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Outline of talk

• Motivation and brief introduction (magnetic catalysis)
• technical overview of the talk

• Landau levels (Dirac equation with a magnetic field)
• Ritus eigenfunction method (expansion in Landau 

levels) for fermions in a constant magnetic field
• asymptotic nature of series (not good for QCD)

• Summation and Schwinger phase
• tree-level
• nonperturbatively

• Gap equation
• Results - chiral condensate, magnetic susceptibility
• Summary



• magnetic fields happen:
• interesting physics, but technically 

complicated (no translational inv.)
• my motivation:
• heavy ion collisions
• magnetic properties of quarks
• first questions:  where from, how 

big, and what effect?
• early stages of noncentral heavy ion 

collisions@LHC:

• strong magnetic fields, or?
• effects: magnetic catalysis, inverse 

magnetic catalysis, chiral magnetic 
effect...

Motivation

|eB| ⇠ 15m2
⇡ ⇡ 0.3GeV2

Skokov, Illarionov, Toneev, 
Int.J.Mod.Phys.A24 (2009) 5925.



Introduction

• magnetic catalysis:

• known for a long time - chiral symmetry breaking takes 
place for strong magnetic fields in the Gross-Neveu 
model and QED even at small coupling
(strong fields - “lowest Landau level approximation” 
leads to a linear rise in the condensate)
• such behavior is relevant for the QCD phase diagram

e.g., in heavy ion collisions (charged particles, high 
velocities) there may be an effect, critical temperature 
might change...

an increase of the fermion condensate due 
to the presence of an external magnetic field

Shovkovy, Lect.Notes Phys. 871 (2013) 13;  Klimenko, Theor.Math.Phys. 89 (1991) 1161;
Gusynin, Miransky, Shovkovy, Phys.Lett. B349 (1995) 477.
Certainly known in Giessen! - Mueller, Bonnet, Fischer, 2014



• magnetic catalysis is known to occur for strong fields
• but - for quarks in QCD we have a problem

- strong magnetic fields vs. strong interaction
(similar scales are not good for approximations)

• recall, the estimated maximum magnetic fields at the 
LHC are not large in the context of QCD:

• also, we would like to know the magnetic susceptibility 
(calculated in the limit of vanishing field) - useful e.g., in 
normalizing chiral-odd transversity parton distribution 
functions

• we want small and moderate fields too!

Introduction

|eB| ⇠ 15m2
⇡ ⇡ 0.3GeV2



• rainbow gap equation:

•           - mtm space can be used:

•                                    
gluon interaction is unaffected (neglecting quark loops),
so the self energy is ‘easy’.  But, translational invariance is broken 
- mtm space must be replaced and the proper function is no 
longer simply the inverse propagator - this is where we have to 
work hard!

Technical overview
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• consider:

• choose a gauge:

• (minimal coupling) Dirac operator:

• for the energy levels:

• Fourier transform (except the x-direction), noting the 
spin and Hermite eigenfunctions

• Landau (energy) levels:

Landau levels
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• constant magnetic field introduces Landau levels
• with Hermite functions as eigenfunctions
• the Landau levels get connected to the spin
• translational invariance is broken!

Landau levels

(� = ±1)

• now we want the tree-level propagator and inverse:

• inverse propagator:

• propagator:

�(0)(x, y) = ı[D �m]�(x� y)

ı[D �m]S(0)(x, y) = �(x� y)



• Ritus’ solution (replace momentum modes with the 
Hermite function basis):

• Ritus matrices (orthonormal and complete) connect spin 
and Landau levels

• spin projectors:

• notice that n=0 (lowest Landau level) is special!

Ritus eigenfunction method

Ritus, Sov.Phys. JETP 48 (1978) 788.
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• inverse propagator (function of eigenvalues)

• propagator

(Landau levels appear in the denominator)

• So, by using the Ritus matrices and the associated 
eigenvalues instead of momentum space, we can tackle 
the gap equation.  Usually, only the lowest Landau level 
(n=0) is considered (works for large fields) and gives a 
linearly rising condensate.

Ritus eigenfunction method
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Gusynin, Miransky, Shovkovy, Phys.Lett. B349 (1995) 477.



• BUT the general form for the chiral condensate is

• decomposing and projecting in terms of the Ritus matrices, 
a pre-factor of h appears in all loop integrals, regardless of 
the interaction (the propagator is a function of two 
momentum components and the Landau level: dimensions 
must be maintained)!
• we have an asymptotic expansion, not good for ‘small’ 

magnetic fields where we know that the quark has a 
nontrivial condensate!

• we have to sum up the Landau levels...

Ritus eigenfunction method
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• tree-level inverse propagator

• contains the integral

• with

• “it can be shown that” ;-) this can be written (almost) in 
terms of transverse momenta and Laguerre polynomials

Summation and Schwinger phase
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• “it can be shown” ;-) that this can be written (almost) in 
terms of transverse momenta

• where the Schwinger phase encodes the deviations from 
translational invariance

(vanishes for h=0)

• the sums over the Laguerre polynomials are known, to 
give...

Summation and Schwinger phase

Gorbar, Miransky, Shovkovy, Wang, PRD88 (2013) 025025 & 025043.
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• the tree-level inverse propagator

• and similarly the tree-level propagator (small h)

• reduction when magnetic field vanishes
(unlike the Ritus decomposition),
• but no obvious relation between the two!
• up to the Schwinger phase, the momentum space 

expressions look promising...

Summation and Schwinger phase

Gorbar, Miransky, Shovkovy, Wang, PRD88 (2013) 025025 & 025043,
Chodos, Everding, Owen, PRD42 (1990) 2881.
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• the strategy is to take a nonperturbative ansatz for the Ritus 
decomposed two-point functions (where the inverse can be 
found), with various spin components and see if we can sum 
to get similar expressions...

• (allow for different spin projections)
• sum isn’t a problem for the inverse propagator:

• functions of two variables,

• reduction

Nonperturbatively
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• corresponding propagator looks like...

• summed under approximation (suitable for small h)
• neglect n-dependence of functions

(keep explicit n factors)
• expand denominator in (small h)

• approximation retains the connection between spin 
structures
• in the end, the gap equation will determine the 

momentum dependence of the functions

Nonperturbatively
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• approximated summed propagator

• reduces to tree-level (all h), also to standard 
propagator in the absence of the magnetic field.

Nonperturbatively
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• rainbow truncation (chiral quarks)

• dressed (Landau gauge) gluon interaction

• Schwinger phase factorizes, so we can work in 
momentum space - but with functions of two variables

• consider a range of widths and fix d from the 
condensate:

Gap equation
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• functions at zero momentum
• reduction for vanishing magnetic field 

(type I explicitly matches earlier results)
• similar patterns for both interactions, since the gluon 

is unaffected by the magnetic field (under truncation)

Results (dressing functions)
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• condensate rises quadratically for small h
• and linearly for large h
• qualitative agreement with lattice is good, even for large h!

Results (magnetic catalysis)

r(h) = hqqih
hqqih=0

� 1• relative increment:

D’Elia, Negro, Phys.Rev.D83 (2011) 114028; Bali et al., PRD86 (2012) 071502; Simonov, arXiv:1212.3118.
BUT: Ilgenfritz et al., Phys.Rev.D85 (2012) 114504; Shushpanov, Smilga, Phys.Lett.B402 (1997) 351.
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• small h quadratic behavior reproduced
• transition scale reproduced
• recall heavy ions:
• small h matters!

Results (comparison to lattice)

D’Elia, Negro, Phys.Rev.D83 (2011) 114028
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(measures asymmetry between spin projected components)

• linear at small h

Results (magnetic moment)
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• lattice (quenched, chiral):
• lattice (unquenched, finite m):
• NJL:
• quark-meson model:

Results (magnetic susceptibility)

• magnetic susceptibility:

0 0.2 0.4 0.6 0.8 1

h (GeV
2
)

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

χ(h), I, ω=0.4GeV
χ(h), I, ω=0.5GeV
χ(h), I, ω=0.6GeV
χ(h), I, ω=0.7GeV

0 0.2 0.4 0.6 0.8 1

h (GeV
2
)

-2

-1.8

-1.6

-1.4

-1.2

-1

χ(h), II, ω=0.4GeV
χ(h), II, ω=0.5GeV
χ(h), II, ω=0.6GeV

�(h) =
hq⌃12qi
hhqqi , � = lim

h!0
�(h)

� = �1.547(6)GeV�2

�(2.08± 0.08)GeV�2

�4.3GeV�2

�5.25GeV�2
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Summary

• quark gap equation (rainbow truncation) with a 
phenomenological gluon interaction in the presence of a 
constant magnetic field
• strong magnetic field vs. strong interaction

- expansion in Landau levels is not suitable in this context
• we use an approximation to sum the Landau levels, 

ensuring the limit when the magnetic field vanishes
• in the presence of a constant magnetic field, the chiral 

quark condensate increases, quadratically for small field and 
linearly for large field
• magnetic susceptibility
• agreement with lattice (though more to be done)
• parameter dependence - sensitive probe of the interaction?
• small h is relative to QCD!



• lowest Landau level approximation:

• and the ‘mass function’ D/C dominates for large h!
(because C decreases)

Results (large h, n=0 dominance)
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