Phase diagram of dense two-color QCD with $N_f = 2$ flavors of staggered quarks

V.V. Braguta^{1,2,3,4}, E.-M. Ilgenfritz⁵, A.Yu. Kotov^{2,6}, A.V. Molochkov³ and A.A. Nikolaev^{2,3}

¹Institute for High Energy Physics, Protvino, Russia,
 ²Institute of Theoretical and Experimental Physics, Moscow, Russia,
 ³Far Eastern Federal University, Vladivostok, Russia,
 ⁴Moscow Institute of Physics and Technology, Dolgoprudny, Russia,
 ⁵Joint Institute for Nuclear Research, BLTP, Dubna, Russia,
 ⁶National Research Nuclear University (MEPhI), Moscow, Russia

Institut für Theoretische Physik Justus-Liebig-Universität Giessen, May 25, 2016

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 1 / 60

Introduction: Why should we consider two-color QCD ?

- 2 Our lattice set-up
- 3 Preliminary results at $0 < T < T_{\chi}$, from 16³ × 6 lattices
- 4 More detailed results close to T = 0, from $16^3 \times 32$ lattices
- Qualitative summary and comparison with similar work
- Outlook

- Introduction: Why should we consider two-color QCD ?
- 2 Our lattice set-up
- 3 Preliminary results at $0 < T < T_{\chi}$, from $16^3 \times 6$ lattices
- 4 More detailed results close to T = 0, from $16^3 \times 32$ lattices
- D Qualitative summary and comparison with similar work
- Outlook

- Introduction: Why should we consider two-color QCD ?
- 2 Our lattice set-up
- 3 Preliminary results at $0 < T < T_{\chi}$, from $16^3 \times 6$ lattices
 - 4 More detailed results close to T = 0, from $16^3 \times 32$ lattices
 - Qualitative summary and comparison with similar work
 - Outlook

- Introduction: Why should we consider two-color QCD ?
- 2 Our lattice set-up
- 3 Preliminary results at $0 < T < T_{\chi}$, from $16^3 \times 6$ lattices
 - 4 More detailed results close to T = 0, from $16^3 \times 32$ lattices
 - 5 Qualitative summary and comparison with similar work
 - Outlook

- Introduction: Why should we consider two-color QCD ?
- Our lattice set-up
- 3 Preliminary results at $0 < T < T_{\chi}$, from $16^3 \times 6$ lattices
 - 4 More detailed results close to T = 0, from $16^3 \times 32$ lattices
- 5 Qualitative summary and comparison with similar work

6 Outlook

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

12

- Introduction: Why should we consider two-color QCD ?
- 2 Our lattice set-up
- 3 Preliminary results at $0 < T < T_{\chi}$, from $16^3 \times 6$ lattices
 - 4 More detailed results close to T = 0, from $16^3 \times 32$ lattices
- 5 Qualitative summary and comparison with similar work
- 6 Outlook

- 12

イロト イポト イラト イラト

- Introduction: Why should we consider two-color QCD?
- 2 Our lattice set-up
- 3 Preliminary results at $0 < T < T_{\chi}$, from $16^3 \times 6$ lattices
- 4 More detailed results close to T = 0, from $16^3 \times 32$ lattices
- 5 Qualitative summary and comparison with similar work
- Outlook

Circumnavigating the sign problem

Sign problem - an obstacle for SU(3) lattice QCD at finite density

So far, the most effective way to deal with fermions in lattice QCD: fermion determinant = a closed expression encoding the fermionic part of the path integral.

Logarithmic derivative of the fermion determinant \rightarrow contribution to driving force in the Hamilton equations of motion for the gauge field (within HMC)

For $\mu \neq 0$ the determinant takes complex values \rightarrow breakdown of importance sampling is unavoidable

Circumnavigating the sign problem

What can a lattice theorist do ?

- Invest heavy efforts to overcome the sign problem for SU(3) QCD or lattice-based effective models:
 - complex Langevin simulation
 - density of states method (generic for complex action)
 - dualization (difficult for non-Abelian theories)
 - Output the order of integration (strong coupling)
 - complexification (Lefshetz thimbles)

-

イロト イポト イラト イラト

Circumnavigating the sign problem

What can a lattice theorist do ?

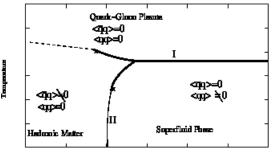
 Alternatively, turn to the few gauge theories with dynamical quarks which are free of the sign problem: G₂, "adjoint" SU(3), SU(2).

In which respect can this detour be finally helpful for SU(3) QCD ?

- Test case to estimate the correctness of other lattice approaches (imaginary chemical potential)
- 2 Test case to estimate the correctness of non-perturbative continuum methods of extending $\mu = 0$ to $\mu \neq 0$...
- 3 Discussion of the role of N_f and of the type of fermion discretization

Finally, QC₂D is interesting of its own !

The Phase Diagram of Four Flavor SU(2) Lattice Gauge Theory at Nonzero Chemical Potential and Temperature J.B. Kogut, D. Toublan, D.K. Sinclair, Nucl. Phys. B 642 (2002) 181-209



Chemical Potential

Figure: Schematic phase diagram of QC₂D in the T- μ plane. The thin(thick) line represents second(first) order transitions. The dashed line denotes a crossover.

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 7 / 60

Are there possibly general features to be seen ?

QCD - like theories at finite baryon density J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot, A. Zhitnitsky, Nucl. Phys. B 582 (2000) 477-513 e-Print: hep-ph/0001171

No deeper similarities ? Quarkyonic phase for very large N_c ?

Phases of cold, dense quarks at large *N_c* L. McLerran, R.D. Pisarski, Nucl. Phys. A 796 (2007) 83-100 e-Print: arXiv:0706.2191

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quarkyonic phase

L. McLerran, R.D. Pisarski, Phases of cold, dense quarks at large N_c

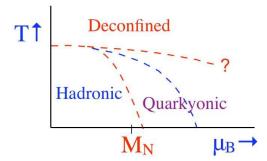


Figure: Schematic phase diagram of large- N_c QCD in the T- μ plane with a separate quarkyonic phase.

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 9 / 60

イロト イポト イラト イラト

Predictions of Chiral Perturbation Theory (Kogut et al.)

J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot, A. Zhitnitsky, Nucl. Phys. B 582 (2000) 477-513

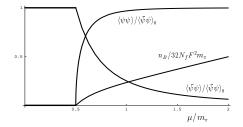


Figure: The magnitudes of the chiral $\langle \bar{\psi}\psi \rangle$ and the diquark $\langle \psi\psi \rangle$ condensates in units of $\langle \bar{\psi}\psi \rangle_0 = 2N_f G$ as a function of μ/m_{π} for zero diquark source. Also the density of the baryon charge in units of $32N_f F^2 m_{\pi}$ is shown.

Predictions of Chiral Perturbation Theory (Kogut et al.)

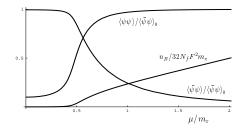


Figure: The magnitudes of the chiral $\langle \bar{\psi}\psi \rangle$ and the diquark $\langle \psi\psi \rangle$ condensates in units of 2N_f $\langle \bar{\psi}\psi \rangle_0$ as a function of μ/m_{π} at small non-zero diquark source j = 0.1m. Also the density of the baryon charge in units of $32N_f F^2 m_{\pi}$ is shown.

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 11 / 60

Previous lattice studies of QC₂D at $\mu \neq 0$

- N_f = 8 staggered fermions, no rooting
 S. Hands, J.B. Kogut, M.P. Lombardo, and S.E. Morrison
 Nucl. Phys. B 558 (1999) 327-346
- $N_f = 4$ staggered fermions, with roooting
 - J.B. Kogut, D. Toublan and D.K. Sinclair Phys. Lett. B 514 (2001) 77-87;
 - J.B. Kogut, D. Toublan and D.K. Sinclair Nucl. Phys. B 642 (2002) 181-209
- $N_f = 2$ Wilson fermions
 - S. Cotter, P. Giudice, S. Hands, and J.I. Skullerud Phys. Rev. D 87 (2013) 034507;
 - T. Makiyama et al. (with A. Nakamura) Phys.Rev. D93 (2016) 014505 (Phase structure of QC₂D at both real and imaginary chemical potential)

- Introduction: Why should we consider two-color QCD ?
- 2 Our lattice set-up
- 3 Preliminary results at $0 < T < T_{\chi}$, from 16³ × 6 lattices
- 4 More detailed results close to T = 0, from $16^3 \times 32$ lattices
- 5 Qualitative summary and comparison with similar work
- 6 Outlook

イロト イポト イラト イラト

The partition function

For the SU(2) gauge fields Wilson action:

$$S_G = \beta \sum_{x} \sum_{\mu < \nu = 1}^{4} \left(1 - \frac{1}{2} \operatorname{Tr} U_{x,\mu\nu} \right)$$

For the fermionic degrees of freedom staggered action:

$$S_{F} = \sum_{x,y} \overline{\psi}_{x} M(\mu, m)_{x,y} \psi_{y} + \frac{\lambda}{2} \sum_{x} \left(\psi_{x}^{T} \tau_{2} \psi_{x} + \overline{\psi}_{x} \tau_{2} \overline{\psi}_{x}^{T} \right)$$

with a diquark source term included ($\propto \lambda$, quadratic in $\bar{\psi}$ and in ψ , violating $U_V(1)$ symmetry) and with a staggered hopping term (bilinear in $\bar{\psi}$, ψ)

$$M_{xy} = ma\delta_{xy} + \frac{1}{2}\sum_{\mu=1}^{4}\eta_{\mu}(x) \Big[U_{x,\mu}\delta_{x+\hat{\mu},y}e^{\mu a\delta_{\mu,4}} - U_{x-\hat{\mu},\mu}^{\dagger}\delta_{x-\hat{\mu},y}e^{-\mu a\delta_{\mu,4}} \Big]$$

The partition function

Integrating out the fermions with such an action , one is left with a bosonic path integral (Pf = Pfaffian):

$$Z = \int DU \ e^{-S_G} \cdot Pf \begin{pmatrix} \lambda \tau_2 & M \\ -M^T & \lambda \tau_2 \end{pmatrix} = \int DU \ e^{-S_G} \cdot \left(\det(M^{\dagger}M + \lambda^2) \right)^{\frac{1}{2}}$$

suitable or $N_f = 4$. Here, however, we simulate for $N_f = 2$

$$Z = \int DU \ e^{-S_G} \cdot \left(\det(M^{\dagger}M + \lambda^2)\right)^{\frac{1}{4}}$$

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

-

Absence of the sign problem for QC₂D

Generally, for lattice Dirac operators holds:

 $\left[\det M(\mu)\right]^* = \det M(-\mu^*)$

For strictly imaginary μ this leads to det $M(\mu)$ = real valued

In case of SU(2), a special relation holds:

$$\det M(\mu) = \det \left[(\tau_2 C \gamma_5)^{-1} M(\mu) (\tau_2 C \gamma_5) \right] = [\det M(\mu^*)]^*$$

with $C = \gamma_2 \gamma_4$.

Therefore, for strictly real μ :

$$\det M(\mu) = \operatorname{real} \to \det \left[M^{\dagger}(\mu) M(\mu) \right] > 0 \tag{1}$$

Observables for deconfinement and chiral symmery restoration

Polyakov loop:

$$\langle L \rangle = \frac{1}{N_s^3} \sum_{x_1, x_2, x_3=0}^{N_s-1} \frac{1}{2} \left\langle \operatorname{Tr} \prod_{x_4=0}^{N_r-1} U_{x,4} \right\rangle$$

Time-like Wilson loop around a rectangular contour $C = R \times T$:

$$W(R, T) = \left\langle \operatorname{Tr}\left[\prod_{C} U_{X,\mu}\right] \right\rangle$$

Chiral condensate:

$$a^{3}\left\langle ar{q}q
ight
angle =a^{3}\left\langle ar{q}_{ilpha}q_{ilpha}
ight
angle =-rac{1}{N_{s}^{3}N_{ au}}rac{\partial(\log Z)}{\partial(ma)}$$

has been obtained by stochastic estimation. Susceptibilities are still beyond our computational resources !

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

Observables describing baryon onset and diquark condensation

Baryon density:

$$a^3 n_B = rac{1}{2} rac{1}{N_s^3 N_ au} rac{\partial (\log Z)}{\partial (\mu a)}$$

Diquark condensate: (\hat{C} = charge conjugation)

$$\begin{array}{lll} a^{3} \langle qq \rangle &=& a^{3} \left\langle q_{i\alpha}^{T} \hat{C} \gamma_{5}(\tau_{2})_{ij}(\sigma_{2})_{\alpha\beta} q_{j\beta} \right\rangle \\ &=& -\frac{1}{N_{s}^{3} N_{\tau}} \frac{\partial (\log Z)}{\partial \lambda} \\ &=& \frac{2\lambda}{N_{s}^{3} N_{\tau}} \left\langle \operatorname{Tr} \left[M^{\dagger} M + \lambda^{2} \right]^{-1} \right\rangle \end{array}$$

Susceptibilities are still beyond our computational resources !

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

- Introduction: Why should we consider two-color QCD ?
- 2 Our lattice set-up
- 3 Preliminary results at $0 < T < T_{\chi}$, from $16^3 \times 6$ lattices
- 4 More detailed results close to T = 0, from $16^3 \times 32$ lattices
- 5 Qualitative summary and comparison with similar work
- Outlook

イロト イポト イラト イラト

Preliminary results at 0 < T < T_{χ} , from 16³ imes 6 lattices

T- dependence of the Polyakov loop for various μ

Curvature of the crossover line at high temperature separating confinement from deconfinement, beginning at $\mu = 0$

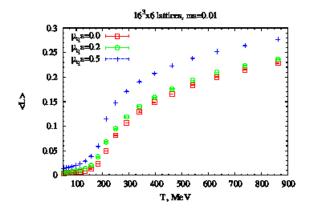


Figure: Polyakov loop as a function of T for three values of the baryon chemical potential μ .

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 20 / 60

周 ト イ ヨ ト イ ヨ ト

T- dependence of the chiral condensate for various μ

Does there exist a common crossover line at high temperature for deconfinement and chiral symmetry restoration ?

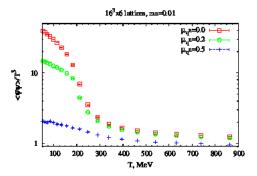


Figure: Chiral condensate as a function of T for three values of the baryon chemical potential μ . The ordinate axis is logarithmic.

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 21 / 60

・ 同 ト ・ ヨ ト ・ ヨ

Preliminary results at 0 < T < T_{χ} , from 16³ \times 6 lattices

A first μ - scan of the baryon density at medium T

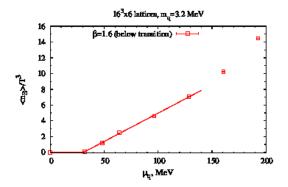


Figure: Baryon number density as a function of μ at a temperature below $T_{\chi}(\mu = 0)$ (with $N_{\tau} = 6$ and $\beta = 1.6$), described by a linear fit beyond $\mu^{c} \approx 30$ MeV.

Notice that the finite-*T* mass $m_{\pi} < 100$ MeV at $\beta = 1.6$!

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 22 / 60

Preliminary summary of results at high and medium T

presented at Lattice 2015 by A. Nikolaev (arxiv:1511.0484)

- Increasing the baryonic chemical potential ightarrow decreasing $\left< ar{\psi} \psi \right>$
- *T_c* decreases with increasing baryonic chemical potential
- In the confinement phase, n_B rises linearly with μ if $\mu > m_\pi/2$

- Introduction: Why should we consider two-color QCD ?
- 2 Our lattice set-up
- 3 Preliminary results at $0 < T < T_{\chi}$, from $16^3 \times 6$ lattices
- 4 More detailed results close to T = 0, from $16^3 \times 32$ lattices
- 5 Qualitative summary and comparison with similar work
- 6 Outlook

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

イロト イポト イラト イラト

Details of the new simulation: a low-temperature scan

just appeared in arXiv: 1605.04090

lattice size $16^3 \times 32$ (representing "near zero temperature")

unimproved Wilson action for the gauge field

inverse gauge coupling fixed at $\beta = 2.15$

 $N_f = 2$ flavors of dynamical staggered quarks

lattice spacing a = 0.112 fm

physical lattice size $m_{\pi}L_sa \approx 3.24$

actual temperature T = 55 MeV

Other parameters

quark mass: in physical units m = 362(4) MeV (in lattice units ma = 0.005)

 μ range under investigation, sequence of diquark source values:

total μ range: $\mu \in [0; 1759]$ MeV, $\mu a \in [0.0; 1.0]$

special μ range: $\mu \in [0; 1055]$ MeV, $\mu a \in [0.0; 0.6]$, where dependence on λ has been studied at $\lambda = 0.001, 0.00075, 0.0005$

special μ focus on the vicinity of the first phase transition (hadron phase \rightarrow BEC) $\mu = 176, 211, 246 \text{ MeV} \rightarrow$ the detailed dependence on λ was studied at $\lambda = 0.001, 0.000875, 0.00075, 0.000625, 0.0005$

for larger $\mu > 1055 \text{ MeV}$ we have simulated at $\lambda = 0.0005$ only

Talk E.-M. ligenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

Algorithm and resources

RHMC (rational hybrid Monte Carlo) M.A. Clark, Lattice 2006, arXiv:hep-lat/0610048 our code rewritten in CUDA C

number of trajectories

1000 . . . 1500 trajectories per (μ , λ)

Computing resources :

- ITEP supercomputer ("Graphyn" and "Stakan")
- NRC "Kurchatov Institute" supercomputer (new resource)
- IHEP (Protvino) GPU cluster

all working with Nvidia GPU

Supported by grants from

RFBR, Dynasty foundation, FAIR-Russia Research Center Moscow

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

Goals of this investigation

- Study the eventual condensed phases (BEC, BCS ..?) of SU(2) QCD, with increasing μ near to T = 0
- Are there really more than one condensed phases (both BEC and BCS) for N_f = 2 staggered quarks ?
- Is there a quantitative connection with SU(3) QCD ? Baryon density $n_B \approx 1 \text{ fm}^{-3}$ marks the transition to "quarkyonic matter".
- Find support for the quarkyonic matter picture of cold and dense QCD

Scale setting and pion mass I

special measurements for $\mu = 0$ and $\lambda = 0$ for calibration performed on the lattice $16^3 \times 32$; fixing ma = 0.01 for various $\beta \in [1.9; 2.2]$ for $\beta = 2.15$ also ma = 0.005, in order to check (in)dependence on mass

• beta-function : heavy quark potential measured with smearing (1 HYP smearing for temporal links plus 20 APE smearing steps for spatial links).

Assuming Sommer scale $r_0 = 0.468(4)$ fm, one gets $\beta(a)$ which is well described by the two-loop beta function

$$a(\beta) = \frac{1}{\Lambda_L} \left(\frac{4\beta_0}{\beta}\right)^{-\frac{\beta_1}{2\beta_0^2}} \exp\left(-\frac{\beta}{8\beta_0}\right)$$

with $\beta_0 = \frac{3}{8\pi^2}$ and $\beta_1 = \frac{29}{256\pi^4}$ corresponding to $N_c = 2$ and $N_f = 2$

(日)

More detailed results close to T = 0, from $16^3 \times 32$ lattices

Scale setting and pion mass II

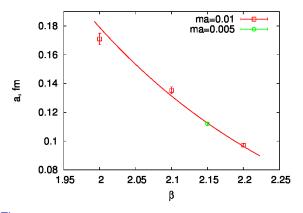


Figure: The dependence of the lattice spacing on the inverse coupling $\beta = 4/g^2$.

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 30 / 60

More detailed results close to T = 0, from $16^3 \times 32$ lattices

Scale setting and pion mass III

β	та	a, fm	M_{π}, MeV
1.9	0.01	0.20(1)	216(6)
2.0	0.01	0.171(4)	311(6)
2.1	0.01	0.135(2)	431(8)
2.2	0.01	0.097(1)	558(11)
2.15	0.005	0.112(1)	362(4)

Table: The lattice spacing a and the pion mass m_{π} for various values of the inverse coupling β and of the bare quark mass m_a .

Scale setting and pion mass IV

• pion mass m_{π} : from measured pion propagator fitted to

$$C_{\pi}(t,\vec{q}=0)=C\cosh\left[m_{\pi}(t-T/2)\right]$$

Talk E.-M. ligenfritz (BLTP, JINR, Dubna)

The diquark condensate as function of μ

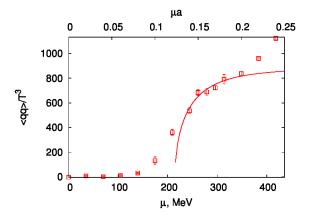


Figure: The diquark condensate $\langle qq \rangle / T^3$ as a function of μ . The data points are compared with the prediction of Chiral Perturbation Theory.

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 33 / 60

・ 同 ト ・ ヨ ト ・ ヨ

The diquark condensate as function of μ : discussion

According to ChPT

$$\langle \boldsymbol{q} \boldsymbol{q}
angle = \langle ar{\boldsymbol{q}} \boldsymbol{q}
angle_{\boldsymbol{0}} imes \sqrt{1 - \left(rac{\mu^{m{c}}}{\mu}
ight)^{m{4}}}$$

Applying this formula far from the transition for fitting (see figure) gives $\mu^c = 215(10)$ MeV.

Fit by another function: since $\langle \bar{q}q \rangle \propto 1/\mu^2$ is not satisfied, one should replace the fitting formula by

$$\left\langle \boldsymbol{q} \boldsymbol{q}
ight
angle = \left\langle ar{oldsymbol{q}} \boldsymbol{q}
ight
angle_{oldsymbol{0}} imes \sqrt{1 - \left(rac{\mu^{oldsymbol{c}}}{\mu}
ight)^{2lpha}}$$

with $\alpha = 0.78$.

This fitting function gives $\mu^c = 193(10)$ MeV.

This gives $m_{\pi} = 387(20)$ MeV, in better agreement to $m_{\pi} = 362(4)$ MeV (see scale setting) !

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

イロト イポト イモト イモト・モ

The diquark condensate as function of λ

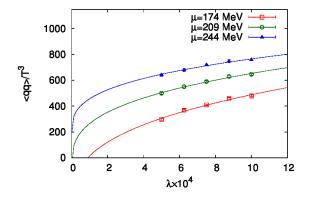


Figure: The diquark condensate $\langle qq \rangle / T^3$ as a function of λ in the vicinity of the first phase transition.

Talk E.-M. ligenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 35 / 60

The diquark condensate as function of λ : discussion

According to ChPT, in the limit $\lambda \to 0$ the diquark condensate behaves like $\langle qq \rangle \propto \lambda^{1/3}$.

A fit with $\langle qq \rangle = A + B\lambda^{1/3}$ gives the first non-zero diquark condensate (identified as *A*) appearing at $\mu = 211$ MeV (closest to μ^{c}).

For $\mu > 350 \text{ MeV}$ stronger deviations from ChPT: a new regime ?

イロト イポト イラト イラト

The diquark condensate: scaling with μ^2

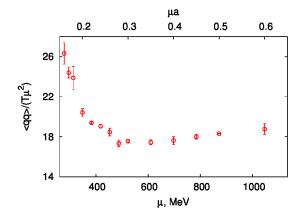


Figure: The ratio $\langle qq \rangle / (T\mu^2)$ as a function of μ around the second phase transition (BEC \rightarrow BCS).

Dense QC₂D with two flavors

ITP Universität Giessen 37 / 60

→ ∃ →

The diquark condensate scaling with μ^2 : discussion

Above $\mu \simeq 520$ MeV one sees a plateau, suggesting proportionality to the surface of the Fermi sphere

This is considered as a characteristic feature of the BCS mechanism for the creation of the condensate.

イロト イポト イラト イラト

Global view of the diquark condensate

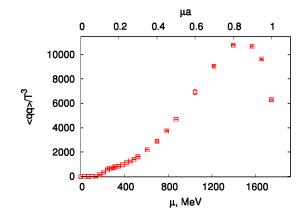


Figure: The diquark condensate $\langle qq \rangle / T^3$ as a function of μ across the two phase transitions.

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 39 / 60

A (10) + A (10) + A (10)

Global view of the diquark condensate: drop beyond $\mu > 1400 \text{ MeV}$

saturation effect, interpreted as lattice artefact

Talk E.-M. ligenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 40 / 60

3

The chiral condensate around the first transition

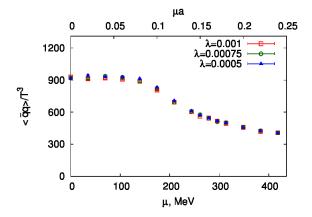


Figure: The chiral condensate $\langle \bar{q}q \rangle / T^3$ as a function of μ for the values $\lambda = 0.001, 0.00075$ and 0.0005 of the diquark source. The chiral condensate turns out independent of λ .

Dense QC₂D with two flavors

ITP Universität Giessen 41 / 60

< 同 > < 三 > < 三

The chiral condensate around the first transition: few comments

The chiral condensate is practically independent of λ .

It starts dropping immediatey above $\mu \simeq 176$ MeV, the region of the transition hadron phase \rightarrow BEC phase begins.

According to the "circle law", this marks the beginning of the rise of $\langle qq \rangle$, which is complementary to falling $\langle \bar{q}q \rangle$.

Next: test of the "circle law". Clear deviation above the transition. For small diquark source λ , a dip is seen marking the transition.

The "circle law" around the first transition

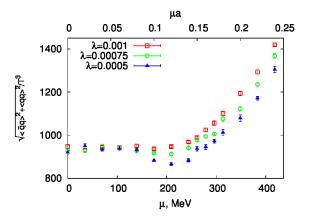


Figure: The combination $\sqrt{\langle qq \rangle^2 + \langle \bar{q}q \rangle^2 / T^3}$ of diquark and chiral condensates is almost constant as a function of μ below μ^c . In the limit $\lambda \to 0$, a dip becomes visible at the first phase transition (hadron phase \rightarrow BEC).

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 43 / 60

< ∃ >

Global view of the chiral condensate

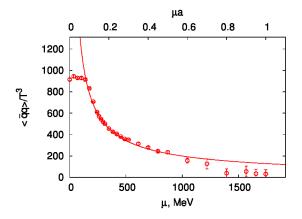


Figure: The chiral condensate $\langle \bar{q}q \rangle / T^3$ as a function of μ . The ChPT prediction does not hold throughout the BEC and BCS phase.

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 44 / 60

< 同 > < 三 > < 三

Global view of the chiral condensate: a remarkable deviation from ChPT

A single power describes the drop of the chiral condensate, with an exponent clearly deviating from ChPT:

 $\langle ar{m{q}}m{q}
angle \propto \left(rac{\mu^{m{c}}}{\mu}
ight)^{lpha}$

 $\alpha = 0.78$ instead of $\alpha = 2$

< 回 > < 三 > < 三 >

The chiral limit of the chiral condensate for various μ

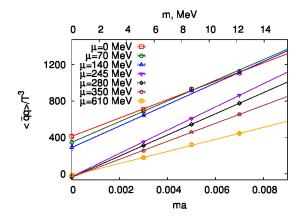


Figure: The linear chiral limit of the chiral condensate $\langle \bar{q}q \rangle / T^3$, taken for different values of the chemical potential.

The chiral limit of the chiral condensate for various μ

The chiral limit of $\langle \bar{q}q \rangle$ vanishes for all $\mu > \mu^c$.

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 47 / 60

< ロ > < 同 > < 三 > < 三 >

The baryon density

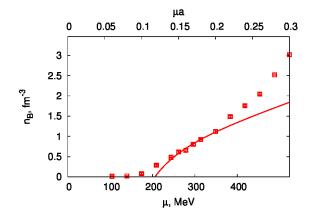


Figure: The baryon density n_B in physical units as a function of μ , compared with the ChPT prediction.

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 48 / 60

・ 同 ト ・ ヨ ト ・ ヨ

The baryon density: comments

In ChPT it is predicted that $n_B(\lambda) = A + B\lambda^2$.

For $\mu < 176$ MeV, the extrapolated baryon density (A) vanishes.

For $\mu > \mu^{c}$ the μ -dependence is predicted as $n_{B} = \mu - \frac{(\mu^{c})^{4}}{\mu^{3}}$

In the interval $\mu \in$ [263; 350] MeV, this formula results in a good fit (see figure).

The fit predicts $\mu^{c} = 207(7)$ MeV, close to 193(10) MeV from the diquark condensate (with α adapted from μ -dependence of the chiral condensate).

Above this interval, the behavior deviates from ChPT.

The baryon density: scaling with μ^3 (free density)

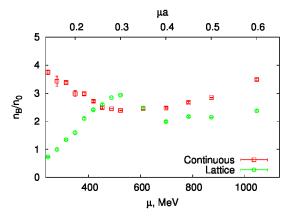


Figure: The ratio n_B/n_0 as a function of the chemical potential μ . For the red symbols, the reference density n_0 denotes the baryon density for free continuum fermions, $n_0 = (4\mu^3)/(3\pi^2)$, whereas for the green symbols the reference density n_0 denotes the baryon density for free lattice fermions.

< 同 > < 三 > < 三

The gluonic observables

No sign of deconfinement at $T \simeq 0$ throughout all μ ! Polyakov loop throughout compatible with zero.

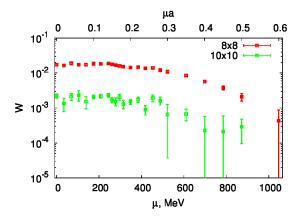


Figure: The time-like Wilson loops for the contours 8 \times 8 and 10 \times 10 as functions of the chemical potential μ .

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

Dense QC₂D with two flavors

ITP Universität Giessen 51 / 60

Outline

- Introduction: Why should we consider two-color QCD ?
- 2 Our lattice set-up
- 3 Preliminary results at $0 < T < T_{\chi}$, from $16^3 \times 6$ lattices
- 4 More detailed results close to T = 0, from $16^3 \times 32$ lattices
- 5 Qualitative summary and comparison with similar work

6 Outlook

Talk E.-M. Ilgenfritz (BLTP, JINR, Dubna)

イロト イポト イラト イラト

Qualitative summary I

• low μ : 0 < μ < $\mu^c = \frac{m_{\pi}}{2} \simeq$ 200 MeV : hadron phase

- confinement
- chiral symmetry broken, chiral condensate $\langle \bar{q}q
 angle
 eq 0$
- diquark condensate $\langle qq \rangle = 0$
- baryon density *n_B* vanishing
- · this phase ends with a second order phase transition
- · relevant degrees of freedom : Goldstone bosons

Qualitative summary II

- baryon onset in μ : μ^c < μ < μ^d ≃ 350 MeV : BEC phase, Bose condensation of scalar diquarks
 - rough agreement with ChPT, exception is the chiral condensate $\langle \bar{q}q \rangle$
 - confinement persists
 - chiral symmetry gradually restored
 - complementarily to that, the diquark condensate $\langle qq \rangle$ grows
 - in the chiral limit, chiral condensate $\langle \bar{q}q
 angle
 ightarrow 0$
 - baryon density *n_B* starts growing linearly
 - relevant degrees of freedom : Goldstone bosons
 - dilute baryon gas, $n_B < 1 \text{ fm}^{-3}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Qualitative summary III

- increasing deviations from ChPT
- baryon density reaches a dense regime, $n_B > 1 \text{ fm}^{-3}$
- confinement persists
- chiral symmetry almost restored
- in the chiral limit, chiral condensate $\langle ar{q}q
 angle
 ightarrow 0$
- the diquark condensate $\langle qq \rangle$ grows further

We have $\mu^d = 1.76\mu^c$. A previous NJL analysis gives $\mu^d = [1.65 - 2]\mu^c$.

communicated by Lianyi He, Tsinghua University Beijing Phys. Rev. D 82, 096003 (2010), also Gao-feng Sun, Lianyi He, Pengfei Zhuang, Phys. Rev. D 75, 096004 (2007)

Qualitative summary IV

- large μ : 500 MeV < μ < 1000 MeV : BCS phase
 - different scaling of diquark condensate, $\langle qq \rangle \propto \mu^2$
 - different scaling of baryon density: $n_B \propto \mu^3$
 - relevant degrees of freedom : quarks inside the Fermi sphere
 - condensate of Cooper pairs \propto surface of the Fermi sphere
 - chiral symmetry restored, $\langle \bar{q}q
 angle = 0$
 - probable interpretation : BCS phase

 μ > 1000 MeV: lattice artefacts, saturation effects ?

Comparison with similar work I

- J. Kogut et al., staggered fermions with rooting for *N_f* = 4 : partial similarity
 - succession of hadron phase and BEC phase, both well described by ChPT
 - no BCS phase
- S. Hands et al., Wilson fermions for $N_f = 2$: no similarity
 - succession of hadron phase and BCS phase (with deconfinement at higher μ)
 - BEC phase missed (due to the absence of chiral symmetry for Wilson fermions)

・ロト ・ 同ト ・ ヨト ・ ヨト

Comparison with similar work II

- Large *N_c* scenario (quarkyonic phase) : high similarity
 - succession of hadronic, dilute nuclear gas phase (similar to BEC), quarkyonic phase (still confining, chiral symmetry restored)
 - suggestion: quarkyonic phase \simeq BCS phase of QC₂D !

イロト イポト イラト イラト

Outline

- 1 Introduction: Why should we consider two-color QCD?
- 2 Our lattice set-up
- 3 Preliminary results at $0 < T < T_{\chi}$, from $16^3 \times 6$ lattices
- 4 More detailed results close to T = 0, from $16^3 \times 32$ lattices
- 5 Qualitative summary and comparison with similar work

Outlook

イロト イポト イラト イラト

Next projects

- phase transitions supported by susceptibility measurements (higher statistics urgently needed)
- measure gluon propagator in media with chemical potential, relation to propagators at $\mu = 0$
- U_A(1) violation/restoration in dense matter, such measurements are presently performed (Wilson flow)
- learn more about the second transition (likely a crossover) $\text{BEC} \rightarrow \text{BCS}$