Landau gauge Yang-Mills correlation functions

Anton Konrad Cyrol

Ruprecht-Karls-Universität Heidelberg

based on

- AKC, Fister, Mitter, Pawlowski, Strodthoff, PRD, arXiv:1605.01856 [hep-ph]
- AKC, Mitter, Strodthoff, FormTracer, arXiv:1610.09331 [hep-ph]
- AKC, Mitter, Pawlowski, Strodthoff, $N_f = 2$ Vacuum QCD, in preparation
- AKC, Mitter, Pawlowski, Strodthoff, T > 0 Yang-Mills, in preparation

November 9, 2016

AKC (U Heidelberg)

fQCD-collaboration:

J. Braun, L. Corell, <u>AKC</u>, L. Fister, W. J. Fu, M. Leonhardt, <u>M. Mitter</u>, <u>J. M. Pawlowski</u>, M. Pospiech, F. Rennecke, <u>N. Strodthoff</u>, N. Wink, ...

This talk:

- Vacuum Yang-Mills theory
- Preliminary T > 0 results

Aim:

- Qualitative understanding
- Quantitative precision

Motivation:

- No sign problem
- Understanding of confinementation

Prerequisite for QCD

Schaefer and Wagner, Prog.Part.Nucl.Phys. 62 (2009) 381

fQCD-collaboration:

J. Braun, L. Corell, <u>AKC</u>, L. Fister, W. J. Fu, M. Leonhardt, <u>M. Mitter</u>, <u>J. M. Pawlowski</u>, M. Pospiech, F. Rennecke, <u>N. Strodthoff</u>, N. Wink, ...

This talk:

- Vacuum Yang-Mills theory
- Preliminary T > 0 results

Aim:

- Qualitative understanding
- Quantitative precision

Motivation:

- No sign problem
- Understanding of confinement
- Prerequisite for QCD

fQCD-collaboration:

J. Braun, L. Corell, <u>AKC</u>, L. Fister, W. J. Fu, M. Leonhardt, <u>M. Mitter</u>, <u>J. M. Pawlowski</u>, M. Pospiech, F. Rennecke, <u>N. Strodthoff</u>, N. Wink, ...

This talk:

- Vacuum Yang-Mills theory
- Preliminary T > 0 results

Aim:

- Qualitative understanding
- Quantitative precision

Motivation:

- No sign problem
- Understanding of confinement
- Prerequisite for QCD

fQCD-collaboration:

J. Braun, L. Corell, <u>AKC</u>, L. Fister, W. J. Fu, M. Leonhardt, <u>M. Mitter</u>, <u>J. M. Pawlowski</u>, M. Pospiech, F. Rennecke, <u>N. Strodthoff</u>, N. Wink, ...

This talk:

- Vacuum Yang-Mills theory
- Preliminary T > 0 results

Aim:

- Qualitative understanding
- Quantitative precision

Motivation:

- No sign problem
- Understanding of confinement
- Prerequisite for QCD

QCD from the functional renormalization group

- Only perturbative QCD input
 - $\alpha_{S}(\mu = \mathcal{O}(10) \text{ GeV})$
 - $m_a(\mu = \mathcal{O}(10) \text{ GeV})$
- Wetterich equation with initial condition $S[\Phi] = \Gamma_{\Lambda}[\Phi]$

- Effective action Γ[Φ] = lim_{k→0} Γ_k[Φ]
- Exact equation
- ∂_t : integration of momentum shells controlled by regulator
- Full field-dependent equation with $(\Gamma^{(2)}[\Phi])^{-1}$ on rhs

QCD from the functional renormalization group

- Only perturbative QCD input
 - $\alpha_S(\mu = \mathcal{O}(10) \text{ GeV})$
 - $m_a(\mu = \mathcal{O}(10) \text{ GeV})$

- Exact equation
- ∂_t : integration of momentum shells controlled by regulator
- Full field-dependent equation with $(\Gamma^{(2)}[\Phi])^{-1}$ on rhs

QCD from the functional renormalization group

- Only perturbative QCD input
 - $\alpha_S(\mu = \mathcal{O}(10) \text{ GeV})$
 - $m_a(\mu = \mathcal{O}(10) \text{ GeV})$

- Exact equation
- ∂_t : integration of momentum shells controlled by regulator
- Full field-dependent equation with $(\Gamma^{(2)}[\Phi])^{-1}$ on rhs

Vertex expansion

• Approximation necessary – vertex expansion:

$$\Gamma[\Phi] = \sum_{n} \int_{\rho_1,\ldots,\rho_{n-1}} \Gamma^{(n)}_{\Phi_1\cdots\Phi_n}(\rho_1,\ldots,\rho_{n-1}) \Phi^1(\rho_1)\cdots\Phi^n(-\rho_1-\cdots-\rho_{n-1})$$

- Wanted: "apparent convergence" of $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$
- Current state-of-the-start truncation:

• Functional derivatives of $\Gamma_k[\Phi]$ with respect to fields yield equations

Vertex expansion

• Approximation necessary – vertex expansion:

$$\Gamma[\Phi] = \sum_{n} \int_{\rho_1,\ldots,\rho_{n-1}} \Gamma^{(n)}_{\Phi_1\cdots\Phi_n}(\rho_1,\ldots,\rho_{n-1}) \Phi^1(\rho_1)\cdots\Phi^n(-\rho_1-\cdots-\rho_{n-1})$$

- Wanted: "apparent convergence" of $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$
- Current state-of-the-start truncation:

• Functional derivatives of $\Gamma_k[\Phi]$ with respect to fields yield equations

Truncation - closed set of equations

Truncation – closed set of equations

Truncation - closed set of equations

FormTracer – Mathematica tracing package using FORM

- Mathematica: very powerful, flexible and convenient
- FORM: very fast and efficient

FormTracer uses FORM while it keeps the usability of Mathematica:

- Lorentz/Dirac traces in arbitrary dimensions
- Arbitrary number of group product spaces
- Intuitive, easy-to-use and highly customizable Mathematica frontend
- Support for finite temperature/density applications
- Support for FORM's optimization algorithm
- Convenient installation and update procedure within Mathematica:

Preprint: AKC, Mitter, Strodthoff; arXiv:1610.09331 [hep-ph] Open source: https://github.com/FormTracer/FormTracer

FormTracer – installation and usage

```
FormTracer.nb - Wolfram Mathematica 11.0
                                                                                                                        ×
File Edit Insert Format Cell Graphics Evaluation Palettes Window Help
   Installing
        Import["https://raw.githubusercontent.com/FormTracer/FormTracer/master/src/FormTracerInstaller.m"]
   Tracing
      Space-Time
        Define syntax for space-time
        DefineLorentzTensors[δ[μ, ν] (*Kronecker delta*), vec[p, μ] (*vector*), p.q(*inner product*)];
        Take traces:
        FormTrace[vec[p + 2 r, \mu] \delta[\mu, \nu] vec[s, \nu]]
        FormTrace[\delta[\alpha, \nu] (\delta[\nu, \rho] + \delta[\nu, \rho] \delta[\sigma, \sigma]) \delta[\rho, \alpha]]
        FormTrace [\delta[1, v] \text{ vec}[s, v]]
        s.(p + 2r)
        20
        vec[s, 1]
```

AKC, Mitter, Strodthoff; arXiv:1610.09331 [hep-ph]

Truncation - closed set of equations

Regulator breaks BRST symmetry

- \bullet Breaking BRST symmetry \rightarrow modified STIs
- mSTIs reduce to STIs at k = 0
- \implies solve mSTIs to get initial action at $k = \Lambda$
- More practical solution: choose $\Gamma_{\Lambda} \approx S$ such that STIs are fulfilled k = 0

stls mSTls
$$k \rightarrow 0$$

$$\alpha_{A\bar{c}c}(p) = \frac{\alpha(\mu)}{4\pi} \frac{Z_{A\bar{c}c}^2(p)}{Z_A(p) Z_c^2(p)}$$
$$\alpha_{A^3}(p) = \frac{\alpha(\mu)}{4\pi} \frac{Z_{A^3}^2(p)}{Z_A^3(p)}$$
$$\alpha_{A^4}(p) = \frac{\alpha(\mu)}{4\pi} \frac{Z_{A^4}(p)}{Z_A^2(p)}$$

Select

$$Z_{A\bar{c}c}^{k=\Lambda}(p) = \text{const.}$$
$$Z_{A^3}^{k=\Lambda}(p) = \text{const.}$$
$$Z_{A^4}^{k=\Lambda}(p) = \text{const.}$$

such that

$$\alpha_{A\bar{c}c}(\mu) = \alpha_{A^3}(\mu) = \alpha_{A^4}(\mu)$$

Regulator breaks BRST symmetry

- \bullet Breaking BRST symmetry \rightarrow modified STIs
- mSTIs reduce to STIs at k = 0
- \implies solve mSTIs to get initial action at $k = \Lambda$
- More practical solution: choose $\Gamma_{\Lambda} \approx S$ such that STIs are fulfilled k = 0

stls mSTls
$$k \rightarrow 0$$

$$\alpha_{A\bar{c}c}(p) = \frac{\alpha(\mu)}{4\pi} \frac{Z_{A\bar{c}c}^2(p)}{Z_A(p) Z_c^2(p)}$$
$$\alpha_{A^3}(p) = \frac{\alpha(\mu)}{4\pi} \frac{Z_{A^3}^2(p)}{Z_A^3(p)}$$
$$\alpha_{A^4}(p) = \frac{\alpha(\mu)}{4\pi} \frac{Z_{A^4}(p)}{Z_A^2(p)}$$

Select

$$Z_{A\bar{c}c}^{k=\Lambda}(p) = \text{const.}$$
$$Z_{A^3}^{k=\Lambda}(p) = \text{const.}$$
$$Z_{A^4}^{k=\Lambda}(p) = \text{const.}$$

such that

$$\alpha_{A\bar{c}c}(\mu) = \alpha_{A^3}(\mu) = \alpha_{A^4}(\mu)$$

Regulator breaks BRST symmetry

- $\bullet~\textsc{Breaking BRST}$ symmetry $\rightarrow~\textsc{modified STIs}$
- mSTIs reduce to STIs at k = 0
- \implies solve mSTIs to get initial action at $k = \Lambda$
- More practical solution: choose $\Gamma_{\Lambda} \approx S$ such that STIs are fulfilled k = 0

STIS mSTIS
$$k \rightarrow 0$$

$$lpha_{Aar{c}c}(p) = rac{lpha(\mu)}{4\pi} rac{Z^2_{Aar{c}c}(p)}{Z_A(p) Z^2_c(p)} \ lpha_{A^3}(p) = rac{lpha(\mu)}{4\pi} rac{Z^2_{A^3}(p)}{Z^3_A(p)} \ lpha_{A^4}(p) = rac{lpha(\mu)}{4\pi} rac{Z_{A^3}(p)}{Z^2_A(p)}$$

Select

$$Z_{A\bar{c}c}^{k=\Lambda}(p) = \text{const.}$$

 $Z_{A^3}^{k=\Lambda}(p) = \text{const.}$
 $Z_{A^4}^{k=\Lambda}(p) = \text{const.}$

such that

$$\alpha_{A\bar{c}c}(\mu) = \alpha_{A^3}(\mu) = \alpha_{A^4}(\mu)$$

Running couplings (scaling solution)

Gluon mass gap

Scaling solution $\lim_{p \to 0} Z_c(p^2) \propto (p^2)^{\kappa}$ $\lim_{p \to 0} Z_A(p^2) \propto (p^2)^{-2\kappa}$ Decoupling solution $\lim_{p \to 0} Z_c(p^2) \propto 1$ $\lim_{p \to 0} Z_A(p^2) \propto (p^2)^{-1}$

• Landau Gauge gluon STI requires longitudinally mass term to vanish:

$$p_{\mu}\left([\Gamma^{(2)}_{AA,\mathrm{L}}]^{ab}_{\mu
u}(p)-[S^{(2)}_{AA,\mathrm{L}}]^{ab}_{\mu
u}(p)
ight)=0$$

- Splitting between longitudinal and transverse mass term necessary
- Splitting occures "naturally" for scaling solution
- Decoupling solution requires irregular vertices, e.g. a pole in the longitudinal sector
- Unphysical mass parameter at cutoff: $[\Gamma^{(2)}_{AA}]^{ab}_{\mu\nu}(k=\Lambda, p) = p^2 + m_{\Lambda}^2$,
- $m_{\Lambda}^2 \propto c \cdot \Lambda^2$ with $c \ll 1$; parameter can be uniquely determined

Gluon mass gap

Scaling solutionDecoupling solution $\lim_{p \to 0} Z_c(p^2) \propto (p^2)^{\kappa}$ $\lim_{p \to 0} Z_c(p^2) \propto 1$ $\lim_{p \to 0} Z_A(p^2) \propto (p^2)^{-2\kappa}$ $\lim_{p \to 0} Z_A(p^2) \propto (p^2)^{-1}$

• Landau Gauge gluon STI requires longitudinally mass term to vanish:

$$p_{\mu}\left([\Gamma_{AA,L}^{(2)}]_{\mu
u}^{ab}(p) - [S_{AA,L}^{(2)}]_{\mu
u}^{ab}(p)
ight) = 0$$

- Splitting between longitudinal and transverse mass term necessary
- Splitting occures "naturally" for scaling solution
- Decoupling solution requires irregular vertices, e.g. a pole in the longitudinal sector

• Unphysical mass parameter at cutoff: $[\Gamma^{(2)}_{AA}]^{ab}_{\mu\nu}(k=\Lambda, p) = p^2 + m_{\Lambda}^2$,

• $m_{\Lambda}^2 \propto c \cdot \Lambda^2$ with $c \ll 1$; parameter can be uniquely determined

Gluon mass gap

Scaling solutionDecoupling solution $\lim_{p \to 0} Z_c(p^2) \propto (p^2)^{\kappa}$ $\lim_{p \to 0} Z_c(p^2) \propto 1$ $\lim_{p \to 0} Z_A(p^2) \propto (p^2)^{-2\kappa}$ $\lim_{p \to 0} Z_A(p^2) \propto (p^2)^{-1}$

• Landau Gauge gluon STI requires longitudinally mass term to vanish:

$$p_{\mu}\left([\Gamma_{AA,L}^{(2)}]_{\mu
u}^{ab}(p) - [S_{AA,L}^{(2)}]_{\mu
u}^{ab}(p)
ight) = 0$$

- Splitting between longitudinal and transverse mass term necessary
- Splitting occures "naturally" for scaling solution
- Decoupling solution requires irregular vertices, e.g. a pole in the longitudinal sector
- Unphysical mass parameter at cutoff: $[\Gamma^{(2)}_{AA}]_{\mu\nu}^{ab}(k=\Lambda, p) = p^2 + m_{\Lambda}^2$,
- $m_{\Lambda}^2 \propto c \cdot \Lambda^2$ with $c \ll 1$; parameter can be uniquely determined

Gluon Mass Gap

Dynamical mass generation

Propagators

Truncation dependence of the gluon propagator

Truncation dependence of the gluon propagator

Truncation dependence of the gluon propagator

Propagators

Truncation dependence of the gluon propagator

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016; Lattice: Sternbeck et al. 2006

Gluon propagator dressing

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016; Lattice: Sternbeck et al. 2006

Propagators

Gluon propagator

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016; Lattice: Sternbeck et al. 2006

Gluon propagator maximum over UV mass parameter

AKC (U Heidelberg)

Ghost propagator dressing

AKC (U Heidelberg)

Three-gluon vertex dressing (symmetric point)

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

AKC (U Heidelberg)

Finite temperature

Going to finite temperature:

• Introduce Matsubara frequencies:

$$\int \frac{\mathrm{d}^4 p}{(2\pi)^4} \to T \sum_{\omega_n} \int \frac{\mathrm{d}^3 p}{(2\pi)^3}$$

- Thermal Debye mass
- Same parameter-free truncation as in vacuum YM
- Upcoming: full splitting of magnetic and electric components Splitting of propagators only: Fister, Pawlowski, 2011

$$P_{\mu\nu}^{\mathsf{T}}(p) = (1 - \delta_{0\mu})(1 - \delta_{0\nu}) \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{\bar{p}^2}\right) \qquad \qquad P_{\mu\nu}^{\mathsf{L}}(p) = \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{\bar{p}^2}\right) - P_{\mu\nu}^{\mathsf{T}}(p)$$

• Also upcoming: nonzero Matsubara modes

Following results are preliminary and based on

• AKC, Mitter, Pawlowski, Strodthoff, T > 0 Yang-Mills, in preparation

Finite temperature

Going to finite temperature:

• Introduce Matsubara frequencies:

$$\int \frac{\mathrm{d}^4 p}{(2\pi)^4} \to T \sum_{\omega_n} \int \frac{\mathrm{d}^3 p}{(2\pi)^3}$$

- Thermal Debye mass
- Same parameter-free truncation as in vacuum YM
- Upcoming: full splitting of magnetic and electric components Splitting of propagators only: Fister, Pawlowski, 2011

Spitting of propagators only. Fister, Fawlowski, 2011

$$P_{\mu\nu}^{\mathsf{T}}(p) = (1 - \delta_{0\mu})(1 - \delta_{0\nu}) \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{\bar{p}^{2}}\right) \qquad \qquad P_{\mu\nu}^{\mathsf{L}}(p) = \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^{2}}\right) - P_{\mu\nu}^{\mathsf{T}}(p)$$

• Also upcoming: nonzero Matsubara modes

Following results are preliminary and based on

• AKC, Mitter, Pawlowski, Strodthoff, T > 0 Yang-Mills, in preparation

Finite temperature

Going to finite temperature:

• Introduce Matsubara frequencies:

$$\int \frac{\mathrm{d}^4 p}{(2\pi)^4} \to T \sum_{\omega_n} \int \frac{\mathrm{d}^3 p}{(2\pi)^3}$$

- Thermal Debye mass
- Same parameter-free truncation as in vacuum YM
- Upcoming: full splitting of magnetic and electric components Splitting of propagators only: Fister, Pawlowski, 2011

$$P_{\mu\nu}^{\mathsf{T}}(p) = (1 - \delta_{0\mu})(1 - \delta_{0\nu}) \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{\bar{p}^2}\right) \qquad \qquad P_{\mu\nu}^{\mathsf{L}}(p) = \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) - P_{\mu\nu}^{\mathsf{T}}(p)$$

• Also upcoming: nonzero Matsubara modes

Following results are preliminary and based on

• AKC, Mitter, Pawlowski, Strodthoff, T > 0 Yang-Mills, in preparation

Temperature dependence of the gluon propagator

Magnetic component compared to averaged components from FRG:

Temperature dependence of vertices

A glimpse at unquenched $N_f = 2$ QCD

AKC, Mitter, Pawlowski, Strodthoff, in preparation

Preliminary unquenched gluon propagator

FRG: AKC, Mitter, Pawlowski, Strodthoff, in preparation

Lattice: A. Sternbeck, K. Maltman, M. Müller-Preussker, L. von Smekal, PoS LATTICE2012 (2012) 243

Preliminary unquenched quark propagator

FRG: AKC, Mitter, Pawlowski, Strodthoff, in preparation

Lattice: Oliveira, Kızılersu, Silva, Skullerud, Sternbeck, Williams, arXiv:1605.09632 [hep-lat]

Conclusion

- FRG first principal approach to QCD, complementary to lattice QCD
- $\bullet~{\sf Big}$ numerical effort $\rightarrow~{\sf tools}$ like FormTracer necessary
- BRST symmetry is broken by regulator, proper care needs to be taken
- STI consistent solution computed
- Evidence for dynamical mass generation
- Very good agreement with lattice results

Outlook

- Unquenched $N_f = 2$ QCD, in preparation
- T > 0 YM with splitting of el. and mag. components, in preparation
- Bound states (Bethe-Salpeter eq.), decay widths, ...
- Nonzero Matsubara modes, gluon spectral function, ...

Thank you for your attention!

Conclusion

- FRG first principal approach to QCD, complementary to lattice QCD
- $\bullet~{\sf Big}$ numerical effort $\rightarrow~{\sf tools}$ like FormTracer necessary
- BRST symmetry is broken by regulator, proper care needs to be taken
- STI consistent solution computed
- Evidence for dynamical mass generation
- Very good agreement with lattice results

Outlook

- Unquenched $N_f = 2$ QCD, in preparation
- T > 0 YM with splitting of el. and mag. components, in preparation
- Bound states (Bethe-Salpeter eq.), decay widths, ...
- Nonzero Matsubara modes, gluon spectral function,

Thank you for your attention!

Conclusion

- FRG first principal approach to QCD, complementary to lattice QCD
- $\bullet~{\sf Big}$ numerical effort $\rightarrow~{\sf tools}$ like FormTracer necessary
- BRST symmetry is broken by regulator, proper care needs to be taken
- STI consistent solution computed
- Evidence for dynamical mass generation
- Very good agreement with lattice results

Outlook

- Unquenched $N_f = 2$ QCD, in preparation
- T > 0 YM with splitting of el. and mag. components, in preparation
- Bound states (Bethe-Salpeter eq.), decay widths, ...
- Nonzero Matsubara modes, gluon spectral function,

Thank you for your attention!

Running couplings in comparison with DSE results

Running of the gluon mass parameter

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

Gluon propagator

AKC (U Heidelberg)

Ghost propagator dressing

Momentum dependence of the ghost-gluon vertex

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

Ghost-gluon vertex

Ghost-gluon vertex at the symmetric point

Ghost-gluon vertex with vanishing gluon momentum

ANC, I ISLEI, MILLEI, FAMIOWSKI, SLIDULI

Ghost-gluon vertex with orthogonal momenta

Momentum dependence of the three-gluon vertex

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

AKC (U Heidelberg)

Three-gluon vertex at the symmetric point

AKC (U Heidelberg)

Three-gluon vertex with vanishing gluon momentum

Three-gluon vertex with orthogonal momenta

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

AKC (U Heidelberg)

Momentum dependence of the four-gluon vertex

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

Four-gluon vertex at the symmetric point

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

Regulator dressing

