gamma_{5}, \sigma^{\mu \nu}$.
- After taking the derivative, set all quantities back to physical point.
- Rewrite the dressing functions:

$$
S^{-1}(p)=i \not p A\left(p^{2}\right)+\mathbb{1} B\left(p^{2}\right)+\gamma_{5} C\left(p^{2}\right)
$$

Cutting the Ball-Chiu vertex

Key ideas

- The derivative has to be taken into all all 'directions' of the quark, even the unphysical ones: $\gamma_{5}, \gamma^{\mu} \gamma_{5}, \sigma^{\mu \nu}$.
- After taking the derivative, set all quantities back to physical point.
- Rewrite the dressing functions:

$$
\begin{aligned}
A\left(p^{2}\right) & =\frac{1}{4 p^{2}} \operatorname{Tr}\left[\not p S^{-1}\right] \\
B\left(p^{2}\right) & =\frac{1}{4} \operatorname{Tr}\left[\mathbb{1} S^{-1}\right] \\
C\left(p^{2}\right) & =\frac{1}{4} \operatorname{Tr}\left[\gamma_{5} S^{-1}\right] \ldots
\end{aligned}
$$

Cutting the Ball-Chiu vertex

The 'problem'

- For the pion, the additional terms stemming from cutting the vertex do not contribute.
- In order to fullfill the AxWTI, the kernel has to solve:

Cutting the Ball-Chiu vertex

The 'problem'

- For the pion, the additional terms stemming from cutting the vertex do not contribute.
- In order to fullfill the AxWTI, the kernel has to solve:

- The 3rd Ball-Chiu component breaks the AxWTI.

Cutting the Ball-Chiu vertex

The solution

- Add a '0' to the vertex

$$
\Gamma_{\mu}^{A B C}=\Gamma_{\mu}^{B C}+i 2 \gamma_{5} k_{\mu} \frac{C\left(p_{1}^{2}\right)-C\left(p_{2}^{2}\right)}{p_{1}^{2}-p_{2}^{2}}
$$

- This vertex gives a contribution to the pion kernel after cutting.
- The vertex and the cutted vertex together preserve the AxWTI.

Cutting the Ball-Chiu vertex - the result

Gell-Mann-Oakes-Renner

Second case: Munczek-vertex model

Construction principle

- Has the same chiral transformation property as the quark. 'Automatically' preserves the AxWTI.
- Given in coordinate space.

Allows a consistent derivation of the kernel and the BSE.

- Longitudinal part restricted by the Slavnov-Taylor identity.
- Linear in the inverse quark.

Second case: Munczek-vertex model

Construction principle

- Has the same chiral transformation property as the quark. 'Automatically' preserves the AxWTI.
- Given in coordinate space.

Allows a consistent derivation of the kernel and the BSE.

- Longitudinal part restricted by the Slavnov-Taylor identity.
- Linear in the inverse quark.

$$
\begin{aligned}
\Gamma^{\mu}\left(p_{1}, p_{2}\right)= & \int_{0}^{1} d \alpha \\
& {\left[\gamma^{\mu} A\left(p^{2}\right)+\right.} \\
& \left.+2 p^{\mu} A^{\prime}\left(p^{2}\right) \not p+i 2 p^{\mu} B^{\prime}\left(p^{2}\right)\right]_{p=p_{1}+\alpha\left(p_{1}-p_{2}\right)}
\end{aligned}
$$

Second case: Munczek-vertex model

Kernel

- The kernel can be stated in a closed form

$$
\begin{align*}
K_{I I}[\Gamma(P, p)]_{a b} & =-\int_{q} \int_{0}^{1} d \alpha\left[\frac{\partial}{\partial q^{\nu}}\left(\Gamma_{a c}(q+\alpha(q-p) ; P)\right)\right] \\
& \times S_{c d}\left(q+\frac{1}{2} P\right) \gamma_{d b}^{\mu} D^{\mu \nu}(q-p) . \tag{1}
\end{align*}
$$

- Because of the derivative, the kernel is different for each quantum number.

Cutting the Munczek vertex - The result

Gell-Mann-Oakes-Renner

Cutting the Munczek vertex - The result

	f_{π}	m_{π}	m_{σ}	m_{ρ}	$m_{a 1}$
RL	0.093	0.137	0.65	0.73	0.83
MV	0.094	0.134	0.46	0.58	0.71

Spectrum

- The cutted Munczec-vertex is stable and can be used for all quantum numbers. Reason: Given in coordinate space.
- No improvement of the spectrum compared to the Rainbow-Ladder case.
- A simple Ball-Chiu like vertex seems not to be enough to increase the $\pi-\sigma$ and the $\rho-a 1$ splitting.
- The cure for this are likely additional transversal parts proportional to $\sigma^{\mu \nu}$. Roberts et.al (2009)

Conclussion

Summary

- A procedure to cut vertices depending explicitly on the quark was presented.
- The method was applied to the Ball-Chiu vertex and the Munczek vertex.
- The Ball-Chiu vertex had to be continued into the unphysical region to preserve the AxWTI.
- The Munczek vertex worked out of the box. But the spectrum turned out to be not improved.

Outlook

- The Munczec vertex could be improved by additional transverse terms proportional to $\sigma^{\mu \nu}$.
- The functional derivative could be done numerically.

The end

Thank you for your attention!

JUSTUS-LIEBIG-

TUNIVERSITAT GIESSEN

