Extracting scattering and resonance properties from the lattice

Maxwell T. Hansen

Institut für Kernphysik and Helmholtz-Institut Mainz
Johannes Gutenberg Universität
Mainz, Germany

$$
\text { July 6th, } 2016
$$

$p \gamma \rightarrow N \rho \rightarrow N \pi \pi$

Resonances are not directly detected.
Outgoing hadrons are used to reconstruct resonance properties.
It is thus highly valuable to predict these transition amplitudes from the underlying theory of QCD

Combining accurate, model-independent predictions with experiment will lead to a deeper understanding of QCD's rich resonance structure

What can we extract from the lattice? We are trying to evaluate a difficult integral numerically

$$
\text { observable }=\int \mathcal{D} \phi e^{i S}\left[\begin{array}{c}
\text { interpolator } \\
\text { for observable }
\end{array}\right]
$$

What can we extract from the lattice?
We are trying to evaluate a difficult integral numerically
observable $=\int \prod_{i}^{N} d \phi_{i} e^{-S}\left[\begin{array}{c}\text { interpolator } \\ \text { for observable }\end{array}\right]$
To do so we have to make four compromises

What can we extract from the lattice?

We are trying to evaluate a difficult integral numerically

$$
\text { observable }=\int \prod_{i}^{N} d \phi_{i} e^{-S}\left[\begin{array}{c}
\text { interpolator } \\
\text { for observable }
\end{array}\right]
$$

To do so we have to make four compromises

What can we extract from the lattice?

 We are trying to evaluate a difficult integral numerically$$
\text { observable }=\int \prod_{i}^{N} d \phi_{i} e^{-S}\left[\begin{array}{c}
\text { interpolator } \\
\text { for observable }
\end{array}\right]
$$

To do so we have to make four compromises

3 Unphysical pion masses $M_{\pi, \text { lattice }}>M_{\pi, \text { our universe }}$ But calculations at the physical pion mass do now exist

What can we extract from the lattice?

 We are trying to evaluate a difficult integral numerically $\left(\begin{array}{c}\left(\begin{array}{c}\text { observable? } \\ \text { discretized, inite volume, } \\ \text { Euclidean, heary pions }\end{array}\right.\end{array}\right)=\int \prod_{i}^{N} d \phi_{i} e^{-S}\left[\begin{array}{c}\text { interpolator } \\ \text { for observable }\end{array}\right]$To do so we have to make four compromises

3 Unphysical pion masses $M_{\pi, \text { lattice }}>M_{\pi, \text { our universe }}$ But calculations at the physical pion mass do now exist

Stable particle masses

$$
C(\tau) \equiv\langle 0| \mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)|0\rangle=\int \prod d \phi e^{-S} \mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)
$$

Stable particle masses

$$
C(\tau) \equiv\langle 0| \mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)|0\rangle=\int \prod d \phi e^{-S} \mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)
$$

The correlator is equal to a sum of decaying exponentials

$$
\begin{aligned}
C(\tau) & =\sum_{n}\langle 0| e^{H \tau} \mathcal{O}(0) e^{-H \tau}\left|E_{n}\right\rangle\left\langle E_{n}\right| \mathcal{O}^{\dagger}(0)|0\rangle \\
& \left.\left.=\sum_{n}|\langle 0| \mathcal{O}(0)| E_{n}\right\rangle\left.\right|^{2} e^{-E_{n} \tau} \underset{\tau \rightarrow \infty}{\longrightarrow}|\langle 0| \mathcal{O}(0)| E_{1}\right\rangle\left.\right|^{2} e^{-E_{1} \tau}
\end{aligned}
$$

$$
\begin{gathered}
\text { Stable particle masses } \\
C(\tau) \equiv\langle 0| \mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)|0\rangle=\int \prod^{d \phi e^{-S} \mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)}
\end{gathered}
$$

The correlator is equal to a sum of decaying exponentials

$$
\begin{aligned}
C(\tau) & =\sum_{n}\langle 0| e^{H \tau} \mathcal{O}(0) e^{-H \tau}\left|E_{n}\right\rangle\left\langle E_{n}\right| \mathcal{O}^{\dagger}(0)|0\rangle \\
& \left.\left.=\sum_{n}|\langle 0| \mathcal{O}(0)| E_{n}\right\rangle\left.\right|^{2} e^{-E_{n} \tau} \underset{\tau \rightarrow \infty}{\longrightarrow}|\langle 0| \mathcal{O}(0)| E_{1}\right\rangle\left.\right|^{2} e^{-E_{1} \tau}
\end{aligned}
$$

One can fit to the long time behavior to extract the ground state

$$
\begin{gathered}
\text { Stable particle masses } \\
C(\tau) \equiv\langle 0| \mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)|0\rangle=\int \prod d \phi e^{-S} \mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)
\end{gathered}
$$

The correlator is equal to a sum of decaying exponentials

$$
\begin{aligned}
C(\tau) & =\sum_{n}\langle 0| e^{H \tau} \mathcal{O}(0) e^{-H \tau}\left|E_{n}\right\rangle\left\langle E_{n}\right| \mathcal{O}^{\dagger}(0)|0\rangle \\
& \left.=\sum_{n}|\langle 0| \mathcal{O}(0)| E_{n}\right\rangle\left.\left.\right|^{2} e^{-E_{n} \tau} \underset{\tau \rightarrow \infty}{\longrightarrow}\left\langle\langle 0| \mathcal{O}(0) \mid E_{1}\right\rangle\right|^{2} e^{-E_{1} \tau}
\end{aligned}
$$

One can fit to the long time behavior to extract the ground state

If we choose the operator...

$$
\mathcal{O}=\bar{u} \gamma_{5} d
$$

Then in the infinite-volume, continuum limit we recover...

$$
E_{1}\left(a, L, m_{q}\right) \longrightarrow M_{\pi}\left(m_{q}\right)
$$

$$
\begin{gathered}
\text { Stable particle masses } \\
C(\tau) \equiv\langle 0| \mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)|0\rangle=\int \prod d \phi e^{-S} \mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)
\end{gathered}
$$

The correlator is equal to a sum of decaying exponentials

$$
\begin{aligned}
C(\tau) & =\sum_{n}\langle 0| e^{H \tau} \mathcal{O}(0) e^{-H \tau}\left|E_{n}\right\rangle\left\langle E_{n}\right| \mathcal{O}^{\dagger}(0)|0\rangle \\
& \left.=\sum_{n}|\langle 0| \mathcal{O}(0)| E_{n}\right\rangle\left.\left.\right|^{2} e^{-E_{n} \tau} \underset{\tau \rightarrow \infty}{\longrightarrow}\left\langle\langle 0| \mathcal{O}(0) \mid E_{1}\right\rangle\right|^{2} e^{-E_{1} \tau}
\end{aligned}
$$

One can fit to the long time behavior to extract the ground state

If we choose the operator...
Then in the infinite-volume, continuum limit we recover...

$$
\begin{aligned}
& \mathcal{O}=\bar{u} \gamma_{5} d \\
& \mathcal{O}=\bar{u} \gamma_{5} s
\end{aligned}
$$

$$
\begin{aligned}
& E_{1}\left(a, L, m_{q}\right) \longrightarrow M_{\pi}\left(m_{q}\right) \\
& E_{1}\left(a, L, m_{q}\right) \longrightarrow M_{K}\left(m_{q}\right)
\end{aligned}
$$

Stable particle masses
 $$
C(\tau) \equiv\langle 0| \mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)|0\rangle=\int \prod d \phi e^{-S} \mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)
$$

The correlator is equal to a sum of decaying exponentials

$$
\begin{aligned}
C(\tau) & =\sum_{n}\langle 0| e^{H \tau} \mathcal{O}(0) e^{-H \tau}\left|E_{n}\right\rangle\left\langle E_{n}\right| \mathcal{O}^{\dagger}(0)|0\rangle \\
& \left.\left.=\sum_{n}|\langle 0| \mathcal{O}(0)| E_{n}\right\rangle\left.\right|^{2} e^{-E_{n} \tau} \underset{\tau \rightarrow \infty}{\longrightarrow}|\langle 0| \mathcal{O}(0)| E_{1}\right\rangle\left.\right|^{2} e^{-E_{1} \tau}
\end{aligned}
$$

One can fit to the long time behavior to extract the ground state
If we choose the operator...
Then in the infinite-volume, continuum limit we recover...

$$
\begin{array}{ll}
\mathcal{O}=\bar{u} \gamma_{5} d & E_{1}\left(a, L, m_{q}\right) \longrightarrow M_{\pi}\left(m_{q}\right) \\
\mathcal{O}=\bar{u} \gamma_{5} s & E_{1}\left(a, L, m_{q}\right) \longrightarrow M_{K}\left(m_{q}\right) \\
\mathcal{O}=u\left(u^{T} \Gamma d\right) & E_{1}\left(a, L, m_{q}\right) \longrightarrow M_{N}\left(m_{q}\right)
\end{array}
$$

Stable particle masses

Full error budget calculation of isospin splittings

Dynamical up, down, strange and charm quarks + QED

Borsanyi et.al. (BMW Collaboration) Science 347, 1452-1455 (2015)

Decay constants

$$
\begin{gathered}
\langle 0| A_{\mu}(0) \mathcal{O}^{\dagger}(-\tau)|0\rangle=\int \prod d \phi e^{-S} A_{\mu}(0) \mathcal{O}^{\dagger}(-\tau) \\
\langle 0| A_{\mu}(0) \mathcal{O}^{\dagger}(-\tau)|0\rangle \underset{\tau \rightarrow \infty}{\longrightarrow} i p_{\mu} f
\end{gathered}
$$

requires renormalization of the axial-vector current

Decay constants

$$
\begin{gathered}
\langle 0| A_{\mu}(0) \mathcal{O}^{\dagger}(-\tau)|0\rangle=\int \prod d \phi e^{-S} A_{\mu}(0) \mathcal{O}^{\dagger}(-\tau) \\
\langle 0| A_{\mu}(0) \mathcal{O}^{\dagger}(-\tau)|0\rangle \underset{\tau \rightarrow \infty}{\longrightarrow} i p_{\mu} f
\end{gathered}
$$

requires renormalization of the axial-vector current

FLAG
(Flavor Lattice Averaging Group)
Collaboration for systematically averaging results from different collaborations

Decay constants

$$
\begin{gathered}
\langle 0| A_{\mu}(0) \mathcal{O}^{\dagger}(-\tau)|0\rangle=\int \prod d \phi e^{-S} A_{\mu}(0) \mathcal{O}^{\dagger}(-\tau) \\
\langle 0| A_{\mu}(0) \mathcal{O}^{\dagger}(-\tau)|0\rangle \underset{\tau \rightarrow \infty}{\longrightarrow} i p_{\mu} f
\end{gathered}
$$

requires renormalization of the axial-vector current

FLAG
(Flavor Lattice Averaging Group)
Collaboration for systematically averaging results from different collaborations

Results are only included if they meet certain standards:
I. Chiral extrapolation, pion below 400 MeV
2. Continuum extrapolation, minimum two lattices (below 0.1 fm , sufficiently different)
3. Two volumes or demonstrably small effect
4. Non-perturbative renormalization

What can we extract from the lattice?

Resonances are fundamentally different from stable particles

$$
\left.C(\tau)=\langle 0| \mathcal{O}_{\rho}(\tau) \mathcal{O}_{\rho}^{\dagger}(0)|0\rangle=\sum_{n}\left|\langle 0| \mathcal{O}_{\rho}(0)\right| E_{n}\right\rangle\left.\right|^{2} e^{-E_{n} \tau}
$$

$$
\lim _{L \rightarrow \infty} E_{n}(L) \neq M_{\rho}
$$

What can we extract from the lattice?

 Not possible to directly calculate

What can we extract from the lattice?

 Not possible to directly calculate
multi-particle in- and outstates

What can we extract from the lattice?

 Not possible to directly calculate
multi-particle in- and outstates
amputate and put on-shell
$\langle\pi \pi$, out $| \pi \pi$, in $\rangle=\frac{}{\langle 0| \tilde{\pi}\left(p^{\prime}\right) \tilde{\pi}\left(k^{\prime}\right) \tilde{\pi}(p) \tilde{\pi}(k)|0\rangle}$

What can we extract from the lattice?

 Not possible to directly calculate
multi-particle in- and outstates
amputate and put on-shell
$\langle\pi \pi$, out $| \pi \pi$, in $\rangle=\frac{\langle 0| \tilde{\pi}\left(p^{\prime}\right) \tilde{\pi}\left(k^{\prime}\right) \tilde{\pi}(p) \tilde{\pi}(k)|0\rangle}{}$

$$
\langle N \pi \pi, \text { out }| \mathcal{J}_{\mu}(x)|N\rangle=\langle 0| \tilde{N}\left(p_{1}^{\prime}\right) \tilde{\pi}\left(p_{2}^{\prime}\right) \tilde{\pi}\left(p_{3}^{\prime}\right) \mathcal{J}_{\mu}(x) \tilde{N}(P)|0\rangle
$$

What can we extract from the lattice?

 Not possible to directly calculate
$\langle\underline{\pi \pi|\pi \pi\rangle}$

$\langle\underline{N \pi}| \mathcal{J}_{\mu}|N\rangle$

multi-particle in- and outstates
amputate and put on-shell
$\langle\pi \pi$, out $| \pi \pi$, in $\rangle=\langle 0| \tilde{\pi}\left(p^{\prime}\right) \tilde{\pi}\left(k^{\prime}\right) \tilde{\pi}(p) \tilde{\pi}(k)|0\rangle$

$$
\langle N \pi \pi, \text { out }| \mathcal{J}_{\mu}(x)|N\rangle=\langle 0| \tilde{N} \underline{\text { amputate and put on-shell }} \frac{\left(p_{1}^{\prime}\right) \tilde{\pi}\left(p_{2}^{\prime}\right) \tilde{\pi}\left(p_{3}^{\prime}\right) \mathcal{J}_{\mu}(x) \tilde{N}(P)|0\rangle}{}
$$

Requires Minkowski momenta and infinite volume

What can we extract from the lattice?

Instead we can only access

$H_{\mathrm{QCD}}|n, L\rangle=|n, L\rangle \frac{E_{n}(L)}{\uparrow} \quad \frac{\langle n, L, " N \pi \pi "| \mathcal{J}_{\mu}(x)|" N ", L\rangle}{\uparrow}$
finite-volume energies and matrix elements labels in quotes indicate quantum numbers

What can we extract from the lattice?

 Instead we can only access$$
H_{\mathrm{QCD}}|n, L\rangle=|n, L\rangle \frac{E_{n}(L)}{\uparrow} \quad \frac{\langle n, L, " N \pi \pi "| \mathcal{J}_{\mu}(x)|" N ", L\rangle}{\uparrow}
$$

finite-volume energies and matrix elements labels in quotes indicate quantum numbers

How can we determine

$\langle\pi \pi$, out $| \pi \pi$, in \rangle and $\langle N \pi \pi$, out $| \mathcal{J}_{\mu}(x)|N\rangle$
from
$E_{n}(L)$ and $\langle n, L, " N \pi \pi "| \mathcal{J}_{\mu}(x)|" N ", L\rangle$?

It is possible to derive relations between finite- and infinite-volume physics

It is possible to derive relations between finite- and infinite-volume physics
Two-particle scattering

It is possible to derive relations between

 finite- and infinite-volume physicsTwo-particle scattering

Photo- and electroproduction
$2 \mid$
$\uparrow=\bar{L}_{E_{1}(L)}^{E_{2}(L)}$

It is possible to derive relations between

 finite- and infinite-volume physicsTwo-particle scattering

Photo- and electroproduction
$2|\mathcal{J}| 1$
$2+\mathcal{J} \mid 2$

Three-particle scattering

Finite volume

Finite volume

cubic, spatial volume (extent L)
periodic boundary conditions

$$
\vec{p} \in(2 \pi / L) \mathbb{Z}^{3}
$$

time direction infinite

Finite volume

cubic, spatial volume (extent L)
periodic boundary conditions

$$
\vec{p} \in(2 \pi / L) \mathbb{Z}^{3}
$$

time direction infinite
L large enough to ignore $e^{-m L}$

Finite volume

cubic, spatial volume (extent L)
periodic boundary conditions

$$
\vec{p} \in(2 \pi / L) \mathbb{Z}^{3}
$$

time direction infinite
L large enough to ignore $e^{-m L}$

Assume lattice effects are small and accommodated elsewhere Work in continuum field theory throughout

Finite volume

cubic, spatial volume (extent L)
periodic boundary conditions

$$
\vec{p} \in(2 \pi / L) \mathbb{Z}^{3}
$$

time direction infinite
L large enough to ignore $e^{-m L}$

Assume lattice effects are small and accommodated elsewhere Work in continuum field theory throughout

Finite volume

cubic, spatial volume (extent L)
periodic boundary conditions

$$
\vec{p} \in(2 \pi / L) \mathbb{Z}^{3}
$$

time direction infinite
L large enough to ignore $e^{-m L}$ Quantum field theory

generic relativistic QFT

 1. Include all interactions
2. no power-counting scheme

Not possible to directly calculate scattering observables to all orders

But it is possible to derive general, all-orders relations to finite-volume quantities

Assume lattice effects are small and accommodated elsewhere Work in continuum field theory throughout

Two-to-two scattering

For now assume...
identical scalars, mass m
\mathbb{Z}_{2} symmetry

Two-to-two scattering

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \underset{\text { two-particle interpolator }}{\mathcal{O}^{\dagger}}(0)|0\rangle
$$

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Two-to-two scattering

For now assume...
identical scalars, mass m
\mathbb{Z}_{2} symmetry

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle
$$

Euclidean convention
two-particle interpolator

$$
P=\left(P_{4}, \vec{P}\right)=\left(P_{4}, 2 \pi \vec{n} / L\right)
$$

but allow P_{4} to be real or imaginary

Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Two-to-two scattering

For now assume...
identical scalars, mass m
\mathbb{Z}_{2} symmetry

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle
$$

Euclidean convention

$$
P=\left(P_{4}, \vec{P}\right)=\left(P_{4}, 2 \pi \vec{n} / L\right)
$$

but allow P_{4} to be real or imaginary
CM frame energy is then $E^{* 2}=-P_{4}^{2}-\vec{P}^{2}$
Require $E^{*}<4 m$ to isolate two-to-two scattering

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Two-to-two scattering

For now assume... identical scalars, mass m \mathbb{Z}_{2} symmetry

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle
$$

At fixed L, \vec{P}, poles in C_{L} give finite-volume spectrum

C_{L} analytic structure

C_{∞} analytic structure

Two-to-two scattering

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle
$$

At fixed L, \vec{P}, poles in C_{L} give finite-volume spectrum

Calculate $C_{L}(P)$ to all orders in perturbation theory and determine locations of poles.
C_{L} analytic structure

$$
\begin{aligned}
& C_{L}(P)=\mathcal{O}^{\dagger} \bullet\left(\mathcal{O}+\mathcal{O}^{\dagger} \bullet i K\right)(\mathcal{O} \\
& +\mathcal{O}^{\dagger} \bullet i K \backsim(O) \quad \bullet \cdots
\end{aligned}
$$

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

If $E^{*}<4 m$ then $\begin{aligned} & K_{L}=K_{\infty}+\mathcal{O}\left(e^{-m L}\right) \\ & \Delta_{L}=\Delta_{\infty}+\mathcal{O}\left(e^{-m L}\right)\end{aligned}$
Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Now we introduce an important identity.

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Now we introduce an important identity.

all four-momenta are projected on shell.
Physical, propagating stakes give dominate finite-volume effects.

Lüscher, M. Nucl. Phys B354, 531-578 (1991)

Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

zero Fs
$C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+$

$C_{L}(E, \vec{P})=C_{\infty}^{\text {zero Fs }}(E, \vec{P})+A A_{F}^{\text {one }}\left(A^{\prime}\right)+$

$$
\begin{aligned}
C_{L}(E, \vec{P}) & \left.=C_{\infty}^{\text {zero Es }}(E, \vec{P})+A A^{\text {one } \mathrm{F}} A^{\prime}\right)+ \\
& =\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}|0\rangle
\end{aligned}
$$

$$
\begin{aligned}
C_{L}(E, \vec{P}) & =C_{\infty}^{\text {zero Es }}(E, \vec{P})+A A^{\text {one }} \boldsymbol{A} \\
& =\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}|0\rangle
\end{aligned}
$$

$$
C_{L}(E, \vec{P})=C_{\infty}^{\text {zero }(E, \vec{P})+A \text { one }}
$$

When we factorize diagrams and group infinite-volume parts... physical observables emerge!

Review...

Review...
1

Review...
1

Review...

1

$$
+O \cdot i K!i K!(O+\cdots
$$

$$
C_{L}(P)=C_{\infty}(P)
$$

Review...

1

$$
\because(D)=\Theta_{\infty}(D)
$$

We deduce...

$$
C_{L}(P)=C_{\infty}(P)-A^{\prime} F \frac{1}{1+\mathcal{M}_{2 \rightarrow 2} F} A
$$

Review...

1

$$
C_{L}(P)=C_{\infty}(P)
$$

We deduce...

poles are in here

P_{4}

$$
C_{L}(P)=C_{\infty}(P)-A \xlongequal[F]{1+\mathcal{M}_{2 \rightarrow 2} F} A
$$

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to

$$
\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0
$$

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Rummukainen and Gottlieb, Nucl. Phys. B450, 397 (1995)
Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Matrices defined using angular-momentum states

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to

$$
\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0
$$

Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Rummukainen and Gottlieb, Nucl. Phys. B450, 397 (1995)
Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)
Matrices defined using angular-momentum states $\mathcal{M}_{2 \rightarrow 2} \equiv>{ }_{\bullet}^{\bullet}$ diagonal matrix, parametrized by $\delta_{\ell}\left(E^{*}\right)$

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to
$\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0$
Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Rummukainen and Gottlieb, Nucl. Phys. B450, 397 (1995)
Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Matrices defined using angular-momentum states $\mathcal{M}_{2 \rightarrow 2} \equiv \longrightarrow$ diagonal matrix, parametrized by $\delta_{\ell}\left(E^{*}\right)$

$F \equiv$ non-diagonal matrix of known geometric functions

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to
$\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0$
Lüscher, M. Nucl. Phys B354, 531-578 (1991)
Rummukainen and Gottlieb, Nucl. Phys. B450, 397 (1995)
Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)
Matrices defined using angular-momentum states

diagonal matrix, parametrized by $\delta_{\ell}\left(E^{*}\right)$
$F \equiv$ non-diagonal matrix of known geometric functions

difference of two-particle loops depends on in finite and infinite volume $\quad L, E, \vec{P}$

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to

$$
\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0
$$

> Lüscher, M. Nucl. Phys B354, 531-578 (1991)
> Rummukainen and Gottlieb, Nucl. Phys. B450, 397 (1995)
> Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

Matrices defined using angular-momentum states

diagonal matrix, parametrized by $\delta_{\ell}\left(E^{*}\right)$
$F \equiv$ non-diagonal matrix of known geometric functions

difference of two-particle loops depends on in finite and infinite volume $\quad L, E, \vec{P}$
At low energies, lowest partial waves dominate $\mathcal{M}_{2 \rightarrow 2}$ $\begin{aligned} & \text { e.g. s-wave only } \\ & \text { with some }\end{aligned} \cot \delta\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0$ rearranging scattering phase known function

Using the result (p-wave)

$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result (p-wave)

$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result (p-wave)

$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result (p-wave)

$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result (p-wave)

$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

$\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to

$$
\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0
$$

Has since been generalized to include... non-indentical particles $\bullet \neq \bullet$ multiple two-particle channels particles with spin

Bernard, Lage, Meißner, and Rusetsky, JHEP, 1101, 019 (2011)
MTH and Sharpe, Phys.Rev. D86 (2012) 016007
Briceño and Davoudi, Phys.Rev. D88 (2013) 094507
Briceño, Phys. Rev. D 89, 074507 (2014)

Two-particle result

At fixed (L, \vec{P}), finite-volume energies are solutions to
$\operatorname{det}\left[\mathcal{M}_{2 \rightarrow 2}^{-1}+F\right]=0$
Has since been generalized to include... non-indentical particles - $\neq \bullet$ multiple two-particle channels particles with spin

Bernard, Lage, Meißner, and Rusetsky, JHEP, 1101, 019 (2011)
MTH and Sharpe, Phys.Rev. D86 (2012) 016007
Briceño and Davoudi, Phys.Rev. D88 (2013) 094507
Briceño, Phys. Rev. D 89, 074507 (2014)
The basic form of the equation stays the same, but the matrix space and definition of F change

Multiple two-particle channels

Must now include a channel index

$$
\operatorname{det}\left[\left(\begin{array}{ll}
\mathcal{M}_{a \rightarrow a} & \mathcal{M}_{a \rightarrow b} \\
\mathcal{M}_{b \rightarrow a} & \mathcal{M}_{b \rightarrow b}
\end{array}\right)^{-1}+\left(\begin{array}{cc}
F_{a} & 0 \\
0 & F_{b}
\end{array}\right)\right]=0
$$

Multiple two-particle channels

Must now include a channel index jet MTH and Sharpe/Briceño and Davoudi

$$
\left[\left(\begin{array}{ll}
\mathcal{M}_{a \rightarrow a} & \mathcal{M}_{a \rightarrow b} \\
\mathcal{M}_{b \rightarrow a} & \mathcal{M}_{b \rightarrow b}
\end{array}\right)^{-1}+\left(\begin{array}{cc}
F_{a} & 0 \\
0 & F_{b}
\end{array}\right)\right]=0
$$

Already used in JLab study of $\pi K, \eta K$
$\mathcal{M}(\pi K \rightarrow \eta K) \sim \sqrt{1-\eta^{2}}$

Wilson, Dudek, Edwards, Thomas, Phys. Rev. D 91, 054008 (2015) arXiv: 1411.2004

Multiple two-particle channels

Must now include a channel index jet MTH and Sharpe/Briceño and Davoudi

$$
\left[\left(\begin{array}{ll}
\mathcal{M}_{a \rightarrow a} & \mathcal{M}_{a \rightarrow b} \\
\mathcal{M}_{b \rightarrow a} & \mathcal{M}_{b \rightarrow b}
\end{array}\right)^{-1}+\left(\begin{array}{cc}
F_{a} & 0 \\
0 & F_{b}
\end{array}\right)\right]=0
$$

As well as JLab rho study with $\pi \pi, K \bar{K}$

$$
\mathcal{M}(\pi \pi \rightarrow K \bar{K}) \sim \sqrt{1-\eta^{2}}
$$

Wilson, Briceño, Dudek, Edwards, Thomas, arXiv:1507:02599

Three volumes are used to calculate many points on phase shift curve but could still have $e^{-M_{\pi} L}$ effects

Three volumes are used to calculate many points on phase shift curve but could still have $e^{-M_{\pi} L}$ effects

Three and four-particle thresholds

Three volumes are used to calculate many points on phase shift curve but could still have $e^{-M_{\pi} L}$ effects

Three and four-particle thresholds

One lattice spacing

Chiral extrapolation performed in the 1 - channel but not in 0+

Two-particle scattering

Photo- and electroproduction

Three-particle scattering

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?
$C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?
$C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle$

Insert a complete set finite-volume of states

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?
$C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle$

Insert a complete set finite-volume of states

$$
C_{L}(P) \underset{P_{4} \rightarrow i E_{n}}{ } \frac{L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
$$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$ $\xrightarrow[0]{n}$
How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle
$$

Insert a complete set finite-volume of states

$$
C_{L}(P) \xrightarrow[P_{4} \rightarrow i E_{n}]{ } \frac{L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
$$

Now compare this to our factorized result

$$
C_{L}(P)=C_{\infty}(P)-A^{\prime} F \frac{1}{1+\mathcal{M}_{2 \rightarrow 2} F} A
$$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$ $\xrightarrow{2}$
How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle
$$

Insert a complete set finite-volume of states

$$
C_{L}(P) \xrightarrow[P_{4} \rightarrow i E_{n}]{ } \frac{L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
$$

Now compare this to our factorized result

$$
\begin{aligned}
C_{L}(P) & =C_{\infty}(P)-A^{\prime} F \frac{1}{1+\mathcal{M}_{2 \rightarrow 2} F} A \\
& \xrightarrow[P_{4} \rightarrow i E_{n}]{ } \quad \frac{\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
\end{aligned}
$$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?
$C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle$

Insert a complete set finite-volume of states

$$
C_{L}(P) \xrightarrow[P_{4} \rightarrow i E_{n}]{ } \frac{L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
$$

Now compare this to our factorized result

$$
\begin{gathered}
C_{L}(P)=C_{\infty}(P)-A^{F \frac{1}{1+\mathcal{M}_{2 \rightarrow 2} F} A} A \begin{array}{c}
\mathcal{R} \text { is the residue } \\
\text { of this matrix }
\end{array} \\
\overrightarrow{P_{4} \rightarrow i E_{n}} \quad \frac{\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
\end{gathered}
$$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?
Why did we expect $C_{L}(P)$ to have poles?
$C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\dagger}(0)|0\rangle$

Insert a complete set finite-volume of states

$$
C_{L}(P) \underset{P_{4} \rightarrow i E_{n}}{ } \frac{L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
$$

Now compare this to our factorized result

$$
C_{L}(P)=C_{\infty}(P)-A^{\prime} F \frac{1}{1+\mathcal{M}_{2 \rightarrow 2} F} A \quad \begin{aligned}
& \mathcal{R} \text { is the residue } \\
& \text { of this matrix }
\end{aligned}
$$

$$
\overrightarrow{P_{4} \rightarrow i E_{n}}
$$

$$
\frac{\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle}{\left(E_{n}+i P_{4}\right)}
$$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?

$$
L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle=
$$

$$
\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle
$$

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables? $L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle=$

$$
\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle
$$

One has the freedom to choose \mathcal{O}^{\dagger} such that $\mathcal{O}^{\dagger}|0\rangle=\mathcal{J}_{\mu}|\pi\rangle$. (Finite-volume effects are exponentially suppressed for single particles.)

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

 $\xrightarrow{2}$How can we get this from finite-volume observables?

$$
L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle=
$$

$$
\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle
$$

One has the freedom to choose \mathcal{O}^{\dagger} such that $\mathcal{O}^{\dagger}|0\rangle=\mathcal{J}_{\mu}|\pi\rangle$.

Abstract

(Finite-volume effects are exponentially suppressed for single particles.)

$$
\left.2 \omega_{\pi} L^{6}\left|\langle n, \vec{P}, L| \mathcal{J}_{\mu}(0)\right| \pi, L\right\rangle\left.\right|^{2}=
$$

$$
\left.\langle\pi| \mathcal{J}_{\mu}(0) \mid \pi \pi, \text { in }\right\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{J}_{\mu}(0)|\pi\rangle
$$

R. A. Briceño, MTH, A. Walker-Loud, Phys. Rev. D91, 034501 (2015)
R. A. Briceño, MTH, Phys. Rev. D92, 074509 (2015)

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?

$$
L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle=
$$

$$
\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle
$$

One has the freedom to choose \mathcal{O}^{\dagger} such that $\mathcal{O}^{\dagger}|0\rangle=\mathcal{J}_{\mu}|\pi\rangle$.

(Finite-volume effects are exponentially suppressed for single particles.)

get this from the lattice

$$
\begin{array}{rc}
\left.2 \omega_{\pi} L^{6}\left|\langle n, \vec{P}, L| \mathcal{J}_{\mu}(0)\right| \pi, L\right\rangle\left.\right|^{2}= & \text { experimental } \\
\left.\langle\pi| \mathcal{J}_{\mu}(0) \mid \pi \pi, \text { in }\right\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{J}_{\mu}(0)|\pi\rangle
\end{array}
$$

R. A. Briceño, MTH, A. Walker-Loud, Phys. Rev. D91, 034501 (2015)
R. A. Briceño, MTH, Phys. Rev. D92, 074509 (2015)

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

How can we get this from finite-volume observables?

$$
L^{3}\langle 0| \mathcal{O}(0)|n, \vec{P}, L\rangle\langle n, \vec{P}, L| \mathcal{O}^{\dagger}(0)|0\rangle=
$$

$$
\langle 0| \mathcal{O}(0) \mid \pi \pi, \text { in }\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{O}^{\dagger}(0)|0\rangle
$$

One has the freedom to choose \mathcal{O}^{\dagger} such that $\mathcal{O}^{\dagger}|0\rangle=\mathcal{J}_{\mu}|\pi\rangle$.

(Finite-volume effects are exponentially suppressed for single particles.)

get this from the lattice

$$
\frac{\begin{array}{c}
\left.2 \omega_{\pi} L^{6}\left|\langle n, \vec{P}, L| \mathcal{J}_{\mu}(0)\right| \pi, L\right\rangle\left.\right|^{2}=
\end{array} \begin{array}{c}
\text { experimental } \\
\text { observable }
\end{array}}{\left.\langle\pi| \mathcal{J}_{\mu}(0) \mid \pi \pi, \text { in }\right\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{J}_{\mu}(0)|\pi\rangle} \begin{array}{r}
\mathcal{R}\left(E_{n}, \vec{P}, L\right)=-\operatorname{Residue}_{E_{n}}\left[\frac{1}{F^{-1}+\mathcal{M}_{2 \rightarrow 2}}\right]
\end{array}
$$

R. A. Briceño, MTH, A. Walker-Loud, Phys. Rev. D91, 034501 (2015)
R. A. Briceño, MTH, Phys. Rev. D92, 074509 (2015)

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

get this from the lattice

$$
\begin{array}{rc}
\left.2 \omega_{\pi} L^{6}\left|\langle n, \vec{P}, L| \mathcal{J}_{\mu}(0)\right| \pi, L\right\rangle\left.\right|^{2}= & \begin{array}{c}
\text { experimental } \\
\text { observable }
\end{array} \\
\left.\langle\pi| \mathcal{J}_{\mu}(0) \mid \pi \pi, \text { in }\right\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{J}_{\mu}(0)|\pi\rangle
\end{array}
$$

Briceño, MTH, Walker-Loud/Briceño, MTH

Photoproduction in the rho channel

Briceño, Dudek, Edwards, Schultz, Thomas, Wilson arXiv: 1507.6622

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

get this from the lattice

$$
\begin{array}{rc}
\left.2 \omega_{\pi} L^{6}\left|\langle n, \vec{P}, L| \mathcal{J}_{\mu}(0)\right| \pi, L\right\rangle\left.\right|^{2}= & \begin{array}{c}
\text { experimental } \\
\text { observable }
\end{array} \\
\left.\langle\pi| \mathcal{J}_{\mu}(0) \mid \pi \pi, \text { in }\right\rangle \mathcal{R}\left(E_{n}, \vec{P}, L\right)\langle\pi \pi, \text { out }| \mathcal{J}_{\mu}(0)|\pi\rangle
\end{array}
$$

Briceño, MTH, Walker-Loud/Briceño, MTH

Briceño, Dudek, Edwards, Schultz, Thomas, Wilson arXiv: 1507.6622

Photoproduction $\quad\langle\pi \pi$, out $| \mathcal{J}_{\mu}|\pi\rangle \equiv$

Result is very general non-indentical particles multiple two-particle channels particles with spin

H. B. Meyer, Eur.Phys.J. A49, 84 (2013)

Agadjanov, Bernard, Meißner and Rusetsky, (2014), Nucl.Phys. B886, 1199 (2014).
R. A. Briceño, MTH, A. Walker-Loud, Phys. Rev. D91, 034501 (2015)
R. A. Briceño, MTH, Phys. Rev. D92, 074509 (2015)
all generalizations of
L. Lellouch and M. Lüscher, Commun. Math. Phys. 219, 31 (2001)

Two-particle scattering

Photo- and electroproduction

Three-particle scattering

Begin by considering the infinite-volume observables

Begin by considering the infinite-volume observables

Because of "finite-volume rescattering" it is not possible to access two-to-three without also accessing three-to-three

Begin by considering the infinite-volume observables

Because of "finite-volume rescattering" it is not possible to access two-to-three without also accessing three-to-three

For now we turn off two-to-three scattering using a symmetry

Begin by considering the infinite-volume observables

Because of "finite-volume rescattering" it is not possible to access two-to-three without also accessing three-to-three

For now we turn off two-to-three scattering using a symmetry
Three-to-three amplitude has kinematic singularities
$i \mathcal{M}_{3 \rightarrow 3} \equiv$
fully connected correlator with six external legs amputated and projected on shell

Begin by considering the infinite-volume observables

Because of "finite-volume rescattering" it is not possible to access two-to-three without also accessing three-to-three

For now we turn off two-to-three scattering using a symmetry
Three-to-three amplitude has kinematic singularities
$i \mathcal{M}_{3 \rightarrow 3} \equiv \quad$ fully connected correlator with six external legs amputated and projected on shell

Certain external momenta put this on-shell!

Begin by considering the infinite-volume observables

Because of "finite-volume rescattering" it is not possible to access two-to-three without also accessing three-to-three

For now we turn off two-to-three scattering using a symmetry
Three-to-three amplitude has kinematic singularities
$i \mathcal{M}_{3 \rightarrow 3} \equiv \quad$ fully connected correlator with six external legs amputated and projected on shell

Certain external momenta put this on-shell!

Three-to-three amplitude has more degrees of freedom 8 degrees of freedom including total energy Compared with 2 for the two-to-two amplitude

How can we possibly hope to extract a singular, eight-coordinate function using finite-volume energies?

How can we possibly hope to extract a singular, eight-coordinate function using finite-volume energies? Short answer...

How can we possibly hope to extract a singular, eight-coordinate function using finite-volume energies? Short answer...
(1). We found that the spectrum depends on a modified quantity with singularities removed

$$
\mathcal{K}_{\mathrm{df}, 3} \not \supset \cdots
$$

How can we possibly hope to extract a singular, eight-coordinate function using finite-volume energies? Short answer...
(1). We found that the spectrum depends on a modified quantity with singularities removed

(a) Same degrees of freedom as $\mathcal{M}_{3 \rightarrow 3}$.
(b) Relation to $\mathcal{M}_{3 \rightarrow 3}$ is known (depends only on on-shell $\mathcal{M}_{2 \rightarrow 2}$)
(c) Smooth function (allows harmonic decomposition)

How can we possibly hope to extract a singular, eight-coordinate function using finite-volume energies? Short answer...
(1). We found that the spectrum depends on a modified quantity with singularities removed

(a) Same degrees of freedom as $\mathcal{M}_{3 \rightarrow 3}$.
(b) Relation to $\mathcal{M}_{3 \rightarrow 3}$ is known (depends only on on-shell $\mathcal{M}_{2 \rightarrow 2}$)
(c) Smooth function (allows harmonic decomposition)
(2). Degrees of freedom encoded in an extended matrix space

(\vec{k} is restricted to finite-volume momenta)

Three-to-three scattering

For now assume...
identical scalars, mass m
\mathbb{Z}_{2} symmetry

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}^{\mathcal{O}^{\dagger}}(0)|0\rangle
$$

Three-to-three scattering

\mathbb{Z}_{2} symmetry

$$
C_{L}(P) \equiv \int_{L} d^{4} x e^{-i P x}\langle 0| T \mathcal{O}(x) \mathcal{O}_{\Gamma}^{\dagger}(0)|0\rangle
$$

Calculate $C_{L}(P)$ to all orders in perturbation theory and determine locations of poles.

Require $m<E^{*}<5 m$ to isolate three-particle states

Three-particle result

At fixed (L, \vec{P}), finite-volume $\operatorname{det}_{k, \ell, m}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\right]=0$
energies are solutions to
MTH and Sharpe, Phys. Rev. D90, 116003 (2014)
$F_{3} \equiv$ matrix that depends on known geometric functions as well as $\mathcal{M}_{2 \rightarrow 2}$.

Three-particle result

$\begin{aligned} & \text { At fixed }(L, \vec{P}) \text {, finite-volume } \\ & \text { energies are solutions to }\end{aligned} \operatorname{det}_{k, \ell, m}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\right]=0$
MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

$$
F_{3} \equiv \begin{gathered}
\text { matrix that depends on known geometric } \\
\text { functions as well as } \mathcal{M}_{2 \rightarrow 2}
\end{gathered}
$$

(1). Use two-particle quantization condition to constrain $\mathcal{M}_{2 \rightarrow 2}$ and thus determine $F_{3}(E, \vec{P}, L)$

Three-particle result

At fixed (L, \vec{P}), finite-volume $\operatorname{det}_{k, \ell, m}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\right]=0$
energies are solutions to
MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

$$
F_{3} \equiv \begin{gathered}
\text { matrix that depends on known geometric } \\
\text { functions as well as } \mathcal{M}_{2 \rightarrow 2} .
\end{gathered}
$$

(1). Use two-particle quantization condition to constrain $\mathcal{M}_{2 \rightarrow 2}$ and thus determine $F_{3}(E, \vec{P}, L)$
(2). Use harmonic decomposition + various parametrizations to express $\mathcal{K}_{\mathrm{df}, 3}\left(E^{*}\right)$ in terms of N unknown parameters

Three-particle result

At fixed (L, \vec{P}), finite-volume $\operatorname{det}_{k, \ell, m}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\right]=0$
energies are solutions to
MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

$$
F_{3} \equiv \begin{gathered}
\text { matrix that depends on known geometric } \\
\text { functions as well as } \mathcal{M}_{2 \rightarrow 2} .
\end{gathered}
$$

(1). Use two-particle quantization condition to constrain $\mathcal{M}_{2 \rightarrow 2}$ and thus determine $F_{3}(E, \vec{P}, L)$
(2). Use harmonic decomposition + various parametrizations to express $\mathcal{K}_{\mathrm{df}, 3}\left(E^{*}\right)$ in terms of N unknown parameters (3). Use quantization condition with lattice (or otherwise) determined energies to determine all parameters

Three-particle result

At fixed (L, \vec{P}), finite-volume $\operatorname{det}_{k, \ell, m}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\right]=0$
energies are solutions to
MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

$$
F_{3} \equiv \begin{gathered}
\text { matrix that depends on known geometric } \\
\text { functions as well as } \mathcal{M}_{2 \rightarrow 2} .
\end{gathered}
$$

(1). Use two-particle quantization condition to constrain $\mathcal{M}_{2 \rightarrow 2}$ and thus determine $F_{3}(E, \vec{P}, L)$
(2). Use harmonic decomposition + various parametrizations to express $\mathcal{K}_{\mathrm{df}, 3}\left(E^{*}\right)$ in terms of N unknown parameters (3). Use quantization condition with lattice (or otherwise) determined energies to determine all parameters (4). Use known relation to recover $\mathcal{M}_{3 \rightarrow 3}$ MTH and Sharpe, Phys. Rev. D92, 114509 (2015)

Three-particle result

$\begin{aligned} & \text { At fixed }(L, \vec{P}) \text {, finite-volume } \\ & \text { energies are solutions to }\end{aligned} \operatorname{det}_{k, \ell, m}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\right]=0$
MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

Some nice features...

Matrices automatically truncated in the \vec{k} index truncate angular momentum space

Three-particle result

$\begin{aligned} & \text { At fixed }(L, \vec{P}) \text {, finite-volume } \\ & \text { energies are solutions to }\end{aligned} \operatorname{det}_{k, \ell, m}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\right]=0$
MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

Some nice features...

Matrices automatically truncated in the \vec{k} index

truncate angular

 momentum space
solvable system

Expanding about weak interactions gives an important check

$$
E=3 m+\frac{a_{3}}{L^{3}}+\frac{a_{4}}{L^{4}}+\frac{a_{5}}{L^{5}}+\frac{a_{6}}{L^{6}}+\mathcal{O}\left(1 / L^{7}\right)
$$

Our result agrees with existing results for $a_{3 \rightarrow 5}$ and gives a prediction for a_{6} K. Huang and C. Yang, Phys. Rev. 105 (1957) 767-775

Beane, Detmold, Savage, Phys. Rev. D76 (2007) 074507
MTH and Sharpe, Phys. Rev. D 93, 096006 (2016)

Three-particle result $\operatorname{det}_{k, \ell, m}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\right]=0$ Sketch of the derivation...

Three-particle result $\operatorname{det}_{k, \ell, m}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\right]=0$ Sketch of the derivation...

Recall for two particles we started with a "skeleton expansion"

$$
C_{L}(P)=\mathcal{O}^{\dagger} \bullet\left(\mathcal{O}+\mathcal{O}^{\dagger} \bullet i K{ }^{\bullet} \bullet\left(\mathcal{O}+\mathcal{O}^{\dagger} \bullet(i K) \quad i K{ }^{\bullet} \bullet+\cdots\right.\right.
$$

Three-particle result $\operatorname{det}_{k, \ell, m}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\right]=0$ Sketch of the derivation...

Recall for two particles we started with a "skeleton expansion"

Three-particle result $\operatorname{det}_{k, \ell, m}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\right]=0$ Sketch of the derivation...

Recall for two particles we started with a "skeleton expansion"
 for three...

No! We also need diagrams like

Disconnected diagrams in lead to singularities that invalidate the derivation

New skeleton expansion

Kernel definitions:

New skeleton expansion

Kernel definitions:

$$
\begin{aligned}
& O \equiv x+x \longmapsto x+\cdots+\cdots \\
& =\equiv+\cdots+\cdots
\end{aligned}
$$

New skeleton expansion

$+\cdots$

Kernel definitions:

$$
\begin{aligned}
& \bullet=x+\theta^{+}+\cdots \\
& 0=x+\cdots+\cdots+i
\end{aligned}
$$

Three-to-three scattering

1. Work out the three particle skeleton expansion

2. Break diagrams into finite- and infinite-volume parts
3. Sum subsets of terms to identify infinite-volume quankilies 4. Relate these to poles in the finite-volume correlator

$$
\operatorname{det}_{k, \ell, m}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\right]=0
$$

Three-to-three scattering

Current status:

Formalism is complete for the simplest three-scalar system
General, model-independent relation between
finite-volume energies and three-to-three scattering amplitude
Derived using a generic relativistic field theory
MTH and Sharpe, Phys. Rev. D90, 116003 (2014)
MTH and Sharpe, Phys. Rev. D92, 114509 (2015)

Important caveats:

Identical particles with no two-to-three transitions

$$
\pi \pi \pi \rightarrow \pi \pi \pi
$$

Requires that two-particle scattering phase is bounded

$$
\left|\delta_{\ell}(E)\right|<\pi / 2
$$

Currently underway:

Relax all simplifying assumptions:

Allow all particle types, allow two-to-three couplings, remove bound on phase shift

$$
K \pi \rightarrow K \pi \pi \quad N \pi \rightarrow N \pi \pi \quad N N N \rightarrow N N N
$$

Briceño, MTH, Sharpe, in development
Derive formalism for three-particle transition amplitudes

Also want to make connections to other work...
Polejaeva and Rusetsky, Eur. Phys. J. A48, 67 (2012)
Briceño and Davoudi, Phys. Rev. D87, 094507 (2013)
Meißner, Rios and Rusektsky. Phys. Rev. Lett. 114, 091602 (2015)

What lattice needs for resonances...

What lattice needs for resonances...

As much information as possible about the finite-volume spectrum

Can functional methods be used to calculate energies in various volumes? Given energies in one volume can one "bootstrap" to energies in a
 different volume?

What lattice needs for resonances...

As much information as possible about the finite-volume spectrum

Can functional methods be used to calculate energies in various volumes? Given energies in one volume can one "bootstrap" to energies in a
 different volume?

Better chiral extrapolations
Can functional methods be used to supplement ChPT in interpolating to the physical point?

What lattice needs for resonances...

As much information as possible about the finite-volume spectrum
Can functional methods be used to calculate energies in various volumes? Given energies in one volume can one "bootstrap" to energies in a
 different volume?

Better chiral extrapolations
Can functional methods be used to supplement ChPT in interpolating to the physical point?
Help applying the three-particle formalism
We have a systematic technique for extracting $\mathcal{K}_{\mathrm{df}, 3}\left(E^{*}\right)$ from the finite-volume spectrum.
Can functional methods help solve the set of Fadeev-like equations that relate it to the scattering amplitude?

