

Bound States from the nPl effective action

DAS LEBEN STUDIEREN DIE WELT ERFORSCHEN

Richard Williams

C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Bundesministerium für Bildung und Forschung

Der Wissenschaftsfonds.

Overview

Motivation

Describe bound-states:

in terms of QCD's Green's functions.

Methods

Functional methods - provide access to Green's functions: lattice, FRG, DSE, nPI

• Covariant, multi-scale (no separation), renormalizable, non-perturbative

Good differences

• (no) sign problem, continuum

There's always a "but"

- Infinite tower of coupled non-linear equations truncations are necessary
- Computationally and algebraically involved
- Euclidean access to time-like properties requires analytic continuation
- More legs = more problems (larger phase space and number of covariants)

$$\Gamma^{\mu\nu\dots}_{ij\dots}(p_1,p_2,\dots) = \sum_a F_a(p_1^2,p_2^2,\dots)\tau^{\mu\nu\dots}_{a,ij\dots}(p_1,p_2,\dots)$$

We need various ingredients

Propagators:

- Quark
- Gluon

Vertices:

- Quark-gluon vertex
- Three-gluon vertex

Interaction Kernel:

• Quark-(anti)quark binding

Bound State Amplitude

- Specify quantum numbers
- Describe appropriate state

Symmetries:

- Vector Ward Identity
- Axial-vector Ward Identity

Connection to Gauge sector Control of "modelling" Systematic improvements?

DSEs and BSEs

7 of 40

DSEs derived from functional identity:

$$\frac{\delta\Gamma[\phi]}{\delta\phi_i} - \frac{\delta S}{\delta\phi_i} \left[\phi + \frac{\delta^2 W[J]}{\delta J \delta J_k} \frac{\delta}{\delta\phi_k} \right] = 0$$

QFT analogue to EOM

Exact equations *in principle*

- Think of as a constraint equation
- Additional constraints provided by WI and STI (difficult to reconcile in practice)

Not closed (8) so truncation needed

Propagators – typical results

- Non-perturbative enhancements in the **quark-gluon** vertex required.
- Rainbow-ladder explicitly ignores vertex corrections. These are included implicitly by using an effective interaction to replace the gluon

More to life than propagators – quark-gluon vertex

Dynamical chiral symmetry breaking in the vertex. Flavour dependent

 h_1 is the "vector", h_5 , h_6 the scalar/vector **anomalous chromomagnetic moments**.

$$\Gamma_{\mu}^{a}(l,k) = h_{1}\gamma_{T}^{\mu} + h_{2}l_{T}^{\mu}\gamma \cdot l + h_{3}il_{T}^{\mu} + h_{4}(l\cdot k)\frac{i}{2}[\gamma_{T}^{\mu},\gamma\cdot l] + h_{5}\frac{i}{2}[\gamma^{\mu},\gamma\cdot k] + h_{6}\frac{1}{6}[\gamma^{\mu},\gamma\cdot l,\gamma\cdot k] + h_{7}t_{(kl)}^{\mu\nu}(l\cdot k)\gamma^{\nu} + h_{8}t_{(kl)}^{\mu\nu}[\gamma^{\nu},\gamma\cdot l]$$

How to connect propagators and vertices...

And anyway. What is a bound-state amplitude

Bound-state amplitude: Meson

Meson:

$$\Gamma^{\mu_1\dots\mu_J} = \begin{pmatrix} Q^{\mu_1\dots\mu_J} \\ T^{\mu_1\dots\mu_J} \end{pmatrix} \begin{pmatrix} 1 \\ \gamma_5 \end{pmatrix} D_i(k) \Lambda_{\pm}$$

Rest frame: $(P^2 = -M^2)$

$$D_i = \{1, \gamma \cdot k\}$$
 $\Lambda_{\pm} = (1 \pm \widehat{\gamma \cdot P})/2$

two independent variables

Q and **T**: Angular momentum tensors

Constructed from the traceless part of J-fold tensor products

$$\tilde{Q}^{\mu_1\dots\mu_J} = k_T^{\{\mu_1\dots}k_T^{\mu_J\}} \qquad \tilde{T}^{\mu_1\dots\mu_J} = \gamma_t^{\{\mu_1}k_T^{\mu_2\dots}k_T^{\mu_J\}}$$

Saturates: no more than four or eight Dirac covariants

Bound-state amplitude: Baryon

Nucleon/Delta: 64/128 covariants $D_i = \{1, \gamma \cdot k, \gamma \cdot q, (\gamma \cdot k)(\gamma \cdot q)\}$

$$\Gamma^{\boldsymbol{\nu}} = \begin{pmatrix} 1 & \otimes & 1 \\ \gamma_5 & \otimes & \gamma_5 \\ \gamma_T^{\mu} & \otimes & \gamma_T^{\mu} \\ \gamma_T^{\mu} \gamma_5 & \otimes & \gamma_T^{\mu} \gamma_5 \end{pmatrix} (D_i \Lambda_{\pm} \gamma_5 C \otimes D_j \Lambda_{+}) \begin{pmatrix} \gamma_T^{\mu} \gamma_5 & \otimes & \mathbb{P}^{\mu\nu} \\ \hat{k}_T^{\mu} \gamma_5 & \otimes & \mathbb{P}^{\mu\nu} \\ q_t^{\mu} \gamma_5 & \otimes & \mathbb{P}^{\mu\nu} \end{pmatrix}$$

Overview

Constructing from $\Gamma[\phi]$ by taking Legendre transf. wrt propagators and vertices.

 $\Gamma[\phi, D, U] = S_{cl}[\phi] + \frac{i}{2}TrLnD^{-1} + \frac{i}{2}Tr[D_{(0)}^{-1}D] - i\Phi^{0}[\phi, D, U] - i\Phi^{int}[\phi, D, U] + const.$

Φ^0 : non-interacting part

Φ^{int} : interacting part

Construction not known exactly

- Loop expansion in hbar
- Functional derivatives yield DSEs for propagators and vertices
- Further functional derivatives yield Bethe-Salpeter kernels!

More or less guaranteed to be consistent with symmetries of the action Two-particle irreducible effective action (Legendre transform with respect to fields, propagators):

$$\Gamma[\Psi, G] = S[\Psi] + i \operatorname{Tr} \ln G - i \operatorname{Tr} G_0^{-1} + \Gamma_2[\Psi, G] \qquad \text{(See Berges, hep-ph/0409233)}$$

$$\Gamma_2 = -\frac{i}{2} \left(\underbrace{\delta \Gamma_2}{\delta G \delta G} = -\underbrace{\delta \Gamma_2}{\delta G \delta G}$$

Quark self-energy, quark-antiquark kernel obtained by functional derivatives

Comparison with exact quark self-energy

implies quark-gluon vertex

Vertices are perturbative Propagators are resummed

Complement bare vertex (tree-level, no loop corrections) with an RG improvement

Select contributions leading in N_c

Sanchis-Alepuz, RW (arXiv:1503.0596)

Overview

DSE results from the 3PI effective action

(not) 3PI results: DSEs (ghost and gluon propagators)

Ghost/Gluon solved such that agreement with quenched/unquenched lattice is obtained

Provides input parameters of model (g_s, Z_3, \tilde{Z}_3)

3PI results: DSEs (quark propagator)

3PI results: DSEs (three-gluon vertex)

[Eichmann, RW, Alkofer, Vujinovic]

3PI results: DSEs (ghost-gluon vertex)

Unquenching effects negligible.

Lattice data needs improvement

One tensor structure

$$\Gamma^{\mu}_{gh}(l,q) = f(l,q) T^{\mu\nu}_{(q)} l^{\nu}$$

27.01.2016 Richard Williams – Bound-states from the 3PI effective action

3PI results: DSEs (quenched quark-gluon vertex)

Lattice renormalization procedure is suspect

1st and 3rd structures comparable. Difficult systematics (lattice) in 2nd

3PI results: DSEs (unquenched quark-gluon vertex)

Comparable to quenched (DSE) data. Large corrections beyond tree-level.

27.01.2016

Overview

Above are calculated for complex quark momenta.

Homogeneous BSE solved without Pade or fit functions

 $\rho - a_1$ splitting: 2PI-2L (RL) and 2PI-3L it is too small:

200 MeV

 $a_1 - b_1$ splitting: 2PI-2L (RL) and 2PI-3L non-degenerate states

Phenomenology restored by 3PI-3L !!!

Overview

Mesons $q\overline{q}$

- Only now exploring details of quark-gluon interaction on spectrum
- No longer disconnected from gauge sector. Implicit flavor dependence.

Developing framework

- Unified description of mesons and baryons consistent with symmetries
- Calculation of higher spin and/or excited mesons and baryons

Extensible to other bound-states via nPI

- Baryons
- Tetraquarks
- Glueballs and Hybrid mesons

A functional derivative (or two) away ...

Calculation of form-factors, EM transitions and decays

Mesons $q\overline{q}$

- Only now exploring details of quark-gluon interaction on spectrum
- No longer disconnected from gauge sector. Implicit flavor of perdence.

Developing framework

- Unified description of mesons and by yours convient with symmetries
- Calculation of higher spin and a classical second and baryons

Extensible to other boun so te vi

- Baryons
- Tetraquarks
- Glueballs and Hybrid mesons

A functional derivative (or two) away ...

Calculation of form-factors, EM transitions and decays

g g

a