Chiral symmetry breaking in continuum QCD

Mario Mitter

Ruprecht-Karls-Universität Heidelberg

Gießen, February 10, 2016

Established by the European Commission

GEFÖRDERT VOM

FШF

fQCD collaboration - QCD (phase diagram) with FRG:

J. Braun, A. K. Cyrol, <u>L. Fister</u>, W. J. Fu, T. K. Herbst, <u>MM</u> N. Müller, <u>J. M. Pawlowski</u>, S. Rechenberger, F. Rennecke, <u>N. Strodthoff</u>

Table of Contents

Motivation

- 2 "Quenched" Landau gauge QCD with the FRG
- 3 YM correlation functions
- A glimpse at unquenching
- **(5)** Phenomenological Application: η' -meson mass at chiral crossover

6 Conclusion

• works well at $\mu = 0$: agreement with lattice

[Herbst, MM, Pawlowski, Schaefer, Stiele, '13]

[Luecker, Fischer, Welzbacher, 2014]

[Luecker, Fischer, Fister, Pawlowski, '13]

- works well at $\mu = 0$: agreement with lattice
- different results at large μ (possibly already at small μ)

[Herbst, Pawlowski, Schaefer, 2013]

[Braun, Haas, Pawlowski, unpublished]

[Luecker, Fischer, Fister, Pawlowski, '13]

- works well at $\mu = 0$: agreement with lattice
- different results at large μ
 (possibly already at small μ)
- calculations need model input:
 - Polyakov-quark-meson model with FRG:
 - ★ inital values at $\Lambda \approx \mathcal{O}(\Lambda_{QCD})$
 - ★ input for Polyakov loop potential
 - quark propagator DSE:
 - ★ IR quark-gluon vertex

[Braun, Haas, Pawlowski, unpublished]

[Luecker, Fischer, Fister, Pawlowski, '13]

- works well at $\mu = 0$: agreement with lattice
- different results at large μ
 (possibly already at small μ)
- calculations need model input:
 - Polyakov-quark-meson model with FRG:
 - ★ inital values at $\Lambda \approx \mathcal{O}(\Lambda_{QCD})$
 - ★ input for Polyakov loop potential
 - quark propagator DSE:
 - ★ IR quark-gluon vertex

possible explanation for disagreement:

- $\mu \neq$ 0: relative importance of diagrams changes
 - \Rightarrow summed contributions vs. individual contributions

[Braun, Haas, Pawlowski, unpublished]

[Luecker, Fischer, Fister, Pawlowski, '13]

Back to QCD in the vacuum (Wetterich equation)

- use only perturbative QCD input
 - $\alpha_{S}(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$

Back to QCD in the vacuum (Wetterich equation)

- use only perturbative QCD input
 - $\alpha_{S}(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
- Wetterich equation with initial condition $S[\Phi] = \Gamma_{\Lambda}[\Phi]$

 \Rightarrow effective action $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$

Back to QCD in the vacuum (Wetterich equation)

- use only perturbative QCD input
 - $\alpha_{\mathcal{S}}(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
- Wetterich equation with initial condition $S[\Phi] = \Gamma_{\Lambda}[\Phi]$

- \Rightarrow effective action $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$
- ∂_k : integration of momentum shells controlled by regulator
- \bullet full field-dependent equation with $(\Gamma^{(2)}[\Phi])^{-1}$ on rhs
- gauge-fixed approach (Landau gauge): ghosts appear

Vertex Expansion

• approximation necessary - vertex expansion

$$\Gamma[\Phi] = \sum_n \int_{p_1,\ldots,p_{n-1}} \Gamma^{(n)}_{\Phi_1\cdots\Phi_n}(p_1,\ldots,p_{n-1}) \Phi^1(p_1)\cdots\Phi^n(-p_1-\cdots-p_{n-1})$$

Vertex Expansion

• approximation necessary - vertex expansion

$$\Gamma[\Phi] = \\ \sum_{n} \int_{p_1, \dots, p_{n-1}} \Gamma^{(n)}_{\Phi_1 \dots \Phi_n}(p_1, \dots, p_{n-1}) \Phi^1(p_1) \dots \Phi^n(-p_1 - \dots - p_{n-1})$$

functional derivatives with respect to Φ_i = A, c̄, c, q̄, q:
 ⇒ equations for 1PI *n*-point functions, e.g. gluon propagator:

$$\partial_t \quad \overline{} \quad \overline{}$$

Vertex Expansion

• approximation necessary - vertex expansion

$$\Gamma[\Phi] = \sum_n \int_{p_1,\ldots,p_{n-1}} \Gamma^{(n)}_{\Phi_1\cdots\Phi_n}(p_1,\ldots,p_{n-1}) \Phi^1(p_1)\cdots\Phi^n(-p_1-\cdots-p_{n-1})$$

functional derivatives with respect to Φ_i = A, c̄, c, q̄, q:
 ⇒ equations for 1PI *n*-point functions, e.g. gluon propagator:

$$\partial_t \quad \overline{} \quad \overline{}$$

• want "apparent convergence" of $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$

"Quenched" Landau gauge QCD

- \bullet two crucial phenomena: $S\chi SB$ and confinement
- similar scales hard to disentangle see e.g. [Williams, Fischer, Heupel, 2015]
- quenched QCD: allows separate investigation:

"Quenched" Landau gauge QCD

- two crucial phenomena: $S\chi SB$ and confinement
- similar scales hard to disentangle see e.g. [Williams, Fischer, Heupel, 2015]
- quenched QCD: allows separate investigation:
- matter part [MM, Strodthoff, Pawlowski, 2014] (with FRG-YM propagators from [Fischer, Maas, Pawlowski, 2009], [Fister, Pawlowski, unpublished])
- recent results for YM propagators [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published]

Chiral symmetry breaking

• χ SB \Leftrightarrow resonance in 4-Fermi interaction λ (pion pole):

Chiral symmetry breaking

- χ SB \Leftrightarrow resonance in 4-Fermi interaction λ (pion pole):
- resonance \Rightarrow singularity without momentum dependency

$$\partial_t \lambda = a \, \lambda^2 + b \, \lambda \, \alpha + c \, \alpha^2, \quad b > 0, \ a, c \le 0$$

[Braun, 2011]

Effective running couplings

- agreement in perturbative regime required by gauge symmetry
- non-degenerate in nonperturbative regime: reflects gluon mass gap
- $\alpha_{\bar{q}Aq} > \alpha_{cr}$: necessary for chiral symmetry breaking
- area above α_{cr} very sensitive to errors

4-Fermi vertex via dynamical hadronization [Gies, Wetterich, 2002]

- change of variables: particular 4-Fermi channels \rightarrow meson exchange
- efficient inclusion of momentum dependence \Rightarrow no singularities
- identifies relevant effective low-energy dofs from QCD

[MM, Strodthoff, Pawlowski, 2014]

[Braun, Fister, Haas, Pawlowski, Rennecke, 2014]

[MM, Strodthoff, Pawlowski, 2014]

Vertex Expansion in the matter system

Derivation of equations

[Cyrol, MM, Pawlowski, Strodthoff, 2013-2016]

Equations in the matter system

[MM, Strodthoff, Pawlowski, 2014]

Equations in the matter

 ∂_t

[MM, Strodthoff, Pawlowski, 2014]

Equations in the matter

Gluon FRG input

•
$$\Gamma^{(2)}_{AA}(p) \propto Z_A(p) p^2 \left(\delta^{\mu\nu} - p^{\mu} p^{\nu}/p^2 \right)$$

• FRG result \Rightarrow self-consistent calculation within FRG approach

sets the scale in comparison to lattice QCD

M. Mitter (U Heidelberg)

 χ SB in continuum QCD

Quark propagator

• FRG vs. lattice: bare mass, quenched, scale

Quark propagator

• FRG vs. lattice: bare mass, quenched, scale

• agreement not sufficient: need apparent convergence at $\mu \neq 0$

other 4-Fermi channels (mesons)

- bosonized only σ-π-channel ⇒ sufficient diquark momentum configuration more important
- other channels: quantitatively not important in loops

 χ SB in continuum QCD

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis \Rightarrow sufficient chiral symmetry breaking strength?

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis \Rightarrow sufficient chiral symmetry breaking strength?

- vertex strength: reflects gluon gap
- 8 tensors (transversally projected):
 - classical tensor
 - chirally symmetric
 - break chiral symmetry

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis ⇒ sufficient chiral symmetry breaking strength?

• important non-classical tensors: c.f., [Hopfer et al., 2012], [Williams, 2014], [Aguilar et al., 2014]

- $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_{\sigma}\}q$ $(\frac{1}{2}\mathcal{T}^{(5)}_{\bar{q}Aq} + \mathcal{T}^{(7)}_{\bar{q}Aq})$: increases Z_q /decreases M_q considerably
- anom. chromomagn. momentum $(\mathcal{T}_{\bar{a}Aq}^{(4)})$ increases M_q moderately

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis \Rightarrow sufficient chiral symmetry breaking strength?

• important non-classical tensors: c.f., [Hopfer et al., 2012], [Williams, 2014], [Aguilar et al., 2014]

- $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_\sigma\}q\ (\frac{1}{2}\mathcal{T}^{(5)}_{\bar{q}Aq} + \mathcal{T}^{(7)}_{\bar{q}Aq})$: increases Z_q /decreases M_q considerably
- anom. chromomagn. momentum $(\mathcal{T}_{\overline{a}Aq}^{(4)})$ increases M_q moderately
- \Rightarrow considerably less chiral symmetry breaking with full tensor basis

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis \Rightarrow sufficient chiral symmetry breaking strength?

• important non-classical tensors: c.f., [Hopfer et al., 2012], [Williams, 2014], [Aguilar et al., 2014]

- $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_\sigma\}q\ (\frac{1}{2}\mathcal{T}^{(5)}_{\bar{q}Aq} + \mathcal{T}^{(7)}_{\bar{q}Aq})$: increases Z_q /decreases M_q considerably
- ▶ anom. chromomagn. momentum $(\mathcal{T}_{\bar{q}Aq}^{(4)})$ increases M_q moderately
- \Rightarrow considerably less chiral symmetry breaking with full tensor basis
- also important ingredient for bound-state equations

M. Mitter (U Heidelberg)

 χ SB in continuum QCD

• missing strength?

• missing strength?

• expansion in tensor structures ightarrow expansion in operators $ar{\psi} { ot\!\!/}^n \psi$

[MM, Pawlowski, Strodthoff, 2014]

- missing strength?
- expansion in tensor structures ightarrow expansion in operators $ar{\psi} D\!\!\!/^n \psi$

[MM, Pawlowski, Strodthoff, 2014]

in particular $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_\sigma\}q$:

- contributes to $\bar{q}Aq$, $\bar{q}A^2q$ and $\bar{q}A^3q$
- contains important non-classical tensors $(\bar{q}Aq)$
- considerable contribution to quark-gluon vertex $(\bar{q}A^2q)$
- contribution to $\bar{q}A^3q$ seems unimportant

- missing strength?
- expansion in tensor structures ightarrow expansion in operators $ar{\psi} D\!\!\!/^n \psi$

[MM, Pawlowski, Strodthoff, 2014]

in particular $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_\sigma\}q$:

- contributes to $\bar{q}Aq$, $\bar{q}A^2q$ and $\bar{q}A^3q$
- contains important non-classical tensors $(\bar{q}Aq)$
- considerable contribution to quark-gluon vertex $(\bar{q}A^2q)$
- contribution to $\bar{q}A^3q$ seems unimportant

- missing strength?
- expansion in tensor structures ightarrow expansion in operators $ar{\psi} {\not\!\!\!D}^n \psi$

[MM, Pawlowski, Strodthoff, 2014]

in particular $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_\sigma\}q$:

- contributes to $\bar{q}Aq$, $\bar{q}A^2q$ and $\bar{q}A^3q$
- contains important non-classical tensors (q
 Aq)
- considerable contribution to quark-gluon vertex $(\bar{q}A^2q)$
- contribution to $\bar{q}A^3q$ seems unimportant
- explicit calculations of AAqq-vertex:

[MM, Pawlowski, Strodthoff, in prep.]

- full basis: 63 chirally symmetric tensor elements
- 15 chirally symmetric tensor elements $(\bar{\psi} \not{D}^3 \psi)$:
 - ★ all seem important
 - * order of effect similar to $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho},D_\sigma\}q$
 - ★ why? underlying principle?

Stability of truncation (apparent convergence)

Vertex Expansion in YM theory [Cyrol, Fister, MM, Strodthoff, Pawlowski, to be published]

Equations in YM theory

YM propagators

[Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published]

•
$$\Gamma^{(2)}_{AA}(p) \propto Z_A(p) p^2 \left(\delta^{\mu\nu} - p^{\mu} p^{\nu} / p^2 \right)$$

•
$$\Gamma^{(2)}_{\bar{c}c}(p) \propto Z_c(p) p^2$$

• band: family of decoupling solutions bounded by scaling solution

YM vertices I

[Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published]

comparison to Sternbeck '06

 comparison to Cucchieri, Maas, Mendes, '08 Blum, Huber, MM, von Smekal '14

• band: family of decoupling solutions bounded by scaling solution

YM vertices II

Apparent Convergence

Outlook: unquenched gluon propagator

- self-consistent solution of classical propagators and vertices (1D)
- massless quarks

[Cyrol, MM, Pawlowski, Strodthoff, in preparation]

η' -meson (screening) mass at chiral crossover

- small η' -meson mass above chiral crossover? [Kapusta, Kharzeev, McLerran, 1998]
- drop in η' mass at chiral crossover?

[Csörgo et al., 2010]

η' -meson (screening) mass at chiral crossover

- small η' -meson mass above chiral crossover? [Kapusta, Kharzeev, McLerran, 1998]
- drop in η' mass at chiral crossover?

chiral crossover: Polyakov-Quark-Meson model (extended mean-field)

- $N_f = 2$ quark and meson degrees of freedom
- describes chiral crossover
- (de-)confinement via Polyakov loop potential
- $U(1)_A$ -anomaly: mesonic 't Hooft determinant

[Csörgo et al., 2010]

η' -meson (screening) mass at chiral crossover

- small η' -meson mass above chiral crossover? [Kapusta, Kharzeev, McLerran, 1998]
- drop in η' mass at chiral crossover?

chiral crossover: Polyakov-Quark-Meson model (extended mean-field)

- $N_f = 2$ quark and meson degrees of freedom
- describes chiral crossover
- (de-)confinement via Polyakov loop potential
- $U(1)_A$ -anomaly: mesonic 't Hooft determinant

't Hooft determinant

[Csörgo et al., 2010]

- RG-scale dependence from fQCD
- temperature dependence k(T):

$$\lambda_{(S-P)_+, fQCD}(k) \equiv \lambda_{(S-P)_+, PQM}(T)$$

η' -meson (screening) mass at chiral crossover: result

[Heller, MM, 2015]

screening masses!

η' -meson (screening) mass at chiral crossover: result

Summary and Outlook

(quenched) QCD with functional RG

- QCD phase diagram: need for quantitative precision
- vacuum:
 - sole input $lpha_{\mathcal{S}}(\Lambda=\mathcal{O}(10) \; {
 m GeV})$ and $m_q(\Lambda=\mathcal{O}(10) \; {
 m GeV})$
 - good agreement with lattice simulations (sufficient?)
 - (non-perturbative) results:
 - quark-propagator
 - quark-gluon vertex
 - 4-Fermi interaction channels
 - ★ YM-system

phenomenology: η' -meson and pion mass splitting

Summary and Outlook

(quenched) QCD with functional RG

- QCD phase diagram: need for quantitative precision
- vacuum:
 - sole input $\alpha_{\mathcal{S}}(\Lambda = \mathcal{O}(10) \text{ GeV})$ and $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - good agreement with lattice simulations (sufficient?)
 - (non-perturbative) results:
 - quark-propagator
 - quark-gluon vertex
 - 4-Fermi interaction channels
 - ★ YM-system

 \blacktriangleright phenomenology: $\eta'\text{-meson}$ and pion mass splitting

- unquenching (first results)
- finite temperature/chemical potential
- more checks on convergence of vertex expansion
- bound-state properties (form factor, PDA...)