

for QCD-like theories at finite baryon density

TECHNISCHE UNIVERSITÄT DARMSTADT

Philipp Scior

Theoriezentrum, Institut für Kernphysik, TU Darmstadt

JLU Giessen Lunch Club

Motivation

Exploration of the QCD phase diagram at finite density

Motivation

Sign Problem prohibits Exploration of QCD phase diagram at finite μ

 $\det(D(\mu))^* = \det(D(-\mu))$

Many proposed solutions to the sign Problem:

- Complex Langevin
- Integration on Lefshetz Thimbles
- Density of states method
- Dualization and flux simulations
- Effective Polyakov loop theories

Polyakov loop models for QCD-like theories

QCD-like theories, e.g. two-color QCD,
 G₂ QCD:

no sign Problem

- Qualitative and quantitative Comparison to results from full theory
- Validity test of eff. Polyakov loop theories
- Better understanding of phase diagram of QCD-like theories

Effective Polyakov Loop Theories

 d-1 dim. spin models sharing universal behavior at deconfinement transition with underlying gauge theory

B.Svetitsky and L.G.Yaffe, Nucl. Phys. B210 (1982) 423

$$L = \operatorname{Tr} \prod_{t=1}^{N_{\tau}} U_o(\vec{x}, t)$$

- ► Less computational cost, especially with dynamical fermions and at low $T \Leftrightarrow$ large N_t
- Sign problem at finite μ : Complex Langevin

most general form:

$$S_{\text{eff}} = \sum_{ij} L_i \, \mathcal{K}^{(2)}(i,j) \, L_j + \sum_{ijkl} L_i L_j \, \mathcal{K}^{(4)}(i,j,k,l) \, L_k L_l + \dots + \sum_i h^{(1)} \, L_i + \dots$$

can also contain loops in adjoint or higher representations.

B. Svetitsky, Phys. Rept. 132 (1986), Heinzl et al., Phys. Rev. D. 72 (2005)

Find a way to calculate Kernels $K^{(2n)}$ and effective fermions couplings $h^{(n)}$:

$$\exp(-S_{\text{eff}}[L]) = \int \mathcal{D}U \, \delta(L - L[U]) \, \exp(-S[U])$$

Different Aproaches

Find effective action by inverse Monte-Carlo methods

Heinzl et al., Phys. Rev. D. 72 (2005)

Find effective action by relative weights method

Greensite, Langfeld, Phys. Rev. D. 87 (2013)

Use combined strong coupling and hopping expansion

Fromm, Langelage, Lottini, Philipsen, JHEP 1201 (2012)

Effective theory that can be improved order by order

Integrate out spatial links

$$Z = \int \mathcal{D}U_0 \,\mathcal{D}U_i \,\det[\mathcal{D}] \,e^{-S_{\text{eff}}[\mathcal{U}]} = \int \mathcal{D}U_0 \,e^{-S_{\text{eff}}[\mathcal{U}_0]} = \int \mathcal{D}L \,e^{-S_{\text{eff}}[\mathcal{L}]}$$

Wilson Gauge action:

Wilson quarks:

strong coupling expansion

hopping expansion

Truncation is valid for heavy quarks on reasonably fine lattices: $a \sim 0.1$ fm

Integrate out spatial links

Contributions to the effective action are graphs winding around the lattice in time direction

Gauge Action:

Contributions to the effective action are graphs winding around the lattice in time direction

Gauge Action:

$$\det[D] = \det[1 - \kappa H] = \exp(-\sum_{i=1}^{\infty} \frac{1}{i} \kappa^{i} \operatorname{Tr}[H^{i}])$$

Leading order:

Sum up generalized Polyakov loops

$$\exp\left[-2N_f\sum_{\vec{x}}\sum_{n=1}^{\infty}\left(\frac{(-1)^n}{n}h\operatorname{Tr}(W^n_{\vec{x}})\right)\right] = \prod_{\vec{x}}\det\left[1+hW_{\vec{x}}\right]^{2N_f}$$

Pietri, Feo, Seiler, Stamatescu, Phys. Rev. D. 76 (2007)

 \longrightarrow resumation leads to lattice saturation for large μ

Also include and expand in spatial hoppings

$$det[D] = det[1 - \kappa T] det[1 - (1 - \kappa T)^{-1}S]$$

Order κ^4 :

$$\begin{split} -S_{\text{eff}} &= N_f \sum_{\vec{x}} \log(1 + h \text{Tr} W_{\vec{x}} + h^2)^2 - 2N_f h_2 \sum_{\vec{x},i} \text{Tr} \frac{h W_{\vec{x}}}{1 + h W_{\vec{x}}} \text{Tr} \frac{h W_{\vec{x}+i}}{1 + h W_{\vec{x}+i}} \\ &+ 2N_f^2 \frac{\kappa^4 N_\tau^2}{N_c^2} \sum_{\vec{x},i} \text{Tr} \frac{h W_{\vec{x}}}{(1 + h W_{\vec{x}})^2} \text{Tr} \frac{h W_{\vec{x}-i}}{(1 + h W_{\vec{x}-i})^2} \\ &+ N_f \frac{\kappa^4 N_\tau^2}{N_c^2} \sum_{\vec{x},i,j} \text{Tr} \frac{h W_{\vec{x}}}{(1 + h W_{\vec{x}})^2} \text{Tr} \frac{h W_{\vec{x}-i}}{1 + h W_{\vec{x}-i}} \text{Tr} \frac{h W_{\vec{x}-j}}{1 + h W_{\vec{x}-j}} \\ &+ 2N_f \frac{\kappa^4 N_\tau^2}{N_c^2} \sum_{\vec{x},i,j} \text{Tr} \frac{h W_{\vec{x}}}{(1 + h W_{\vec{x}})^2} \text{Tr} \frac{h W_{\vec{x}-i}}{1 + h W_{\vec{x}-i}} \text{Tr} \frac{h W_{\vec{x}+j}}{1 + h W_{\vec{x}+j}} \\ &+ N_f \frac{\kappa^4 N_\tau^2}{N_c^2} \sum_{\vec{x},i,j} \text{Tr} \frac{h W_{\vec{x}}}{(1 + h W_{\vec{x}})^2} \text{Tr} \frac{h W_{\vec{x}+i}}{1 + h W_{\vec{x}+i}} \text{Tr} \frac{h W_{\vec{x}+j}}{1 + h W_{\vec{x}+j}} . \end{split}$$

Order κ^4 :

in QCD-like theories: fermion lines interchanging "diquarks"

$$\begin{split} -S_{\text{eff}} &= N_f \sum_{\vec{x}} \log(1 + h \text{Tr} W_{\vec{x}} + h^2)^2 - 2N_f h_2 \sum_{\vec{x},i} \text{Tr} \frac{h W_{\vec{x}}}{1 + h W_{\vec{x}}} \text{Tr} \frac{h W_{\vec{x}+i}}{1 + h W_{\vec{x}+i}} \\ &+ 2N_f^2 \frac{\kappa^4 N_\tau^2}{N_c^2} \sum_{\vec{x},i} \text{Tr} \frac{h W_{\vec{x}}}{(1 + h W_{\vec{x}})^2} \text{Tr} \frac{h W_{\vec{x}-i}}{(1 + h W_{\vec{x}-i})^2} \\ &+ N_f \frac{\kappa^4 N_\tau^2}{N_c^2} \sum_{\vec{x},i,j} \text{Tr} \frac{h W_{\vec{x}}}{(1 + h W_{\vec{x}})^2} \text{Tr} \frac{h W_{\vec{x}-i}}{1 + h W_{\vec{x}-i}} \text{Tr} \frac{h W_{\vec{x}-j}}{1 + h W_{\vec{x}-j}} \\ &+ 2N_f \frac{\kappa^4 N_\tau^2}{N_c^2} \sum_{\vec{x},i,j} \text{Tr} \frac{h W_{\vec{x}}}{(1 + h W_{\vec{x}})^2} \text{Tr} \frac{h W_{\vec{x}-i}}{1 + h W_{\vec{x}-i}} \text{Tr} \frac{h W_{\vec{x}+j}}{1 + h W_{\vec{x}+j}} \\ &+ N_f \frac{\kappa^4 N_\tau^2}{N_c^2} \sum_{\vec{x},i,j} \text{Tr} \frac{h W_{\vec{x}}}{(1 + h W_{\vec{x}})^2} \text{Tr} \frac{h W_{\vec{x}+i}}{1 + h W_{\vec{x}+i}} \text{Tr} \frac{h W_{\vec{x}+j}}{1 + h W_{\vec{x}+j}} \\ &+ N_f (2N_f - 1) \kappa^4 N_\tau^2 \sum_{x,i} \frac{h^2}{(1 + h \text{Tr} W_{\vec{x}} + h^2)(1 + h \text{Tr} W_{\vec{x}+i} + h^2)} . \end{split}$$

4 May 2016 | Philipp Scior | 11

Very heavy quarks:

 $m_q = 10.0014 \text{ GeV}$

- ▶ Diquark mass fixed to m_d = 20 GeV → small binding energy
- Silverblaze property
- Lattice saturation, due to Pauli principle
- Deconfinement / Screening ?

 m_d = 20 Gev, T = 5 MeV, a = 0.081 fm

 $\beta = 2.5, \kappa = 0.00802, N_t = 484$

PS, von Smekal PRD 92 094504 (2015)

- Two exponential regions
- Thermal excitations of one-quark and two-quark states

4 May 2016 | Philipp Scior | 14

Cold and Dense QC₂D in the strong coupling limit

$$h = (2\kappa e^{a\mu})^{N_t}, \ \bar{h} = 0, N_f = 1$$

$$Z(\beta = 0) = \left[\int dW(1 + hL + h^2)^2 \right]^{N_s^3} = [1 + 3h^2 + h^4]^{N_s^3}$$
$$\Rightarrow n = \frac{T}{V} \frac{\partial}{\partial \mu} \log Z = \frac{1}{a^3} \frac{6h^2 + 4h^4}{1 + 3h^2 + h^4}$$

Small but finite Temperature: Mean field Polyakov loop

$$Z = (1 + h\langle L \rangle + h^2)^{2N_f N_s^3}$$
$$\Rightarrow a^3 n = 4N_f \frac{1 + \langle L \rangle e^{\frac{m_q - \mu}{T}}}{1 + 2\langle L \rangle e^{\frac{m_q - \mu}{T}} + \langle L \rangle e^{2\frac{m_q - \mu}{T}}}$$

- Behavior of a³n is well described by a LO mean field model
- No Fit! All values taken from Simulations or are input
- $\langle L \rangle \approx 5 \cdot 10^{-5} < \langle |L| \rangle = 0.006$ $\langle L \rangle$ determined by histograms

PS, von Smekal PRD 92 094504 (2015)

Model includes Confinement

PS, von Smekal PRD 92 094504 (2015)

Phase Diagram

- Diquark onset but no Bose-Einstein condensate T > E_{Bind}
- ► Line terminates at µ = m_d/2 according to Silverblaze property
- Deconfinement transition terminates
 at $\mu > \frac{m_d}{2}$
- Look for BEC at larger κ and β, where diquarks are bound more tightly

Phase Diagram

- Diquark onset but no Bose-Einstein condensate T > E_{Bind.}
- ► Line terminates at µ = m/2 according to Silverblaze property
- ► Deconfinement transition terminates at µ > m/2
- Look for BEC at larger κ and β, where diquarks are bound more tightly

Extrapolation to T = 0

- ► T = 0 endpoint is in perfect agreement with $\mu = \frac{m_d}{2}$
- Endpoint is independent of lattice spacing

PS, von Smekal PRD 92 094504 (2015)

Results for heavy and dense G2 QCD TECHNISCHE UNIV DAR TADT

 μ

G2 QCD

- Smallest exceptional Lie Group
- All representation are real
- No sign problem: real and positive for $N_f = 1$
- YM theory has 1st order phase transition
- Spectrum: bosonic and fermionic baryons

diquarks (baryon number 2)						
Name	0	Т	J	Р	С	
d(0 ⁺⁺)	$\bar{u}^{c}\gamma_{5}u+c.c.$	SASS	0	+	+	
$d(0^{+-})$	$\bar{u}^{c}\gamma_{5}u-c.c.$	SASS	0	+	-	
$d(0^{-+})$	$\bar{u}^{C}u+c.c.$	SASS	0	-	+	
d(0)	$\overline{u}^{c}u-c.c.$	SASS	0	-	-	
d(1 ⁺⁺)	$ar{u}^{ m C}\gamma_{\mu}m{d}-ar{m{d}}^{ m C}\gamma_{\mu}m{u}+m{c}.m{c}.$	SSSA	1	+	+	
d(1 ⁺⁻)	$ar{u}^{ m C}\gamma_{\mu}m{d}-ar{m{d}}^{ m C}\gamma_{\mu}m{u}-m{c}.m{c}.$	SSSA	1	+	-	
$d(1^{-+})$	$\bar{u}^{c}\gamma_{5}\gamma_{\mu}d - \bar{d}^{c}\gamma_{5}\gamma_{\mu}u + c.c.$	SSSA	1	-	+	
d(1)	$\bar{u}^{c}\gamma_{5}\gamma_{\mu}d-\bar{d}^{c}\gamma_{5}\gamma_{\mu}u-c.c.$	SSSA	1	-	-	

$\{7\} \otimes \{7\} = \{1\} \oplus \{7\} \oplus \{14\} \oplus \{27\}$
$\{7\}\otimes\{7\}\otimes\{7\}=\{1\}\oplus 4\cdot\{7\}\oplus 2\cdot\{14\}\oplus\ldots$
$\{14\}\otimes\{14\}=\{1\}\oplus\{14\}\oplus\{27\}\oplus\ldots,$
$[14] \otimes \{14\} \otimes \{14\} = \{1\} \oplus \{7\} \oplus 5 \cdot \{14\} \oplus \dots,$
$\{7\} \otimes \{14\} \otimes \{14\} = \{1\} \oplus \dots$

mesons (baryon number 0)						
Name	0	Т	J	Р	С	
π	$\bar{u}\gamma_5 d$	SASS	0	-	+	
η	$\bar{u}\gamma_5 u$	SASS	0	-	+	
а	ūd	SASS	0	+	+	
f	ūu	SASS	0	+	+	
ρ	$\bar{u}\gamma_{\mu}d$	SSSA	1	-	+	
ω	$\bar{u}\gamma_{\mu}u$	SSSA	1	-	+	
b	$\bar{u}\gamma_5\gamma_\mu d$	SSSA	1	+	+	
h	$\bar{u}\gamma_5\gamma_\mu u$	SSSA	1	+	+	

baryons (baryon number 3)						
Name	O	Т	J	Ρ	С	
N	$T^{abc}(\bar{u}_a^C \gamma_5 d_b) u_c$	SAAA	1/2	±	±	
Δ	$T^{abc}(\bar{u}_a^{ m C}\gamma_\mu u_b)u_c$	SSAS	3/2	±	±	

 T : (x, s, C, F)

Phase diagram

Cold and dens region of the G2 effective theory phase diagram

•
$$\beta/N_c = 1.4, \kappa = 0.0357, N_t = 8, ...24$$

4 May 2016 | Philipp Scior | 22

Cold and Dens Region

- Deconfinement and lattice saturation
- three regions with different exponential growth

 Comparison of full 4d G2 QCD simulations to effective theory
 4d Data by Björn Wellegehausen

Effective Polyakov loop theory for 2 dim G2 QCD

Effective theory is 1d, can it have a phase transition? (van Hove theorem)

Effective Polyakov loop theory for 2 dim G2 QCD

Effective theory is 1d, can it have a phase transition? (van Hove theorem)

Yes, since there is an external field (dynamical fermions)!

Effective Polyakov loop theory for 2 dim G2 QCD

. .3

Strong coupling limit: No diquarks!

$$Z(\beta = 0) = \left[\int dW(1 + (h + h^6)\chi_7 + (h^2 + h^5)(\chi_7 + \chi_{14}) + (h^3 + h^4)(\chi_7^2 - \chi_{14}) + h^7) \right]^{N_s^2}$$
$$= [1 + h^3 + h^4 + h^7]^{N_s^3}$$

Full theory: diquarks with unusual mass ordering $m_d(0^+) > m_d(1^+)$

Results

Cold and dens region of the effective theory for the 2d G2 QCD phase diagram

•
$$\beta/N_c = 1.39, \kappa = 0.01, N_t = 800$$

Results

- Extrapolation: No bound diquarks
- ► negative Polyakov loop → negative local particle numbers
- Coexistence of baryon and anti-baryon "phases"
 Also in effective theory for 4d G2
 QCD
- Negative Polyakov loops lead to numerical instability

Summary & Conclusion

Effective Polyakov loop theory for QC₂D

- Thermal diquark excitation onset at T > 0
- Extrapolation $T \rightarrow 0$ gives $m_d/2$ according to Silverblaze Property
- However no signal for BEC: T > E_{Bind.}

Effective Polyalov loop theory for G2

- Two- and three-quark excitations in agreement with possible spectrum
- Good Agreement between full theory and effective model

Analytic relations for Cold and Dense regime

$$h = \exp\left[N_{\tau}\left(a\mu + \ln 2\kappa + 6\kappa^2 \frac{u - u^{N_{\tau}}}{1 - u}\right)\right] ,$$

$$am_d = \operatorname{ArCosh}\left(1 + \frac{\left(\left(\frac{1}{2\kappa}\right)^2 - 4\right)\left(\left(\frac{1}{2\kappa}\right)^2 - 1\right)}{\left(2\left(\frac{1}{2\kappa}\right)^2 - 3\right)}\right) - 24\kappa^2 \frac{u}{1 - u} + \mathcal{O}(\kappa^4 u^2, \kappa^2 u^5) \ .$$