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Introduction

Ten-dimensional supergravity: Emerging E10−symmetry.

Usually: SL(n)−covariance + inner product (·|·) invariant under
SO(n) resp. SO(1, n − 1)1

Fermions: Reps. of so(n) that do not lift to SO(n) but to Spin(n).

SL(10) < E10 ⇒ Need to extend spin reps. of so(10) to k (E10).

Yields: E10−spinors.

Treatment on the level of Kac-Moody algebras.

1For simplicity only consider SO(n).
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Lie algebras from generators: sl(3,R)

Basis of sl (3,R) :
1 0 0

0 −1 0
0 0 0

 ,

0 0 0
0 1 0
0 0 −1

 ,

0 1 0
0 0 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0


0 0 1

0 0 0
0 0 0

 ,

0 0 0
1 0 0
0 0 0

 ,

0 0 0
0 0 0
0 1 0

 ,

0 0 0
0 0 0
1 0 0



Generators of sl (3,R) :

h1 ≡

1 0 0
0 −1 0
0 0 0

 , h2 ≡

0 0 0
0 1 0
0 0 −1

 , e1 ≡

0 1 0
0 0 0
0 0 0


e2 ≡

0 0 0
0 0 1
0 0 0

 , f1 ≡

0 0 0
1 0 0
0 0 0

 , f2 ≡

0 0 0
0 0 0
0 1 0



Robin Lautenbacher (JLU) Gen. Spin Reps. May 31, 2017 4 / 21



Lie algebras from generators: sl(3,R)

Basis of sl (3,R) :
1 0 0

0 −1 0
0 0 0

 ,

0 0 0
0 1 0
0 0 −1

 ,

0 1 0
0 0 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0


0 0 1

0 0 0
0 0 0

 ,

0 0 0
1 0 0
0 0 0

 ,

0 0 0
0 0 0
0 1 0

 ,

0 0 0
0 0 0
1 0 0


Generators of sl (3,R) :

h1 ≡

1 0 0
0 −1 0
0 0 0

 , h2 ≡

0 0 0
0 1 0
0 0 −1

 , e1 ≡

0 1 0
0 0 0
0 0 0


e2 ≡

0 0 0
0 0 1
0 0 0

 , f1 ≡

0 0 0
1 0 0
0 0 0

 , f2 ≡

0 0 0
0 0 0
0 1 0


Robin Lautenbacher (JLU) Gen. Spin Reps. May 31, 2017 4 / 21



Lie algebras from generators: sl(3,R)
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Any element of sl (3,R) can be obtained as a linear combination of
commutators of the generators:0 0 1

0 0 0
0 0 0

 = [e1, e2] ,

0 0 0
0 0 0
1 0 0

 = [f1, f2]
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1 [h1, h2] = 0 , [ei , fj ] = δijhi
2 [hi , ei ] = 2ei , [hi , fi ] = −2fi
3 [hi , ej ] = −ej , [hi , fj ] = +fj
4 (ad ei )

2 (ej) = 0 , (ad fi )
2 (fj) = 0
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Kac-Moody algebras in general

A general Kac-Moody algebra g(A) (K) has generators e1, . . . , en,
f1, . . . , fn and h1, . . . , hn which are subject to the relations

1 [hi , hj ] = 0 , [ei , fj ] = δijhi
2 [hi , ej ] = aijej , [hi , fj ] = −aij fj
3 (ad ei )

1−aij (ej) = 0 , (ad fi )
1−aij (fj) = 0

For sl(n,R) these generators are (aii = 2 , ai ,i+1 = −1 , aij = 0)

ei ≡


. . .

1

. . .

 fi ≡


. . .

1
. . .

 hi ≡


. . .

1
−1

. . .
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Encoding relations among the generators

Summarize the relations among the Cartan-Chevalley generators in a
matrix A ∈ Zn×n called the generalized Cartan matrix.

A =

 2 −1 0
−1 2 −1
0 −1 2


Generalized Cartan matrix of sl(4,R)

Visualization: Generalized Dynkin diagrams.
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Generators vs. full basis: sl(n,R)

sl(n,R): 3(n − 1) generators and n2 − 1 basis elements

A rep. ρ : sl(n,R)→ Rm×m needs to satisfy

[ρ(x), ρ(y)] = ρ ([x , y ])

Basis: roughly 1
2

(
n2 − 1

) (
n2 − 2

)
relations

Generators: roughly 9 (n − 1)2 relations

Work with generators when looking for reps.

Towards E10: infinite dimensional but finitely many generators

Robin Lautenbacher (JLU) Gen. Spin Reps. May 31, 2017 9 / 21



Generators vs. full basis: sl(n,R)

sl(n,R): 3(n − 1) generators and n2 − 1 basis elements

A rep. ρ : sl(n,R)→ Rm×m needs to satisfy

[ρ(x), ρ(y)] = ρ ([x , y ])

Basis: roughly 1
2

(
n2 − 1

) (
n2 − 2

)
relations

Generators: roughly 9 (n − 1)2 relations

Work with generators when looking for reps.

Towards E10: infinite dimensional but finitely many generators

Robin Lautenbacher (JLU) Gen. Spin Reps. May 31, 2017 9 / 21



Generators vs. full basis: sl(n,R)

sl(n,R): 3(n − 1) generators and n2 − 1 basis elements

A rep. ρ : sl(n,R)→ Rm×m needs to satisfy

[ρ(x), ρ(y)] = ρ ([x , y ])

Basis: roughly 1
2

(
n2 − 1

) (
n2 − 2

)
relations

Generators: roughly 9 (n − 1)2 relations

Work with generators when looking for reps.

Towards E10: infinite dimensional but finitely many generators

Robin Lautenbacher (JLU) Gen. Spin Reps. May 31, 2017 9 / 21



Generators vs. full basis: sl(n,R)

sl(n,R): 3(n − 1) generators and n2 − 1 basis elements

A rep. ρ : sl(n,R)→ Rm×m needs to satisfy

[ρ(x), ρ(y)] = ρ ([x , y ])

Basis: roughly 1
2

(
n2 − 1

) (
n2 − 2

)
relations

Generators: roughly 9 (n − 1)2 relations

Work with generators when looking for reps.

Towards E10: infinite dimensional but finitely many generators

Robin Lautenbacher (JLU) Gen. Spin Reps. May 31, 2017 9 / 21



Generators vs. full basis: sl(n,R)

sl(n,R): 3(n − 1) generators and n2 − 1 basis elements

A rep. ρ : sl(n,R)→ Rm×m needs to satisfy

[ρ(x), ρ(y)] = ρ ([x , y ])

Basis: roughly 1
2

(
n2 − 1

) (
n2 − 2

)
relations

Generators: roughly 9 (n − 1)2 relations

Work with generators when looking for reps.

Towards E10: infinite dimensional but finitely many generators

Robin Lautenbacher (JLU) Gen. Spin Reps. May 31, 2017 9 / 21



Generators vs. full basis: sl(n,R)

sl(n,R): 3(n − 1) generators and n2 − 1 basis elements

A rep. ρ : sl(n,R)→ Rm×m needs to satisfy

[ρ(x), ρ(y)] = ρ ([x , y ])

Basis: roughly 1
2

(
n2 − 1

) (
n2 − 2

)
relations

Generators: roughly 9 (n − 1)2 relations

Work with generators when looking for reps.

Towards E10: infinite dimensional but finitely many generators

Robin Lautenbacher (JLU) Gen. Spin Reps. May 31, 2017 9 / 21



The maximal compact subalgebra

simply-laced ⇔ aij ∈ {0,−1}for i 6= j

The maximal compact subalgebra k(A) has generators Xi = ei − fi
satisfying

[Xi , [Xi ,Xj ]] = −Xj if aij = −1 (⇔ (i , j) ∈ E )

[Xi ,Xj ] = 0 if aij = 0 (⇔ (i , j) /∈ E )

sl(3,R) −→ k = so(3,R)

X1 =

 0 1 0
−1 0 0
0 0 0

 , X2 =

0 0 0
0 0 1
0 −1 0


[X1,X2] =

 0 0 1
0 0 0
−1 0 0
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An extension of the so(n) spin representation to k(En)

En(R) contains a subalgebra sl(n,R).

k of sl(n,R) is so(n,R) and so k (En) (R) contains so(n,R) as a
subalgebra.

Reps. of so(n,R) that do not lift to SO(n,R) but only to Spin(n) are
called spin reps.

A classical spin rep of so(n,R) is defined by

X1 7→
1

2
γ1γ2 , Xi 7→

1

2
γi−1γi

for n ≥ i ≥ 3.

An extension to k (En) (R) is given by

X1 7→
1
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Generalized spin representations of k(En) pt 2.

The representation matrices ρ : k (En) (R) 7→ Cs×s given by

X1 7→
1

2
γ1γ2 , X2 7→

1

2
γ1γ2γ3 , Xi 7→

1

2
γi−1γi

have the following properties:

ρ (Xi )
2 = −1

4 ids

[ρ (Xi ) , ρ (Xj)] = 0 if (i , j) /∈ E

{ρ (Xi ) , ρ (Xj)} := ρ (Xi ) ρ (Xj) + ρ (Xj) ρ (Xi ) = 0 if (i , j) ∈ E

Given any simply laced k(A) a set of matrices which satisfy the above
relations define a representation of k(A) (see [Köhl and others...])
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Timeline

The above extensions of were first performed in quantum gravity (see
Thibault Damour, Axel Kleinschmidt and Hermann Nicolai, “Hidden
symmetries and the fermionic sector of eleven-dimensional
supergravity ”, arXiv:hep-th/0512163 10 February 2006.)

A mathematical treatment and their extension to arbitrary
symmetrizable Kac-Moody algebras were done later (see Guntram
Hainke, Ralf Köhl and Paul Levy, “Generalized Spin Representations”,
Münster Journal of Mathematics (2015).)
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Higher Spin Representations?

So far: Generalized the classical spin 1
2−representation of so(n) to

k(En).

To obtain higher fermionic representations: Take the tensor product
with the vector representation (resp. the natural representation).

What is a natural representation of E10?

h∗ has Lorentzian signature

Generators → Root system ⊂ h∗ → Tensor product rep. via roots
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Roots and root spaces

Call h := span {h1, . . . , hn} the Cartan subalgebra.

There exist α1, . . . , αn ∈ h∗ such that for all h ∈ h and i = 1, . . . , n it
holds

[h, ei ] = αi (h)ei , [h, fi ] = −αi (h)fi

Call α1, . . . , αn the simple roots.

Call 0 6= gα := {x ∈ g(A) | [h, x ] = α(h)x ∀ h ∈ h} for α ∈ h∗ root
space.

There is a decomposition of g(A) as

g(A) =

 ⊕
06=α∈Q+

g−α

⊕ h⊕

 ⊕
06=α∈Q+

gα

 .

where Q+ =
∑n

i=1 Z≥0αi .
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Roots and root spaces pt. 2

There exists a bilinear form (·|·) on the root system that takes integer
values.

For the simple roots αi it holds dim gαi = 1.

For Xi = ei − fi it holds Xi ∈ (gαi ⊕ g−αi ).

Correspondence between generators X1, . . . ,Xn and simple roots
α1, . . . , αn.

For E10, h∗ is ten-dimensional and the bilinear form (·|·) on h∗ has
signature (−,+,+, . . . ,+).
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Higher Spin Representations

Given a gen. spin rep. ρ : k→ R2s×2s extend to rep on V ⊗ R2s .

Phrase the extended spin rep σ : k→ End
(
V ⊗ R2s

)
in terms of

root data, that is for y ∈ gα set

σ(y) = X (α)⊗ ρ(y)

This defines a rep if

[X (α) , X (β)] = 0 if (α|β) = 0

{X (α) , X (β)} = X (α± β) if (α|β) = ∓1.

for all α, β ∈ Λ.
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Higher Spin Representations pt. 2

One chooses V = h∗ or symmetric powers of h∗. For V = h∗,

α 7→ X (α) := −α (α|·) +
1

2
idh∗ .

provides a higher spin rep (spin 3
2).

First constructed by Kleinschmidt and Nicolai2 using an approach in
second quantized form and a specific choice of coordinates for h∗.

They also found higher spin reps corresponding to spin 5
2 and 7

2 in the
E10−sense

Transformed as mixtures of 1
2− and 3

2−spin w.r.t- so(10).

2Axel Kleinschmidt and Hermann Nicolai, ”On higher spin realizations ofK(E {10})
” , arXiv:1307.0413 , 1 July 2013.
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Further results and open questions

As Paul Levy pointed out the 3
2− and 5

2−representations take the
form of natural reflection actions on h∗ resp. Sym2 (h∗).

This provides a link to the representation theory of Sym3 and a
criterion for which n ∈ N one finds a representation of this kind using
V = Symn (h∗).

The spin−7
2 representation does not fall into this category so its

structure remains even more elusive.

How do the higher spin representations decompose under the finite
dimensional subalgebras so(1, 9) and so(10)?

What is the ismomorphism type of these representations?
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Thank you for your attention
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