Generalized Spin Representations

Robin Lautenbacher

Justus-Liebig University Giessen

May 31, 2017

- 1) The need for generalized spin in quantum gravity
- 2 Kac-Moody algebras
- 3 The maximal compact subalgebra
- Generalized Spin Representations
- 5 Higher Spin Representations

• Ten-dimensional supergravity: Emerging E_{10} -symmetry.

- Ten-dimensional supergravity: Emerging E_{10} -symmetry.
- Usually: SL(n)−covariance + inner product (·|·) invariant under SO(n) resp. SO(1, n − 1)¹

¹For simplicity only consider SO(n).

- Ten-dimensional supergravity: Emerging *E*₁₀-symmetry.
- Usually: SL(n)-covariance + inner product $(\cdot|\cdot)$ invariant under SO(n) resp. $SO(1, n-1)^1$
- Fermions: Reps. of $\mathfrak{so}(n)$ that do not lift to SO(n) but to Spin(n).

¹For simplicity only consider SO(n).

- Ten-dimensional supergravity: Emerging *E*₁₀-symmetry.
- Usually: SL(n)-covariance + inner product $(\cdot|\cdot)$ invariant under SO(n) resp. $SO(1, n-1)^1$
- Fermions: Reps. of $\mathfrak{so}(n)$ that do not lift to SO(n) but to Spin(n).
- $SL(10) < E_{10} \Rightarrow$ Need to extend spin reps. of $\mathfrak{so}(10)$ to $\mathfrak{k}(E_{10})$.

¹For simplicity only consider SO(n).

- Ten-dimensional supergravity: Emerging *E*₁₀-symmetry.
- Usually: SL(n)-covariance + inner product $(\cdot|\cdot)$ invariant under SO(n) resp. $SO(1, n 1)^1$
- Fermions: Reps. of $\mathfrak{so}(n)$ that do not lift to SO(n) but to Spin(n).
- $SL(10) < E_{10} \Rightarrow$ Need to extend spin reps. of $\mathfrak{so}(10)$ to $\mathfrak{k}(E_{10})$.
- Yields: *E*₁₀-spinors.

¹For simplicity only consider SO(n).

- Ten-dimensional supergravity: Emerging *E*₁₀-symmetry.
- Usually: SL(n)-covariance + inner product $(\cdot|\cdot)$ invariant under SO(n) resp. $SO(1, n-1)^1$
- Fermions: Reps. of $\mathfrak{so}(n)$ that do not lift to SO(n) but to Spin(n).
- $SL(10) < E_{10} \Rightarrow$ Need to extend spin reps. of $\mathfrak{so}(10)$ to $\mathfrak{k}(E_{10})$.
- Yields: *E*₁₀-spinors.
- Treatment on the level of Kac-Moody algebras.

¹For simplicity only consider SO(n).

• Basis of $\mathfrak{sl}(3,\mathbb{R})$:

$$\left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\}$$

Image: A 1 → A

• Basis of $\mathfrak{sl}(3,\mathbb{R})$:

$$\left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\}$$

• Generators of $\mathfrak{sl}(3,\mathbb{R})$:

$$\begin{split} h_1 &\equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} , \ h_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , \ e_1 &\equiv \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ e_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} , \ f_1 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} , \ f_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \end{split}$$

• Generators of $\mathfrak{sl}(3,\mathbb{R})$:

$$\begin{split} h_1 &\equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ h_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ e_1 &\equiv \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ e_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ f_1 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ f_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \end{split}$$

< 🗇 🕨

• Generators of $\mathfrak{sl}(3,\mathbb{R})$:

$$\begin{aligned} h_1 &\equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ h_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ e_1 &\equiv \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ e_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ f_1 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ f_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \end{aligned}$$

 Any element of sl(3, ℝ) can be obtained as a linear combination of commutators of the generators:

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{bmatrix} e_1, e_2 \end{bmatrix} , \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{bmatrix} f_1, f_2 \end{bmatrix}$$

• Generators of $\mathfrak{sl}(3,\mathbb{R})$:

$$\begin{aligned} h_1 &\equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ h_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ e_1 &\equiv \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ e_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ f_1 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ f_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \end{aligned}$$

Image: A 1 → A

• Generators of $\mathfrak{sl}(3,\mathbb{R})$:

$$\begin{aligned} h_1 &\equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ h_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ e_1 &\equiv \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ e_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ f_1 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ f_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \end{aligned}$$

• Generators of $\mathfrak{sl}(3,\mathbb{R})$:

$$\begin{aligned} h_1 &\equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ h_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ e_1 &\equiv \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ e_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ f_1 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ f_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \end{aligned}$$

1
$$[h_1, h_2] = 0$$
, $[e_i, f_j] = \delta_{ij} h_i$

• Generators of $\mathfrak{sl}(3,\mathbb{R})$:

$$\begin{aligned} h_1 &\equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ h_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ e_1 &\equiv \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ e_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ f_1 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ f_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \end{aligned}$$

•
$$[h_1, h_2] = 0$$
, $[e_i, f_j] = \delta_{ij}h_i$
• $[h_i, e_i] = 2e_i$, $[h_i, f_i] = -2f_i$

• Generators of $\mathfrak{sl}(3,\mathbb{R})$:

$$\begin{aligned} h_1 &\equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ h_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ e_1 &\equiv \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ e_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ f_1 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ f_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \end{aligned}$$

•
$$[h_1, h_2] = 0$$
, $[e_i, f_j] = \delta_{ij}h_i$
• $[h_i, e_i] = 2e_i$, $[h_i, f_i] = -2f_i$
• $[h_i, e_i] = -e_i$, $[h_i, f_i] = +f_i$

• Generators of $\mathfrak{sl}(3,\mathbb{R})$:

$$\begin{aligned} h_1 &\equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ h_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ e_1 &\equiv \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ e_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ f_1 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ f_2 &\equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \end{aligned}$$

•
$$[h_1, h_2] = 0$$
, $[e_i, f_j] = \delta_{ij}h_i$
• $[h_i, e_i] = 2e_i$, $[h_i, f_i] = -2f_i$
• $[h_i, e_j] = -e_j$, $[h_i, f_j] = +f_j$
• $(ad e_i)^2 (e_j) = 0$, $(ad f_i)^2 (f_j) = 0$

Kac-Moody algebras in general

1
$$[h_i, h_j] = 0$$
, $[e_i, f_j] = \delta_{ij}h_i$

•
$$[h_i, h_j] = 0$$
, $[e_i, f_j] = \delta_{ij}h_i$
• $[h_i, e_j] = a_{ij}e_j$, $[h_i, f_j] = -a_{ij}f_j$

[
$$h_i, h_j$$
] = 0, $[e_i, f_j] = \delta_{ij} h_i$
 [h_i, e_j] = $a_{ij} e_j$, $[h_i, f_j] = -a_{ij} f_j$
 (ad e_i)^{1- a_{ij}} (e_j) = 0, (ad f_i)^{1- a_{ij}} (f_j) = 0

For $\mathfrak{sl}(n,\mathbb{R})$ these generators are $(a_{ii}=2\,,\,a_{i,i+1}=-1\,,\,a_{ij}=0)$

• Summarize the relations among the Cartan-Chevalley generators in a matrix $A \in \mathbb{Z}^{n \times n}$ called the **generalized Cartan matrix**.

• Summarize the relations among the Cartan-Chevalley generators in a matrix $A \in \mathbb{Z}^{n \times n}$ called the **generalized Cartan matrix**.

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

Generalized Cartan matrix of $\mathfrak{sl}(4,\mathbb{R})$

• Summarize the relations among the Cartan-Chevalley generators in a matrix $A \in \mathbb{Z}^{n \times n}$ called the **generalized Cartan matrix**.

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

Generalized Cartan matrix of $\mathfrak{sl}(4,\mathbb{R})$

• Visualization: Generalized Dynkin diagrams.

Encoding relations among the generators

Summarize the relations among the Cartan-Chevalley generators in a matrix A ∈ Z^{n×n} called the generalized Cartan matrix.

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

Generalized Cartan matrix of $\mathfrak{sl}(4,\mathbb{R})$

• Visualization: Generalized Dynkin diagrams.

Generalized Dynkin diagram of $\mathfrak{sl}(n)$

Encoding relations among the generators

Summarize the relations among the Cartan-Chevalley generators in a matrix A ∈ Z^{n×n} called the generalized Cartan matrix.

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

Generalized Cartan matrix of $\mathfrak{sl}(4,\mathbb{R})$

• Visualization: Generalized Dynkin diagrams.

Generalized Dynkin diagram of E_n

• $\mathfrak{sl}(n,\mathbb{R})$: 3(n-1) generators and n^2-1 basis elements

- $\mathfrak{sl}(n,\mathbb{R})$: 3(n-1) generators and n^2-1 basis elements
- A rep. $\rho : \mathfrak{sl}(n,\mathbb{R}) \to \mathbb{R}^{m \times m}$ needs to satisfy

 $[\rho(x),\rho(y)]=\rho\left([x,y]\right)$

- $\mathfrak{sl}(n,\mathbb{R})$: 3(n-1) generators and n^2-1 basis elements
- A rep. ρ : $\mathfrak{sl}(n,\mathbb{R}) \to \mathbb{R}^{m \times m}$ needs to satisfy

 $[\rho(x),\rho(y)]=\rho\left([x,y]\right)$

• Basis: roughly $\frac{1}{2}(n^2-1)(n^2-2)$ relations

- $\mathfrak{sl}(n,\mathbb{R})$: 3(n-1) generators and n^2-1 basis elements
- A rep. ρ : $\mathfrak{sl}(n,\mathbb{R}) \to \mathbb{R}^{m \times m}$ needs to satisfy

 $[\rho(x),\rho(y)] = \rho([x,y])$

- Basis: roughly $\frac{1}{2}(n^2-1)(n^2-2)$ relations
- Generators: roughly $9(n-1)^2$ relations

- $\mathfrak{sl}(n,\mathbb{R})$: 3(n-1) generators and n^2-1 basis elements
- A rep. ρ : $\mathfrak{sl}(n,\mathbb{R}) \to \mathbb{R}^{m \times m}$ needs to satisfy

 $[\rho(x),\rho(y)] = \rho([x,y])$

- Basis: roughly $\frac{1}{2}(n^2-1)(n^2-2)$ relations
- Generators: roughly $9(n-1)^2$ relations
- Work with generators when looking for reps.

- $\mathfrak{sl}(n,\mathbb{R})$: 3(n-1) generators and n^2-1 basis elements
- A rep. ρ : $\mathfrak{sl}(n,\mathbb{R}) \to \mathbb{R}^{m \times m}$ needs to satisfy

 $[\rho(x),\rho(y)] = \rho([x,y])$

- Basis: roughly $\frac{1}{2}(n^2-1)(n^2-2)$ relations
- Generators: roughly $9(n-1)^2$ relations
- Work with generators when looking for reps.
- Towards E_{10} : infinite dimensional but finitely many generators

The maximal compact subalgebra

• simply-laced $\Leftrightarrow a_{ij} \in \{0, -1\}$ for $i \neq j$

The maximal compact subalgebra

- simply-laced $\Leftrightarrow a_{ij} \in \{0, -1\}$ for $i \neq j$
- The maximal compact subalgebra $\mathfrak{k}(A)$ has generators $X_i = e_i f_i$ satisfying
The maximal compact subalgebra

- simply-laced \Leftrightarrow $a_{ij} \in \{0, -1\}$ for $i \neq j$
- The maximal compact subalgebra $\mathfrak{k}(A)$ has generators $X_i = e_i f_i$ satisfying

$$\begin{split} & [X_i, [X_i, X_j]] &= -X_j & \text{if } a_{ij} = -1 \ (\Leftrightarrow \ (i, j) \in E) \\ & [X_i, X_j] &= 0 & \text{if } a_{ij} = 0 \ (\Leftrightarrow \ (i, j) \notin E) \end{split}$$

The maximal compact subalgebra

- simply-laced \Leftrightarrow $a_{ij} \in \{0, -1\}$ for $i \neq j$
- The maximal compact subalgebra $\mathfrak{k}(A)$ has generators $X_i = e_i f_i$ satisfying

$$\begin{split} & [X_i, [X_i, X_j]] &= -X_j & \text{if } a_{ij} = -1 \ (\Leftrightarrow \ (i, j) \in E) \\ & [X_i, X_j] &= 0 & \text{if } a_{ij} = 0 \ (\Leftrightarrow \ (i, j) \notin E) \end{split}$$

•
$$\mathfrak{sl}(3,\mathbb{R}) \longrightarrow \mathfrak{k} = \mathfrak{so}(3,\mathbb{R})$$

The maximal compact subalgebra

- simply-laced $\Leftrightarrow a_{ij} \in \{0, -1\}$ for $i \neq j$
- The maximal compact subalgebra ℓ(A) has generators X_i = e_i − f_i satisfying

$$\begin{bmatrix} X_i, [X_i, X_j] \end{bmatrix} = -X_j \quad \text{if } a_{ij} = -1 \iff (i, j) \in E) \\ \begin{bmatrix} X_i, X_j \end{bmatrix} = 0 \quad \text{if } a_{ij} = 0 \iff (i, j) \notin E)$$

•
$$\mathfrak{sl}(3,\mathbb{R}) \longrightarrow \mathfrak{k} = \mathfrak{so}(3,\mathbb{R})$$

 $X_1 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$
 $[X_1, X_2] = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$

• $E_n(\mathbb{R})$ contains a subalgebra $\mathfrak{sl}(n,\mathbb{R})$.

- $E_n(\mathbb{R})$ contains a subalgebra $\mathfrak{sl}(n,\mathbb{R})$.
- \mathfrak{k} of $\mathfrak{sl}(n,\mathbb{R})$ is $\mathfrak{so}(n,\mathbb{R})$ and so $\mathfrak{k}(E_n)(\mathbb{R})$ contains $\mathfrak{so}(n,\mathbb{R})$ as a subalgebra.

- $E_n(\mathbb{R})$ contains a subalgebra $\mathfrak{sl}(n,\mathbb{R})$.
- \mathfrak{k} of $\mathfrak{sl}(n,\mathbb{R})$ is $\mathfrak{so}(n,\mathbb{R})$ and so $\mathfrak{k}(E_n)(\mathbb{R})$ contains $\mathfrak{so}(n,\mathbb{R})$ as a subalgebra.
- Reps. of so(n, ℝ) that do not lift to SO(n, ℝ) but only to Spin(n) are called spin reps.

- $E_n(\mathbb{R})$ contains a subalgebra $\mathfrak{sl}(n,\mathbb{R})$.
- \mathfrak{k} of $\mathfrak{sl}(n,\mathbb{R})$ is $\mathfrak{so}(n,\mathbb{R})$ and so $\mathfrak{k}(E_n)(\mathbb{R})$ contains $\mathfrak{so}(n,\mathbb{R})$ as a subalgebra.
- Reps. of so(n, ℝ) that do not lift to SO(n, ℝ) but only to Spin(n) are called spin reps.
- A classical spin rep of $\mathfrak{so}(n,\mathbb{R})$ is defined by

$$X_1 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \ , \ X_i \mapsto \frac{1}{2} \gamma_{i-1} \gamma_i$$

for $n \ge i \ge 3$.

- $E_n(\mathbb{R})$ contains a subalgebra $\mathfrak{sl}(n,\mathbb{R})$.
- \mathfrak{k} of $\mathfrak{sl}(n,\mathbb{R})$ is $\mathfrak{so}(n,\mathbb{R})$ and so $\mathfrak{k}(E_n)(\mathbb{R})$ contains $\mathfrak{so}(n,\mathbb{R})$ as a subalgebra.
- Reps. of so(n, ℝ) that do not lift to SO(n, ℝ) but only to Spin(n) are called spin reps.
- A classical spin rep of $\mathfrak{so}(n,\mathbb{R})$ is defined by

$$X_1 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \ , \ X_i \mapsto \frac{1}{2} \gamma_{i-1} \gamma_i$$

for $n \ge i \ge 3$.

• An extension to $\mathfrak{k}(E_n)(\mathbb{R})$ is given by

$$X_1 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \ , \ X_2 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \gamma_3 \ , \ X_i \mapsto \frac{1}{2} \gamma_{i-1} \gamma_i$$

The representation matrices ρ : $\mathfrak{k}(E_n)(\mathbb{R}) \mapsto \mathbb{C}^{s \times s}$ given by

$$X_1 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \ , \ X_2 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \gamma_3 \ , \ X_i \mapsto \frac{1}{2} \gamma_{i-1} \gamma_i$$

have the following properties:

The representation matrices ρ : $\mathfrak{k}(E_n)(\mathbb{R}) \mapsto \mathbb{C}^{s \times s}$ given by

$$X_1 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \ , \ X_2 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \gamma_3 \ , \ X_i \mapsto \frac{1}{2} \gamma_{i-1} \gamma_i$$

have the following properties:

•
$$\rho(X_i)^2 = -\frac{1}{4}id_s$$

The representation matrices ρ : $\mathfrak{k}(E_n)(\mathbb{R}) \mapsto \mathbb{C}^{s \times s}$ given by

$$X_1 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \ , \ X_2 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \gamma_3 \ , \ X_i \mapsto \frac{1}{2} \gamma_{i-1} \gamma_i$$

have the following properties:

•
$$\rho(X_i)^2 = -\frac{1}{4}id_s$$

•
$$[\rho(X_i), \rho(X_j)] = 0$$
 if $(i, j) \notin E$

The representation matrices ρ : $\mathfrak{k}(E_n)(\mathbb{R}) \mapsto \mathbb{C}^{s \times s}$ given by

$$X_1 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \ , \ X_2 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \gamma_3 \ , \ X_i \mapsto \frac{1}{2} \gamma_{i-1} \gamma_i$$

have the following properties:

• $\rho(X_i)^2 = -\frac{1}{4}id_s$

•
$$[\rho(X_i), \rho(X_j)] = 0$$
 if $(i, j) \notin E$

• { $\rho(X_i), \rho(X_j)$ } := $\rho(X_i) \rho(X_j) + \rho(X_j) \rho(X_i) = 0$ if $(i, j) \in E$

The representation matrices ρ : $\mathfrak{k}(E_n)(\mathbb{R}) \mapsto \mathbb{C}^{s \times s}$ given by

$$X_1 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \ , \ X_2 \mapsto \frac{1}{2} \gamma_1 \gamma_2 \gamma_3 \ , \ X_i \mapsto \frac{1}{2} \gamma_{i-1} \gamma_i$$

have the following properties:

• $\rho(X_i)^2 = -\frac{1}{4}id_s$

•
$$[\rho(X_i), \rho(X_j)] = 0$$
 if $(i, j) \notin E$

• { $\rho(X_i), \rho(X_j)$ } := $\rho(X_i) \rho(X_j) + \rho(X_j) \rho(X_i) = 0$ if $(i, j) \in E$

Given any simply laced \$\mathcal{t}(A)\$ a set of matrices which satisfy the above relations define a representation of \$\mathcal{t}(A)\$ (see [K\vec{ohl} and others...])

 The above extensions of were first performed in quantum gravity (see Thibault Damour, Axel Kleinschmidt and Hermann Nicolai, "Hidden symmetries and the fermionic sector of eleven-dimensional supergravity", arXiv:hep-th/0512163 10 February 2006.)

- The above extensions of were first performed in quantum gravity (see Thibault Damour, Axel Kleinschmidt and Hermann Nicolai, "Hidden symmetries and the fermionic sector of eleven-dimensional supergravity", arXiv:hep-th/0512163 10 February 2006.)
- A mathematical treatment and their extension to arbitrary symmetrizable Kac-Moody algebras were done later (see Guntram Hainke, Ralf Köhl and Paul Levy, "Generalized Spin Representations", Münster Journal of Mathematics (2015).)

• So far: Generalized the classical spin $\frac{1}{2}$ -representation of $\mathfrak{so}(n)$ to $\mathfrak{k}(E_n)$.

- So far: Generalized the classical spin $\frac{1}{2}$ -representation of $\mathfrak{so}(n)$ to $\mathfrak{k}(E_n)$.
- To obtain higher fermionic representations: Take the tensor product with the vector representation (resp. the natural representation).

- So far: Generalized the classical spin $\frac{1}{2}$ -representation of $\mathfrak{so}(n)$ to $\mathfrak{k}(E_n)$.
- To obtain higher fermionic representations: Take the tensor product with the vector representation (resp. the natural representation).
- What is a natural representation of E_{10} ?

- So far: Generalized the classical spin $\frac{1}{2}$ -representation of $\mathfrak{so}(n)$ to $\mathfrak{k}(E_n)$.
- To obtain higher fermionic representations: Take the tensor product with the vector representation (resp. the natural representation).
- What is a natural representation of E_{10} ?
- \mathfrak{h}^* has Lorentzian signature

- So far: Generalized the classical spin $\frac{1}{2}$ -representation of $\mathfrak{so}(n)$ to $\mathfrak{k}(E_n)$.
- To obtain higher fermionic representations: Take the tensor product with the vector representation (resp. the natural representation).
- What is a natural representation of E_{10} ?
- \mathfrak{h}^* has Lorentzian signature
- \bullet Generators \to Root system $\subset \mathfrak{h}^* \to$ Tensor product rep. via roots

• Call $\mathfrak{h} :=$ span $\{h_1, \ldots, h_n\}$ the Cartan subalgebra.

- Call $\mathfrak{h} :=$ span $\{h_1, \ldots, h_n\}$ the Cartan subalgebra.
- There exist a₁,..., a_n ∈ 𝔥* such that for all h ∈ 𝔥 and i = 1,..., n it holds

$$[h, e_i] = \alpha_i(h)e_i , \ [h, f_i] = -\alpha_i(h)f_i$$

Call $\alpha_1, \ldots, \alpha_n$ the simple roots.

- Call $\mathfrak{h} :=$ span $\{h_1, \ldots, h_n\}$ the Cartan subalgebra.
- There exist α₁,..., α_n ∈ 𝔥^{*} such that for all h ∈ 𝔥 and i = 1,..., n it holds

$$[h, e_i] = \alpha_i(h)e_i , \ [h, f_i] = -\alpha_i(h)f_i$$

Call $\alpha_1, \ldots, \alpha_n$ the simple roots.

• Call $0 \neq \mathfrak{g}_{\alpha} := \{x \in \mathfrak{g}(A) \mid [h, x] = \alpha(h)x \ \forall h \in \mathfrak{h}\}$ for $\alpha \in \mathfrak{h}^*$ root space.

- Call $\mathfrak{h} :=$ span $\{h_1, \ldots, h_n\}$ the Cartan subalgebra.
- There exist α₁,..., α_n ∈ 𝔥^{*} such that for all h ∈ 𝔥 and i = 1,..., n it holds

$$[h, e_i] = \alpha_i(h)e_i , \ [h, f_i] = -\alpha_i(h)f_i$$

Call $\alpha_1, \ldots, \alpha_n$ the simple roots.

- Call $0 \neq \mathfrak{g}_{\alpha} := \{x \in \mathfrak{g}(A) \mid [h, x] = \alpha(h)x \ \forall h \in \mathfrak{h}\}$ for $\alpha \in \mathfrak{h}^*$ root space.
- There is a decomposition of $\mathfrak{g}(A)$ as

$$\mathfrak{g}(A) = \left(igoplus_{lpha \in \mathcal{Q}_+} \mathfrak{g}_{-lpha}
ight) \oplus \mathfrak{h} \oplus \left(igoplus_{lpha \in \mathcal{Q}_+} \mathfrak{g}_{lpha}
ight)$$

where $Q_+ = \sum_{i=1}^n \mathbb{Z}_{\geq 0} \alpha_i$.

.

 \bullet There exists a bilinear form $(\cdot|\cdot)$ on the root system that takes integer values.

- \bullet There exists a bilinear form $(\cdot|\cdot)$ on the root system that takes integer values.
- For the simple roots α_i it holds dim $\mathfrak{g}_{\alpha_i} = 1$.

- \bullet There exists a bilinear form $(\cdot|\cdot)$ on the root system that takes integer values.
- For the simple roots α_i it holds dim $\mathfrak{g}_{\alpha_i} = 1$.

• For
$$X_i = e_i - f_i$$
 it holds $X_i \in (\mathfrak{g}_{\alpha_i} \oplus \mathfrak{g}_{-\alpha_i})$.

- There exists a bilinear form (·|·) on the root system that takes integer values.
- For the simple roots α_i it holds dim $\mathfrak{g}_{\alpha_i} = 1$.
- For $X_i = e_i f_i$ it holds $X_i \in (\mathfrak{g}_{\alpha_i} \oplus \mathfrak{g}_{-\alpha_i})$.
- Correspondence between generators X₁,..., X_n and simple roots *α*₁,..., *α*_n.

- There exists a bilinear form $(\cdot|\cdot)$ on the root system that takes integer values.
- For the simple roots α_i it holds dim $\mathfrak{g}_{\alpha_i} = 1$.
- For $X_i = e_i f_i$ it holds $X_i \in (\mathfrak{g}_{\alpha_i} \oplus \mathfrak{g}_{-\alpha_i})$.
- Correspondence between generators X_1, \ldots, X_n and simple roots $\alpha_1, \ldots, \alpha_n$.
- For E₁₀, h^{*} is ten-dimensional and the bilinear form (·|·) on h^{*} has signature (-, +, +, ..., +).

• Given a gen. spin rep. ρ : $\mathfrak{k} \to \mathbb{R}^{2s \times 2s}$ extend to rep on $V \otimes \mathbb{R}^{2s}$.

- Given a gen. spin rep. ρ : $\mathfrak{k} \to \mathbb{R}^{2s \times 2s}$ extend to rep on $V \otimes \mathbb{R}^{2s}$.
- Phrase the extended spin rep σ : $\mathfrak{k} \to End(V \otimes \mathbb{R}^{2s})$ in terms of root data, that is for $y \in \mathfrak{g}_{\alpha}$ set

$$\sigma(y) = X(\alpha) \otimes \rho(y)$$

- Given a gen. spin rep. ρ : $\mathfrak{k} \to \mathbb{R}^{2s \times 2s}$ extend to rep on $V \otimes \mathbb{R}^{2s}$.
- Phrase the extended spin rep σ : $\mathfrak{k} \to End(V \otimes \mathbb{R}^{2s})$ in terms of root data, that is for $y \in \mathfrak{g}_{\alpha}$ set

$$\sigma(\mathbf{y}) = \mathbf{X}(\alpha) \otimes \rho(\mathbf{y})$$

This defines a rep if

$$[X(\alpha), X(\beta)] = 0 \quad \text{if } (\alpha|\beta) = 0 \{X(\alpha), X(\beta)\} = X(\alpha \pm \beta) \quad \text{if } (\alpha|\beta) = \mp 1.$$

for all $\alpha, \beta \in \Lambda$.

Higher Spin Representations pt. 2

• One chooses $V = \mathfrak{h}^*$ or symmetric powers of \mathfrak{h}^* . For $V = \mathfrak{h}^*$,

$$lpha\mapsto X(lpha):=-lpha\left(lpha
ight)+rac{1}{2}id_{\mathfrak{h}^*} \; .$$

provides a higher spin rep (spin $\frac{3}{2}$).

• One chooses $V = \mathfrak{h}^*$ or symmetric powers of \mathfrak{h}^* . For $V = \mathfrak{h}^*$,

$$\alpha \mapsto X(\alpha) := -\alpha \left(\alpha | \cdot \right) + \frac{1}{2} i d_{\mathfrak{h}^*}$$

provides a higher spin rep (spin $\frac{3}{2}$).

 First constructed by Kleinschmidt and Nicolai² using an approach in second quantized form and a specific choice of coordinates for h^{*}.

²Axel Kleinschmidt and Hermann Nicolai, "On higher spin realizations of $K(E_{-}\{10\})$, arXiv:1307.0413, 1 July 2013.

• One chooses $V = \mathfrak{h}^*$ or symmetric powers of \mathfrak{h}^* . For $V = \mathfrak{h}^*$,

$$\alpha \mapsto X(\alpha) := -\alpha \left(\alpha | \cdot \right) + \frac{1}{2} i d_{\mathfrak{h}^*}$$

provides a higher spin rep (spin $\frac{3}{2}$).

- First constructed by Kleinschmidt and Nicolai² using an approach in second quantized form and a specific choice of coordinates for \mathfrak{h}^* .
- They also found higher spin reps corresponding to spin $\frac{5}{2}$ and $\frac{7}{2}$ in the E_{10} -sense

²Axel Kleinschmidt and Hermann Nicolai, "On higher spin realizations of $K(E_{-}\{10\})$, arXiv:1307.0413, 1 July 2013.

• One chooses $V = \mathfrak{h}^*$ or symmetric powers of \mathfrak{h}^* . For $V = \mathfrak{h}^*$,

$$\alpha \mapsto X(\alpha) := -\alpha \left(\alpha | \cdot \right) + \frac{1}{2} i d_{\mathfrak{h}^*}$$

provides a higher spin rep (spin $\frac{3}{2}$).

- First constructed by Kleinschmidt and Nicolai² using an approach in second quantized form and a specific choice of coordinates for h^{*}.
- They also found higher spin reps corresponding to spin $\frac{5}{2}$ and $\frac{7}{2}$ in the E_{10} -sense
- Transformed as mixtures of $\frac{1}{2}$ and $\frac{3}{2}$ -spin w.r.t- $\mathfrak{so}(10)$.

²Axel Kleinschmidt and Hermann Nicolai, "On higher spin realizations of $K(E_{1}\{10\})$, arXiv:1307.0413, 1 July 2013.
As Paul Levy pointed out the ³/₂- and ⁵/₂-representations take the form of natural reflection actions on h* resp. Sym² (h*).

- As Paul Levy pointed out the ³/₂ and ⁵/₂ -representations take the form of natural reflection actions on h* resp. Sym² (h*).
- This provides a link to the representation theory of Sym₃ and a criterion for which n ∈ N one finds a representation of this kind using V = Symⁿ (h*).

- As Paul Levy pointed out the ³/₂ and ⁵/₂ -representations take the form of natural reflection actions on h* resp. Sym² (h*).
- This provides a link to the representation theory of Sym₃ and a criterion for which n ∈ N one finds a representation of this kind using V = Symⁿ (h*).
- The spin $-\frac{7}{2}$ representation does not fall into this category so its structure remains even more elusive.

- As Paul Levy pointed out the ³/₂ and ⁵/₂ -representations take the form of natural reflection actions on h* resp. Sym² (h*).
- This provides a link to the representation theory of Sym₃ and a criterion for which n ∈ N one finds a representation of this kind using V = Symⁿ (h*).
- The spin $-\frac{7}{2}$ representation does not fall into this category so its structure remains even more elusive.
- How do the higher spin representations decompose under the finite dimensional subalgebras $\mathfrak{so}(1,9)$ and $\mathfrak{so}(10)$?

- As Paul Levy pointed out the ³/₂ and ⁵/₂ -representations take the form of natural reflection actions on h* resp. Sym² (h*).
- This provides a link to the representation theory of Sym₃ and a criterion for which n ∈ N one finds a representation of this kind using V = Symⁿ (h*).
- The spin $-\frac{7}{2}$ representation does not fall into this category so its structure remains even more elusive.
- How do the higher spin representations decompose under the finite dimensional subalgebras $\mathfrak{so}(1,9)$ and $\mathfrak{so}(10)$?
- What is the ismomorphism type of these representations?

Thank you for your attention

References

- Robin Lautenbacher, Ralf Köhl, "Extending generalized Spin Representations", arXiv:1705.00118 [math.RT] (preprint), april 2017.
- Guntram Hainke, Ralf Köhl and Paul Levy, "Generalized Spin Representations", Münster Journal of Mathematics (2015).
- Stephen Berman, "On generators and relations for certain involutory subalgebras of Kac- Moody Lie algebras", Comm. Algebra 17 (1989)(12), pp. 3165–3185.
- Thibault Damour, Axel Kleinschmidt and Hermann Nicolai, "Hidden symmetries and the fermionic sector of eleven-dimensional supergravity", arXiv:hep-th/0512163 10 February 2006.
- Axel Kleinschmidt and Hermann Nicolai, "On higher spin realizations of $K(E_{10})$ ", arXiv:1307.0413, 1 July 2013.