Generalized Spin Representations

Robin Lautenbacher
Justus-Liebig University Giessen

May 31, 2017

Overview

(1) The need for generalized spin in quantum gravity
(2) Kac-Moody algebras
(3) The maximal compact subalgebra

4 Generalized Spin Representations
(5) Higher Spin Representations

Introduction

- Ten-dimensional supergravity: Emerging E_{10}-symmetry.

Introduction

- Ten-dimensional supergravity: Emerging E_{10}-symmetry.
- Usually: $S L(n)-$ covariance + inner product $(\cdot \mid \cdot)$ invariant under $S O(n)$ resp. $S O(1, n-1)^{1}$

[^0]
Introduction

- Ten-dimensional supergravity: Emerging E_{10}-symmetry.
- Usually: $S L(n)$-covariance + inner product $(\cdot \mid \cdot)$ invariant under $S O(n)$ resp. $S O(1, n-1)^{1}$
- Fermions: Reps. of $\mathfrak{s o (n)}$ that do not lift to $S O(n)$ but to $\operatorname{Spin}(n)$.

[^1]
Introduction

- Ten-dimensional supergravity: Emerging E_{10}-symmetry.
- Usually: $S L(n)$-covariance + inner product $(\cdot \mid \cdot)$ invariant under $S O(n)$ resp. $S O(1, n-1)^{1}$
- Fermions: Reps. of $\mathfrak{s o (n)}$ that do not lift to $S O(n)$ but to $\operatorname{Spin}(n)$.
- $S L(10)<E_{10} \Rightarrow$ Need to extend spin reps. of $\mathfrak{s o}(10)$ to $\mathfrak{k}\left(E_{10}\right)$.

[^2]
Introduction

- Ten-dimensional supergravity: Emerging E_{10}-symmetry.
- Usually: $S L(n)$-covariance + inner product $(\cdot \mid \cdot)$ invariant under $S O(n)$ resp. $S O(1, n-1)^{1}$
- Fermions: Reps. of $\mathfrak{s o}(n)$ that do not lift to $S O(n)$ but to $\operatorname{Spin}(n)$.
- $S L(10)<E_{10} \Rightarrow$ Need to extend spin reps. of $\mathfrak{s o}(10)$ to $\mathfrak{k}\left(E_{10}\right)$.
- Yields: E_{10}-spinors.

[^3]
Introduction

- Ten-dimensional supergravity: Emerging E_{10}-symmetry.
- Usually: $S L(n)$-covariance + inner product $(\cdot \mid \cdot)$ invariant under $S O(n)$ resp. $S O(1, n-1)^{1}$
- Fermions: Reps. of $\mathfrak{s o}(n)$ that do not lift to $S O(n)$ but to $\operatorname{Spin}(n)$.
- $S L(10)<E_{10} \Rightarrow$ Need to extend spin reps. of $\mathfrak{s o}(10)$ to $\mathfrak{k}\left(E_{10}\right)$.
- Yields: E_{10}-spinors.
- Treatment on the level of Kac-Moody algebras.

[^4]
Lie algebras from generators: $\mathfrak{s l}(3, \mathbb{R})$

- Basis of $\mathfrak{s l}(3, \mathbb{R})$:

$$
\begin{aligned}
& \left\{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\right. \\
& \left.\quad\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)\right\}
\end{aligned}
$$

Lie algebras from generators: $\mathfrak{s l}(3, \mathbb{R})$

- Basis of $\mathfrak{s l}(3, \mathbb{R})$:

$$
\begin{aligned}
& \left\{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\right. \\
& \left.\quad\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)\right\}
\end{aligned}
$$

- Generators of $\mathfrak{s l}(3, \mathbb{R})$:

$$
\begin{aligned}
& h_{1} \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), h_{2} \equiv\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), e_{1} \equiv\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& e_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), f_{1} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Lie algebras from generators: $\mathfrak{s l}(3, \mathbb{R})$

- Generators of $\mathfrak{s l}(3, \mathbb{R})$:

$$
\begin{gathered}
h_{1} \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), h_{2} \equiv\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), e_{1} \equiv\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
e_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), f_{1} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

Lie algebras from generators: $\mathfrak{s l}(3, \mathbb{R})$

- Generators of $\mathfrak{s l}(3, \mathbb{R})$:

$$
\begin{gathered}
h_{1} \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), h_{2} \equiv\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), e_{1} \equiv\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
e_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), f_{1} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

- Any element of $\mathfrak{s l}(3, \mathbb{R})$ can be obtained as a linear combination of commutators of the generators:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left[e_{1}, e_{2}\right],\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)=\left[f_{1}, f_{2}\right]
$$

Lie algebras from generators: $\mathfrak{s l}(3, \mathbb{R})$

- Generators of $\mathfrak{s l}(3, \mathbb{R})$:

$$
\begin{gathered}
h_{1} \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), h_{2} \equiv\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), e_{1} \equiv\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
e_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), f_{1} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

Lie algebras from generators: $\mathfrak{s l}(3, \mathbb{R})$

- Generators of $\mathfrak{s l}(3, \mathbb{R})$:

$$
\begin{gathered}
h_{1} \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), h_{2} \equiv\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), e_{1} \equiv\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
e_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), f_{1} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

The generators satisfy the relations:

Lie algebras from generators: $\mathfrak{s l}(3, \mathbb{R})$

- Generators of $\mathfrak{s l}(3, \mathbb{R})$:

$$
\begin{gathered}
h_{1} \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), h_{2} \equiv\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), e_{1} \equiv\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
e_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), f_{1} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

The generators satisfy the relations:
(1) $\left[h_{1}, h_{2}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$

Lie algebras from generators: $\mathfrak{s l}(3, \mathbb{R})$

- Generators of $\mathfrak{s l}(3, \mathbb{R})$:

$$
\begin{gathered}
h_{1} \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), h_{2} \equiv\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), e_{1} \equiv\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
e_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), f_{1} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

The generators satisfy the relations:
(1) $\left[h_{1}, h_{2}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$
(2) $\left[h_{i}, e_{i}\right]=2 e_{i},\left[h_{i}, f_{i}\right]=-2 f_{i}$

Lie algebras from generators: $\mathfrak{s l}(3, \mathbb{R})$

- Generators of $\mathfrak{s l}(3, \mathbb{R})$:

$$
\begin{gathered}
h_{1} \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), h_{2} \equiv\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), e_{1} \equiv\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
e_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), f_{1} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

The generators satisfy the relations:
(1) $\left[h_{1}, h_{2}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$
(2) $\left[h_{i}, e_{i}\right]=2 e_{i},\left[h_{i}, f_{i}\right]=-2 f_{i}$
(3) $\left[h_{i}, e_{j}\right]=-e_{j},\left[h_{i}, f_{j}\right]=+f_{j}$

Lie algebras from generators: $\mathfrak{s l}(3, \mathbb{R})$

- Generators of $\mathfrak{s l}(3, \mathbb{R})$:

$$
\begin{gathered}
h_{1} \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), h_{2} \equiv\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), e_{1} \equiv\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
e_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), f_{1} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f_{2} \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

The generators satisfy the relations:
(1) $\left[h_{1}, h_{2}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$
(2) $\left[h_{i}, e_{i}\right]=2 e_{i},\left[h_{i}, f_{i}\right]=-2 f_{i}$
(3) $\left[h_{i}, e_{j}\right]=-e_{j},\left[h_{i}, f_{j}\right]=+f_{j}$
(9) $\left(\operatorname{ad} e_{i}\right)^{2}\left(e_{j}\right)=0,\left(\operatorname{ad} f_{i}\right)^{2}\left(f_{j}\right)=0$

Kac-Moody algebras in general

A general Kac-Moody algebra $\mathfrak{g}(A)(\mathbb{K})$ has generators e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n} and h_{1}, \ldots, h_{n} which are subject to the relations

Kac-Moody algebras in general

A general Kac-Moody algebra $\mathfrak{g}(A)(\mathbb{K})$ has generators e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n} and h_{1}, \ldots, h_{n} which are subject to the relations
(1) $\left[h_{i}, h_{j}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$

Kac-Moody algebras in general

A general Kac-Moody algebra $\mathfrak{g}(A)(\mathbb{K})$ has generators e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n} and h_{1}, \ldots, h_{n} which are subject to the relations
(1) $\left[h_{i}, h_{j}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$
(2) $\left[h_{i}, e_{j}\right]=a_{i j} e_{j},\left[h_{i}, f_{j}\right]=-a_{i j} f_{j}$

Kac-Moody algebras in general

A general Kac-Moody algebra $\mathfrak{g}(A)(\mathbb{K})$ has generators e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n} and h_{1}, \ldots, h_{n} which are subject to the relations
(1) $\left[h_{i}, h_{j}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$
(2) $\left[h_{i}, e_{j}\right]=a_{i j} e_{j},\left[h_{i}, f_{j}\right]=-a_{i j} f_{j}$
(3) $\left(\operatorname{ad} e_{i}\right)^{1-a_{i j}}\left(e_{j}\right)=0,\left(\operatorname{ad} f_{i}\right)^{1-a_{i j}}\left(f_{j}\right)=0$

Kac-Moody algebras in general

A general Kac-Moody algebra $\mathfrak{g}(A)(\mathbb{K})$ has generators e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n} and h_{1}, \ldots, h_{n} which are subject to the relations
(1) $\left[h_{i}, h_{j}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$
(2) $\left[h_{i}, e_{j}\right]=a_{i j} e_{j},\left[h_{i}, f_{j}\right]=-a_{i j} f_{j}$
(3) $\left(\operatorname{ad} e_{i}\right)^{1-a_{i j}}\left(e_{j}\right)=0,\left(\operatorname{ad} f_{i}\right)^{1-a_{i j}}\left(f_{j}\right)=0$

For $\mathfrak{s l}(n, \mathbb{R})$ these generators are $\left(a_{i i}=2, a_{i, i+1}=-1, a_{i j}=0\right)$
$e_{i} \equiv\left(\begin{array}{lll}\ddots & & \\ & 1 & \\ & & \ddots\end{array}\right) f_{i} \equiv\left(\begin{array}{llll}\ddots & & \\ & & \\ & & & \\ & & \ddots\end{array}\right) \quad h_{i} \equiv\left(\begin{array}{llll}\ddots & & & \\ & 1 & & \\ & & -1 & \\ & & & \ddots\end{array}\right)$

Encoding relations among the generators

- Summarize the relations among the Cartan-Chevalley generators in a matrix $A \in \mathbb{Z}^{n \times n}$ called the generalized Cartan matrix.

Encoding relations among the generators

- Summarize the relations among the Cartan-Chevalley generators in a matrix $A \in \mathbb{Z}^{n \times n}$ called the generalized Cartan matrix.

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Generalized Cartan matrix of $\mathfrak{s l}(4, \mathbb{R})$

Encoding relations among the generators

- Summarize the relations among the Cartan-Chevalley generators in a matrix $A \in \mathbb{Z}^{n \times n}$ called the generalized Cartan matrix.

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Generalized Cartan matrix of $\mathfrak{s l}(4, \mathbb{R})$

- Visualization: Generalized Dynkin diagrams.

Encoding relations among the generators

- Summarize the relations among the Cartan-Chevalley generators in a matrix $A \in \mathbb{Z}^{n \times n}$ called the generalized Cartan matrix.

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Generalized Cartan matrix of $\mathfrak{s l}(4, \mathbb{R})$

- Visualization: Generalized Dynkin diagrams.

Generalized Dynkin diagram of $\mathfrak{s l}(n)$

Encoding relations among the generators

- Summarize the relations among the Cartan-Chevalley generators in a matrix $A \in \mathbb{Z}^{n \times n}$ called the generalized Cartan matrix.

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Generalized Cartan matrix of $\mathfrak{s l}(4, \mathbb{R})$

- Visualization: Generalized Dynkin diagrams.

Generalized Dynkin diagram of E_{n}

Generators vs. full basis: $\mathfrak{s l}(n, \mathbb{R})$

- $\mathfrak{s l}(n, \mathbb{R}): 3(n-1)$ generators and $n^{2}-1$ basis elements

Generators vs. full basis: $\mathfrak{s l}(n, \mathbb{R})$

- $\mathfrak{s l}(n, \mathbb{R}): 3(n-1)$ generators and $n^{2}-1$ basis elements
- A rep. $\rho: \mathfrak{s l}(n, \mathbb{R}) \rightarrow \mathbb{R}^{m \times m}$ needs to satisfy

$$
[\rho(x), \rho(y)]=\rho([x, y])
$$

Generators vs. full basis: $\mathfrak{s l}(n, \mathbb{R})$

- $\mathfrak{s l}(n, \mathbb{R}): 3(n-1)$ generators and $n^{2}-1$ basis elements
- A rep. $\rho: \mathfrak{s l}(n, \mathbb{R}) \rightarrow \mathbb{R}^{m \times m}$ needs to satisfy

$$
[\rho(x), \rho(y)]=\rho([x, y])
$$

- Basis: roughly $\frac{1}{2}\left(n^{2}-1\right)\left(n^{2}-2\right)$ relations

Generators vs. full basis: $\mathfrak{s l}(n, \mathbb{R})$

- $\mathfrak{s l}(n, \mathbb{R}): 3(n-1)$ generators and $n^{2}-1$ basis elements
- A rep. $\rho: \mathfrak{s l}(n, \mathbb{R}) \rightarrow \mathbb{R}^{m \times m}$ needs to satisfy

$$
[\rho(x), \rho(y)]=\rho([x, y])
$$

- Basis: roughly $\frac{1}{2}\left(n^{2}-1\right)\left(n^{2}-2\right)$ relations
- Generators: roughly $9(n-1)^{2}$ relations

Generators vs. full basis: $\mathfrak{s l}(n, \mathbb{R})$

- $\mathfrak{s l}(n, \mathbb{R}): 3(n-1)$ generators and $n^{2}-1$ basis elements
- A rep. $\rho: \mathfrak{s l}(n, \mathbb{R}) \rightarrow \mathbb{R}^{m \times m}$ needs to satisfy

$$
[\rho(x), \rho(y)]=\rho([x, y])
$$

- Basis: roughly $\frac{1}{2}\left(n^{2}-1\right)\left(n^{2}-2\right)$ relations
- Generators: roughly $9(n-1)^{2}$ relations
- Work with generators when looking for reps.

Generators vs. full basis: $\mathfrak{s l}(n, \mathbb{R})$

- $\mathfrak{s l}(n, \mathbb{R}): 3(n-1)$ generators and $n^{2}-1$ basis elements
- A rep. $\rho: \mathfrak{s l}(n, \mathbb{R}) \rightarrow \mathbb{R}^{m \times m}$ needs to satisfy

$$
[\rho(x), \rho(y)]=\rho([x, y])
$$

- Basis: roughly $\frac{1}{2}\left(n^{2}-1\right)\left(n^{2}-2\right)$ relations
- Generators: roughly $9(n-1)^{2}$ relations
- Work with generators when looking for reps.
- Towards E_{10} : infinite dimensional but finitely many generators

The maximal compact subalgebra

- simply-laced $\Leftrightarrow a_{i j} \in\{0,-1\}$ for $i \neq j$

The maximal compact subalgebra

- simply-laced $\Leftrightarrow a_{i j} \in\{0,-1\}$ for $i \neq j$
- The maximal compact subalgebra $\mathfrak{k}(A)$ has generators $X_{i}=e_{i}-f_{i}$ satisfying

The maximal compact subalgebra

- simply-laced $\Leftrightarrow a_{i j} \in\{0,-1\}$ for $i \neq j$
- The maximal compact subalgebra $\mathfrak{k}(A)$ has generators $X_{i}=e_{i}-f_{i}$ satisfying

$$
\begin{aligned}
{\left[X_{i},\left[X_{i}, X_{j}\right]\right]=-X_{j} } & \text { if } a_{i j}=-1 \quad(\Leftrightarrow(i, j) \in E) \\
{\left[X_{i}, X_{j}\right]=0 } & \text { if } a_{i j}=0 \quad(\Leftrightarrow(i, j) \notin E)
\end{aligned}
$$

The maximal compact subalgebra

- simply-laced $\Leftrightarrow a_{i j} \in\{0,-1\}$ for $i \neq j$
- The maximal compact subalgebra $\mathfrak{k}(A)$ has generators $X_{i}=e_{i}-f_{i}$ satisfying

$$
\begin{aligned}
{\left[X_{i},\left[X_{i}, X_{j}\right]\right]=-X_{j} } & \text { if } a_{i j}=-1 \quad(\Leftrightarrow(i, j) \in E) \\
{\left[X_{i}, X_{j}\right]=0 } & \text { if } a_{i j}=0 \quad(\Leftrightarrow(i, j) \notin E)
\end{aligned}
$$

- $\mathfrak{s l}(3, \mathbb{R}) \longrightarrow \mathfrak{k}=\mathfrak{s o}(3, \mathbb{R})$

The maximal compact subalgebra

- simply-laced $\Leftrightarrow a_{i j} \in\{0,-1\}$ for $i \neq j$
- The maximal compact subalgebra $\mathfrak{k}(A)$ has generators $X_{i}=e_{i}-f_{i}$ satisfying

$$
\begin{array}{rll}
{\left[X_{i},\left[X_{i}, X_{j}\right]\right]=-X_{j}} & \text { if } a_{i j}=-1 \quad(\Leftrightarrow(i, j) \in E) \\
{\left[X_{i}, X_{j}\right]=0} & \text { if } a_{i j}=0 \quad(\Leftrightarrow(i, j) \notin E)
\end{array}
$$

- $\mathfrak{s l}(3, \mathbb{R}) \longrightarrow \mathfrak{k}=\mathfrak{s o}(3, \mathbb{R})$

$$
\begin{gathered}
X_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), X_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \\
{\left[X_{1}, X_{2}\right]=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)}
\end{gathered}
$$

An extension of the $\mathfrak{s o}(n)$ spin representation to $\mathfrak{k}\left(E_{n}\right)$

- $E_{n}(\mathbb{R})$ contains a subalgebra $\mathfrak{s l}(n, \mathbb{R})$.

An extension of the $\mathfrak{s o}(n)$ spin representation to $\mathfrak{k}\left(E_{n}\right)$

- $E_{n}(\mathbb{R})$ contains a subalgebra $\mathfrak{s l}(n, \mathbb{R})$.
- \mathfrak{k} of $\mathfrak{s l}(n, \mathbb{R})$ is $\mathfrak{s o}(n, \mathbb{R})$ and so $\mathfrak{k}\left(E_{n}\right)(\mathbb{R})$ contains $\mathfrak{s o}(n, \mathbb{R})$ as a subalgebra.

An extension of the $\mathfrak{s o}(n)$ spin representation to $\mathfrak{k}\left(E_{n}\right)$

- $E_{n}(\mathbb{R})$ contains a subalgebra $\mathfrak{s l}(n, \mathbb{R})$.
- \mathfrak{k} of $\mathfrak{s l}(n, \mathbb{R})$ is $\mathfrak{s o}(n, \mathbb{R})$ and so $\mathfrak{k}\left(E_{n}\right)(\mathbb{R})$ contains $\mathfrak{s o}(n, \mathbb{R})$ as a subalgebra.
- Reps. of $\mathfrak{s o}(n, \mathbb{R})$ that do not lift to $S O(n, \mathbb{R})$ but only to $\operatorname{Spin}(n)$ are called spin reps.

An extension of the $\mathfrak{s o}(n)$ spin representation to $\mathfrak{k}\left(E_{n}\right)$

- $E_{n}(\mathbb{R})$ contains a subalgebra $\mathfrak{s l}(n, \mathbb{R})$.
- \mathfrak{k} of $\mathfrak{s l}(n, \mathbb{R})$ is $\mathfrak{s o}(n, \mathbb{R})$ and so $\mathfrak{k}\left(E_{n}\right)(\mathbb{R})$ contains $\mathfrak{s o}(n, \mathbb{R})$ as a subalgebra.
- Reps. of $\mathfrak{s o}(n, \mathbb{R})$ that do not lift to $S O(n, \mathbb{R})$ but only to $\operatorname{Spin}(n)$ are called spin reps.
- A classical spin rep of $\mathfrak{s o}(n, \mathbb{R})$ is defined by

$$
X_{1} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2}, X_{i} \mapsto \frac{1}{2} \gamma_{i-1} \gamma_{i}
$$

for $n \geq i \geq 3$.

An extension of the $\mathfrak{s o}(n)$ spin representation to $\mathfrak{k}\left(E_{n}\right)$

- $E_{n}(\mathbb{R})$ contains a subalgebra $\mathfrak{s l}(n, \mathbb{R})$.
- \mathfrak{k} of $\mathfrak{s l}(n, \mathbb{R})$ is $\mathfrak{s o}(n, \mathbb{R})$ and so $\mathfrak{k}\left(E_{n}\right)(\mathbb{R})$ contains $\mathfrak{s o}(n, \mathbb{R})$ as a subalgebra.
- Reps. of $\mathfrak{s o}(n, \mathbb{R})$ that do not lift to $S O(n, \mathbb{R})$ but only to $\operatorname{Spin}(n)$ are called spin reps.
- A classical spin rep of $\mathfrak{s o}(n, \mathbb{R})$ is defined by

$$
X_{1} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2}, \quad X_{i} \mapsto \frac{1}{2} \gamma_{i-1} \gamma_{i}
$$

for $n \geq i \geq 3$.

- An extension to $\mathfrak{k}\left(E_{n}\right)(\mathbb{R})$ is given by

$$
X_{1} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2}, X_{2} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2} \gamma_{3}, X_{i} \mapsto \frac{1}{2} \gamma_{i-1} \gamma_{i}
$$

Generalized spin representations of $\mathfrak{k}\left(E_{n}\right)$ pt 2 .

The representation matrices $\rho: \mathfrak{k}\left(E_{n}\right)(\mathbb{R}) \mapsto \mathbb{C}^{s \times s}$ given by

$$
X_{1} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2}, \quad X_{2} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2} \gamma_{3}, X_{i} \mapsto \frac{1}{2} \gamma_{i-1} \gamma_{i}
$$

have the following properties:

Generalized spin representations of $\mathfrak{k}\left(E_{n}\right)$ pt 2 .

The representation matrices $\rho: \mathfrak{k}\left(E_{n}\right)(\mathbb{R}) \mapsto \mathbb{C}^{s \times s}$ given by

$$
X_{1} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2}, X_{2} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2} \gamma_{3}, X_{i} \mapsto \frac{1}{2} \gamma_{i-1} \gamma_{i}
$$

have the following properties:

- $\rho\left(X_{i}\right)^{2}=-\frac{1}{4} i d_{s}$

Generalized spin representations of $\mathfrak{k}\left(E_{n}\right)$ pt 2 .

The representation matrices $\rho: \mathfrak{k}\left(E_{n}\right)(\mathbb{R}) \mapsto \mathbb{C}^{s \times s}$ given by

$$
X_{1} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2}, \quad X_{2} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2} \gamma_{3}, X_{i} \mapsto \frac{1}{2} \gamma_{i-1} \gamma_{i}
$$

have the following properties:

- $\rho\left(X_{i}\right)^{2}=-\frac{1}{4} i d_{s}$
- $\left[\rho\left(X_{i}\right), \rho\left(X_{j}\right)\right]=0$ if $(i, j) \notin E$

Generalized spin representations of $\mathfrak{k}\left(E_{n}\right)$ pt 2 .

The representation matrices $\rho: \mathfrak{k}\left(E_{n}\right)(\mathbb{R}) \mapsto \mathbb{C}^{s \times s}$ given by

$$
X_{1} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2}, X_{2} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2} \gamma_{3}, X_{i} \mapsto \frac{1}{2} \gamma_{i-1} \gamma_{i}
$$

have the following properties:

- $\rho\left(X_{i}\right)^{2}=-\frac{1}{4} i d_{s}$
- $\left[\rho\left(X_{i}\right), \rho\left(X_{j}\right)\right]=0$ if $(i, j) \notin E$
- $\left\{\rho\left(X_{i}\right), \rho\left(X_{j}\right)\right\}:=\rho\left(X_{i}\right) \rho\left(X_{j}\right)+\rho\left(X_{j}\right) \rho\left(X_{i}\right)=0$ if $(i, j) \in E$

Generalized spin representations of $\mathfrak{k}\left(E_{n}\right)$ pt 2 .

The representation matrices $\rho: \mathfrak{k}\left(E_{n}\right)(\mathbb{R}) \mapsto \mathbb{C}^{s \times s}$ given by

$$
X_{1} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2}, X_{2} \mapsto \frac{1}{2} \gamma_{1} \gamma_{2} \gamma_{3}, X_{i} \mapsto \frac{1}{2} \gamma_{i-1} \gamma_{i}
$$

have the following properties:

- $\rho\left(X_{i}\right)^{2}=-\frac{1}{4} i d_{s}$
- $\left[\rho\left(X_{i}\right), \rho\left(X_{j}\right)\right]=0$ if $(i, j) \notin E$
- $\left\{\rho\left(X_{i}\right), \rho\left(X_{j}\right)\right\}:=\rho\left(X_{i}\right) \rho\left(X_{j}\right)+\rho\left(X_{j}\right) \rho\left(X_{i}\right)=0$ if $(i, j) \in E$
- Given any simply laced $\mathfrak{k}(A)$ a set of matrices which satisfy the above relations define a representation of $\mathfrak{k}(A)$ (see [Köhl and others...])

Timeline

- The above extensions of were first performed in quantum gravity (see Thibault Damour, Axel Kleinschmidt and Hermann Nicolai, "Hidden symmetries and the fermionic sector of eleven-dimensional supergravity ", arXiv:hep-th/0512163 10 February 2006.)

Timeline

- The above extensions of were first performed in quantum gravity (see Thibault Damour, Axel Kleinschmidt and Hermann Nicolai, "Hidden symmetries and the fermionic sector of eleven-dimensional supergravity ", arXiv:hep-th/0512163 10 February 2006.)
- A mathematical treatment and their extension to arbitrary symmetrizable Kac-Moody algebras were done later (see Guntram Hainke, Ralf Köhl and Paul Levy, "Generalized Spin Representations", Münster Journal of Mathematics (2015).)

Higher Spin Representations?

- So far: Generalized the classical spin $\frac{1}{2}$-representation of $\mathfrak{s o}(n)$ to $\mathfrak{k}\left(E_{n}\right)$.

Higher Spin Representations?

- So far: Generalized the classical spin $\frac{1}{2}$-representation of $\mathfrak{s o}(n)$ to $\mathfrak{k}\left(E_{n}\right)$.
- To obtain higher fermionic representations: Take the tensor product with the vector representation (resp. the natural representation).

Higher Spin Representations?

- So far: Generalized the classical spin $\frac{1}{2}$-representation of $\mathfrak{s o}(n)$ to $\mathfrak{k}\left(E_{n}\right)$.
- To obtain higher fermionic representations: Take the tensor product with the vector representation (resp. the natural representation).
- What is a natural representation of E_{10} ?

Higher Spin Representations?

- So far: Generalized the classical spin $\frac{1}{2}$-representation of $\mathfrak{s o}(n)$ to $\mathfrak{k}\left(E_{n}\right)$.
- To obtain higher fermionic representations: Take the tensor product with the vector representation (resp. the natural representation).
- What is a natural representation of E_{10} ?
- \mathfrak{h}^{*} has Lorentzian signature

Higher Spin Representations?

- So far: Generalized the classical spin $\frac{1}{2}$-representation of $\mathfrak{s o}(n)$ to $\mathfrak{k}\left(E_{n}\right)$.
- To obtain higher fermionic representations: Take the tensor product with the vector representation (resp. the natural representation).
- What is a natural representation of E_{10} ?
- \mathfrak{h}^{*} has Lorentzian signature
- Generators \rightarrow Root system $\subset \mathfrak{h}^{*} \rightarrow$ Tensor product rep. via roots

Roots and root spaces

- Call $\mathfrak{h}:=\operatorname{span}\left\{h_{1}, \ldots, h_{n}\right\}$ the Cartan subalgebra.

Roots and root spaces

- Call $\mathfrak{h}:=\operatorname{span}\left\{h_{1}, \ldots, h_{n}\right\}$ the Cartan subalgebra.
- There exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathfrak{h}^{*}$ such that for all $h \in \mathfrak{h}$ and $i=1, \ldots, n$ it holds

$$
\left[h, e_{i}\right]=\alpha_{i}(h) e_{i},\left[h, f_{i}\right]=-\alpha_{i}(h) f_{i}
$$

Call $\alpha_{1}, \ldots, \alpha_{n}$ the simple roots.

Roots and root spaces

- Call $\mathfrak{h}:=$ span $\left\{h_{1}, \ldots, h_{n}\right\}$ the Cartan subalgebra.
- There exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathfrak{h}^{*}$ such that for all $h \in \mathfrak{h}$ and $i=1, \ldots, n$ it holds

$$
\left[h, e_{i}\right]=\alpha_{i}(h) e_{i},\left[h, f_{i}\right]=-\alpha_{i}(h) f_{i}
$$

Call $\alpha_{1}, \ldots, \alpha_{n}$ the simple roots.

- Call $0 \neq \mathfrak{g}_{\alpha}:=\{x \in \mathfrak{g}(A) \mid[h, x]=\alpha(h) x \forall h \in \mathfrak{h}\}$ for $\alpha \in \mathfrak{h}^{*}$ root space.

Roots and root spaces

- Call $\mathfrak{h}:=\operatorname{span}\left\{h_{1}, \ldots, h_{n}\right\}$ the Cartan subalgebra.
- There exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathfrak{h}^{*}$ such that for all $h \in \mathfrak{h}$ and $i=1, \ldots, n$ it holds

$$
\left[h, e_{i}\right]=\alpha_{i}(h) e_{i},\left[h, f_{i}\right]=-\alpha_{i}(h) f_{i}
$$

Call $\alpha_{1}, \ldots, \alpha_{n}$ the simple roots.

- Call $0 \neq \mathfrak{g}_{\alpha}:=\{x \in \mathfrak{g}(A) \mid[h, x]=\alpha(h) x \forall h \in \mathfrak{h}\}$ for $\alpha \in \mathfrak{h}^{*}$ root space.
- There is a decomposition of $\mathfrak{g}(A)$ as

$$
\mathfrak{g}(A)=\left(\bigoplus_{0 \neq \alpha \in Q_{+}} \mathfrak{g}_{-\alpha}\right) \oplus \mathfrak{h} \oplus\left(\bigoplus_{0 \neq \alpha \in Q_{+}} \mathfrak{g}_{\alpha}\right)
$$

where $Q_{+}=\sum_{i=1}^{n} \mathbb{Z}_{\geq 0} \alpha_{i}$.

Roots and root spaces pt. 2

- There exists a bilinear form $(\cdot \mid \cdot)$ on the root system that takes integer values.

Roots and root spaces pt. 2

- There exists a bilinear form $(\cdot \mid \cdot)$ on the root system that takes integer values.
- For the simple roots α_{i} it holds $\operatorname{dim} \mathfrak{g}_{\alpha_{i}}=1$.

Roots and root spaces pt. 2

- There exists a bilinear form $(\cdot \mid \cdot)$ on the root system that takes integer values.
- For the simple roots α_{i} it holds $\operatorname{dim} \mathfrak{g}_{\alpha_{i}}=1$.
- For $X_{i}=e_{i}-f_{i}$ it holds $X_{i} \in\left(\mathfrak{g}_{\alpha_{i}} \oplus \mathfrak{g}_{-\alpha_{i}}\right)$.

Roots and root spaces pt. 2

- There exists a bilinear form $(\cdot \mid \cdot)$ on the root system that takes integer values.
- For the simple roots α_{i} it holds $\operatorname{dim} \mathfrak{g}_{\alpha_{i}}=1$.
- For $X_{i}=e_{i}-f_{i}$ it holds $X_{i} \in\left(\mathfrak{g}_{\alpha_{i}} \oplus \mathfrak{g}_{-\alpha_{i}}\right)$.
- Correspondence between generators X_{1}, \ldots, X_{n} and simple roots $\alpha_{1}, \ldots, \alpha_{n}$.

Roots and root spaces pt. 2

- There exists a bilinear form $(\cdot \mid \cdot)$ on the root system that takes integer values.
- For the simple roots α_{i} it holds $\operatorname{dim} \mathfrak{g}_{\alpha_{i}}=1$.
- For $X_{i}=e_{i}-f_{i}$ it holds $X_{i} \in\left(\mathfrak{g}_{\alpha_{i}} \oplus \mathfrak{g}_{-\alpha_{i}}\right)$.
- Correspondence between generators X_{1}, \ldots, X_{n} and simple roots $\alpha_{1}, \ldots, \alpha_{n}$.
- For E_{10}, \mathfrak{h}^{*} is ten-dimensional and the bilinear form $(\cdot \mid \cdot)$ on \mathfrak{h}^{*} has signature $(-,+,+, \ldots,+)$.

Higher Spin Representations

- Given a gen. spin rep. $\rho: \mathfrak{k} \rightarrow \mathbb{R}^{2 s \times 2 s}$ extend to rep on $V \otimes \mathbb{R}^{2 s}$.

Higher Spin Representations

- Given a gen. spin rep. $\rho: \mathfrak{k} \rightarrow \mathbb{R}^{2 s \times 2 s}$ extend to rep on $V \otimes \mathbb{R}^{2 s}$.
- Phrase the extended spin rep $\sigma: \mathfrak{k} \rightarrow$ End $\left(V \otimes \mathbb{R}^{2 s}\right)$ in terms of root data, that is for $y \in \mathfrak{g}_{\alpha}$ set

$$
\sigma(y)=X(\alpha) \otimes \rho(y)
$$

Higher Spin Representations

- Given a gen. spin rep. $\rho: \mathfrak{k} \rightarrow \mathbb{R}^{2 s \times 2 s}$ extend to rep on $V \otimes \mathbb{R}^{2 s}$.
- Phrase the extended spin rep $\sigma: \mathfrak{k} \rightarrow$ End $\left(V \otimes \mathbb{R}^{2 s}\right)$ in terms of root data, that is for $y \in \mathfrak{g}_{\alpha}$ set

$$
\sigma(y)=X(\alpha) \otimes \rho(y)
$$

- This defines a rep if

$$
\begin{aligned}
{[X(\alpha), X(\beta)] } & =0 & & \text { if }(\alpha \mid \beta)=0 \\
\{X(\alpha), X(\beta)\} & =X(\alpha \pm \beta) & & \text { if }(\alpha \mid \beta)=\mp 1 .
\end{aligned}
$$

for all $\alpha, \beta \in \Lambda$.

Higher Spin Representations pt. 2

- One chooses $V=\mathfrak{h}^{*}$ or symmetric powers of \mathfrak{h}^{*}. For $V=\mathfrak{h}^{*}$,

$$
\alpha \mapsto X(\alpha):=-\alpha(\alpha \mid \cdot)+\frac{1}{2} i d_{\mathfrak{h}^{*}} .
$$

provides a higher spin rep $\left(\operatorname{spin} \frac{3}{2}\right)$.

Higher Spin Representations pt. 2

- One chooses $V=\mathfrak{h}^{*}$ or symmetric powers of \mathfrak{h}^{*}. For $V=\mathfrak{h}^{*}$,

$$
\alpha \mapsto X(\alpha):=-\alpha(\alpha \mid \cdot)+\frac{1}{2} i d_{\mathfrak{h}^{*}} .
$$

provides a higher spin rep $\left(\operatorname{spin} \frac{3}{2}\right)$.

- First constructed by Kleinschmidt and Nicolai ${ }^{2}$ using an approach in second quantized form and a specific choice of coordinates for \mathfrak{h}^{*}.

[^5]
Higher Spin Representations pt. 2

- One chooses $V=\mathfrak{h}^{*}$ or symmetric powers of \mathfrak{h}^{*}. For $V=\mathfrak{h}^{*}$,

$$
\alpha \mapsto X(\alpha):=-\alpha(\alpha \mid \cdot)+\frac{1}{2} i d_{\mathfrak{h}^{*}}
$$

provides a higher spin rep $\left(\operatorname{spin} \frac{3}{2}\right)$.

- First constructed by Kleinschmidt and Nicolai ${ }^{2}$ using an approach in second quantized form and a specific choice of coordinates for \mathfrak{h}^{*}.
- They also found higher spin reps corresponding to spin $\frac{5}{2}$ and $\frac{7}{2}$ in the E_{10}-sense

[^6]
Higher Spin Representations pt. 2

- One chooses $V=\mathfrak{h}^{*}$ or symmetric powers of \mathfrak{h}^{*}. For $V=\mathfrak{h}^{*}$,

$$
\alpha \mapsto X(\alpha):=-\alpha(\alpha \mid \cdot)+\frac{1}{2} i d_{\mathfrak{h}^{*}} .
$$

provides a higher spin rep $\left(\operatorname{spin} \frac{3}{2}\right)$.

- First constructed by Kleinschmidt and Nicolai ${ }^{2}$ using an approach in second quantized form and a specific choice of coordinates for \mathfrak{h}^{*}.
- They also found higher spin reps corresponding to spin $\frac{5}{2}$ and $\frac{7}{2}$ in the E10-sense
- Transformed as mixtures of $\frac{1}{2}-$ and $\frac{3}{2}-$ spin w.r.t- $\mathfrak{s o}(10)$.

[^7]
Further results and open questions

- As Paul Levy pointed out the $\frac{3}{2}$ - and $\frac{5}{2}$-representations take the form of natural reflection actions on \mathfrak{h}^{*} resp. $\operatorname{Sym}^{2}\left(\mathfrak{h}^{*}\right)$.

Further results and open questions

- As Paul Levy pointed out the $\frac{3}{2}$ - and $\frac{5}{2}$-representations take the form of natural reflection actions on \mathfrak{h}^{*} resp. Sym ${ }^{2}\left(\mathfrak{h}^{*}\right)$.
- This provides a link to the representation theory of Sym_{3} and a criterion for which $n \in \mathbb{N}$ one finds a representation of this kind using $V=\operatorname{Sym}^{n}\left(\mathfrak{h}^{*}\right)$.

Further results and open questions

- As Paul Levy pointed out the $\frac{3}{2}$ - and $\frac{5}{2}$-representations take the form of natural reflection actions on \mathfrak{h}^{*} resp. Sym ${ }^{2}\left(\mathfrak{h}^{*}\right)$.
- This provides a link to the representation theory of Sym_{3} and a criterion for which $n \in \mathbb{N}$ one finds a representation of this kind using $V=\operatorname{Sym}^{n}\left(\mathfrak{h}^{*}\right)$.
- The spin $-\frac{7}{2}$ representation does not fall into this category so its structure remains even more elusive.

Further results and open questions

- As Paul Levy pointed out the $\frac{3}{2}$ - and $\frac{5}{2}$-representations take the form of natural reflection actions on \mathfrak{h}^{*} resp. Sym ${ }^{2}\left(\mathfrak{h}^{*}\right)$.
- This provides a link to the representation theory of Sym_{3} and a criterion for which $n \in \mathbb{N}$ one finds a representation of this kind using $V=\operatorname{Sym}^{n}\left(\mathfrak{h}^{*}\right)$.
- The spin $-\frac{7}{2}$ representation does not fall into this category so its structure remains even more elusive.
- How do the higher spin representations decompose under the finite dimensional subalgebras $\mathfrak{s o}(1,9)$ and $\mathfrak{s o}(10)$?

Further results and open questions

- As Paul Levy pointed out the $\frac{3}{2}$ - and $\frac{5}{2}$-representations take the form of natural reflection actions on \mathfrak{h}^{*} resp. Sym ${ }^{2}\left(\mathfrak{h}^{*}\right)$.
- This provides a link to the representation theory of Sym_{3} and a criterion for which $n \in \mathbb{N}$ one finds a representation of this kind using $V=\operatorname{Sym}^{n}\left(\mathfrak{h}^{*}\right)$.
- The spin $-\frac{7}{2}$ representation does not fall into this category so its structure remains even more elusive.
- How do the higher spin representations decompose under the finite dimensional subalgebras $\mathfrak{s o}(1,9)$ and $\mathfrak{s o}(10)$?
- What is the ismomorphism type of these representations?

Thank you for your attention

References

嗇 Robin Lautenbacher，Ralf Köhl，＂Extending generalized Spin Representations＂，arXiv：1705．00118［math．RT］（preprint），april 2017.

圊 Guntram Hainke，Ralf Köhl and Paul Levy，＂Generalized Spin Representations＂，Münster Journal of Mathematics（2015）．
Stephen Berman，＂On generators and relations for certain involutory subalgebras of Kac－Moody Lie algebras＂，Comm．Algebra 17 （1989）（12），pp．3165－3185．
E－Thibault Damour，Axel Kleinschmidt and Hermann Nicolai，＂Hidden symmetries and the fermionic sector of eleven－dimensional supergravity＂，arXiv：hep－th／0512163 10 February 2006.
回 Axel Kleinschmidt and Hermann Nicolai，＂On higher spin realizations of $K\left(E_{10}\right)$＂，arXiv：1307．0413， 1 July 2013.
目 Axel Kleinschmidt and Hermann Nicolai，＂Higher spin representations of $K\left(E_{10}\right)$＂，arXiv：1602．04116 12 Febuary 20016

[^0]: ${ }^{1}$ For simplicity only consider $S O(n)$.

[^1]: ${ }^{1}$ For simplicity only consider $S O(n)$.

[^2]: ${ }^{1}$ For simplicity only consider $S O(n)$.

[^3]: ${ }^{1}$ For simplicity only consider $S O(n)$.

[^4]: ${ }^{1}$ For simplicity only consider $S O(n)$.

[^5]: ${ }^{2}$ Axel Kleinschmidt and Hermann Nicolai, " On higher spin realizations of $K\left(E_{-}\{10\}\right)$ " , arXiv:1307.0413, 1 July 2013.

[^6]: ${ }^{2}$ Axel Kleinschmidt and Hermann Nicolai, " On higher spin realizations of $K\left(E_{-}\{10\}\right)$ " , arXiv:1307.0413, 1 July 2013.

[^7]: ${ }^{2}$ Axel Kleinschmidt and Hermann Nicolai, " On higher spin realizations of $K\left(E_{-}\{10\}\right)$ " , arXiv:1307.0413, 1 July 2013.

