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● Perturbation theory has proven to be an extremely successful tool for 
investigating problems in particle physics 

   

● This emphasises the need for a non-perturbative approach! 

→ Local quantum field theory (LQFT) is one such approach

1. LQFT: an axiomatic approach to QFT

But by definition this procedure is 
only valid in a weakly interacting 

regime

– Form factors? 
– Parton distribution functions?
– Convergence of perturbative series?



 4

● LQFT approaches are defined by a core set of axioms:

A. Wightman

R. Haag

1. LQFT: an axiomatic approach to QFT

[R. F. Streater and A. S. Wightman, PCT, Spin 
and Statistics, and all that (1964).]

 [R. Haag, Local Quantum Physics, 
Springer-Verlag (1996).]
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● The central idea with LQFT is that these axioms are physically motivated

1. LQFT: an axiomatic approach to QFT

“The theory is invariant 
under Poincaré 

transformations”
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● The central idea with LQFT is that these axioms are physically motivated

1. LQFT: an axiomatic approach to QFT

“Energy is bounded from 
below– the theory is 

stable”

H ≥ 0
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● The central idea with LQFT is that these axioms are physically motivated

1. LQFT: an axiomatic approach to QFT

“The vacuum state is 
unique and looks the 

same to all observers”
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● The central idea with LQFT is that these axioms are physically motivated

1. LQFT: an axiomatic approach to QFT

“Quantum fields φ are 
distributions, not 

functions”
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● Quantum fields φ(x) are distributions – what difference does this make?

→ This means that they cannot be evaluated at a single point (e.g. think  
     of the Dirac delta δ(x) at x=0)

→ Need to 'average them out' over some spacetime region A

 

● But why? – Heisenberg's uncertainty principle! 

Can think of this as the performance 
of a measurement Mφ in the region A 

where f(x) is non-zero 

[MPI Munich (2004)]

A

1. LQFT: an axiomatic approach to QFT

φ
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● The central idea with LQFT is that these axioms are physically motivated

1. LQFT: an axiomatic approach to QFT

“This connects the 
permitted physical states 
and the field degrees of 

freedom which define them”
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● The central idea with LQFT is that these axioms are physically motivated

1. LQFT: an axiomatic approach to QFT

“Measurements 
performed in the future 

cannot affect  
measurements performed 
in the past – causality!”
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2. Consequences of LQFT

● Axioms 1-6 imply many structural QFT properties, including:

– Correlation functions                                           are (tempered)                    
   distributions           

– The Reconstruction Theorem – a QFT which satisfies Axioms 1-6 can be  
   uniquely reconstructed from knowledge of all the correlation functions 

      → This result justifies why the vacuum expectation values of products of 
           fields are of central importance in QFT!

– Correlation functions can be analytically continued in a unique manner 

     → In particular, these distributions are the boundary values of complex     
          analytic functions

E.g.  Free massive scalar field 
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2. Consequences of LQFT

● Why is LQFT useful?

→ It has the potential to make profound non-perturbative predictions 

● Important examples of these include:

→ Spin-statistics theorem 

 

→ CPT theorem

→ Free theory implies canonical quantisation

→ Connection of Minkowski and Euclidean QFTs (t → iτ)

→ Non-locality of charged states 

 'Boson' ↔ [φ(x),φ(y)]=0 

 'Fermion' ↔ {ψ(x),ψ(y)}=0 

 CPT is a symmetry of any QFT e- e+

[The University of Toronto (2004)]
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Increasing separation

3. Confinement and the CDP

● Although QCD has been experimentally verified to extraordinary 
precision, there remains an important unresolved question: why have 
coloured states never been experimentally observed?

     → It is believed that these states must be confined

● One approach to understanding confinement is to analyse how the 
correlation strength between clusters of states depends on the distance 
between the clusters

But how does confinement occur?
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3. Confinement and the CDP

● For QFTs that satisfy the Wightman axioms one can prove that the 
correlation strength between clusters of fields always decreases with 
separation [Araki (1960), Araki, Hepp, Ruelle (1962)] 

→ this is called the cluster decomposition property (CDP)    

● Therefore, if QCD did indeed satisfy the Wightman axioms, one would 
be permitted to ‘pull apart’ coloured states   

● However, it turns out that gauge theories do not satisfy the Wightman 
Axioms – charged fields are non-local!

● There are two approaches for defining a quantised gauge theory: 

(1) One preserves positivity of the Hilbert space, but loses locality (e.g.    
      Coulomb gauge)

(2) One preserves locality, but loses positivity (e.g. BRST quantised         
      gauge theories) 

[H. Araki, Ann. Phys. 11, 260 (1960).]
[H. Araki, K. Hepp and D. Ruelle,  
Helv. Phys. Acta 35, 164 (1962).]
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3. Confinement and the CDP

● By choosing option (2), and preserving locality, one maintains many of 
the features satisfied by Wightman QFTs, but now the space of states   
can contain negative norm states (e.g. ghosts)

● QFTs of this form satisfy a modified version of the Wightman axioms 
called the Pseudo-Wightman (PW) axioms [Strocchi (1978),  Bogolubov et al. 

(1990)]

● After identifying the physical subspace of states                   the Hilbert 
space is defined by:   

● In the specific case of BRST quantised gauge theories one defines the 
physical subspace via the subsidiary condition:  

● Given a QFT that satisfies the PW axioms an interesting question to ask 
is whether the CDP continues to always hold?

→ Remarkably, it doesn’t! 

 
[F. Strocchi, Phys. Rev. D 17, 2010 (1978).]
[N. N. Bogolubov, A. A. Logunov and A. I. Oksak, General 
Principles of Quantum Field Theory, (1990).]
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3. Confinement and the CDP

● For a QFT that satisfies the PW axioms, the behaviour of the correlation 
strength is described by the following theorem [Strocchi (1976)]:   

N=0  → the correlation strength decreases with distance                      
N>0  → the behaviour depends on whether the space of states                
              has a mass gap or not

 [F. Strocchi, Phys. Lett. B 62, 60 (1976).]

ξ → ∞

ϕ1x1. ϕ2 x2.
O

1 O
2
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● An important feature of this theorem is that, under certain conditions, the 
CDP can be violated

● A violation of the CDP between clusters of states implies that the 
correlations between these states are not damped, no matter how far they 
are separated   

→ The measurement of one state therefore cannot be performed                
     independently of the other, and this prevents the formation of               
     physical (asymptotic) coloured states → confinement

● From the Cluster Decomposition Theorem one can see that whether or 
not the CDP is preserved depends crucially on whether the parameter N 
vanishes. 

               → Can one establish a condition for when N=0 ?

3. Confinement and the CDP
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● It turns out that one has the following necessary and sufficient                 
condition [PL 1511.02780]: 

● Conversely, this means that if the Fourier transform of the correlator does 
not define a measure, then N >0

● For a distribution D(p) to define a measure this requires that the integral 
of D(p) with any continuous function f(p) (of compact support) must be 
well defined

● Example: (i)  D(p) = g(p)   → D defines a measure for g cont & bounded

               (ii)  D(p) = δ(p)   →  D defines a measure

              (iii)  D(p) = δ'(p)  →  D does not define a measure, since if f(p) 
    were not differentiable at p=0, then           

                                                  ∫ δ'(p)f(p) = -f'(0) would be ill defined 

3. Confinement and the CDP
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● But what effect does this condition have on the structure of correlators 
in general?

● Using LQFT [Bogolubov et al. (1990)] the Fourier transform of any correlator  
                                     can be written in the following form:  

● Example: vector field correlator  

 

Lorentz covariance 
(Axiom 5)

Spectral condition 
(Axiom 2)

“Spectral density”

Two possible Lorentz covariant 
polynomial functions of p [N. N. Bogolubov, A. A. Logunov and A. I. Oksak, General 

Principles of Quantum Field Theory, (1990).]

3. Confinement and the CDP
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● These general relations demonstrate that the spectral densities ρα(s) are 
central to determining the structure of any correlator, and hence the 
value of N 

● It is complicated to directly relate N and ρα(s), but it follows from the 
previous theorem and the definition of a measure that [PL 1511.02780]: 

   

 

● In order for the CDP to be violated for a (cluster) correlator in QCD one 
requires that: 

   (1) the correlator in question has N > 0

   (2) the space of states           has no mass gap 

 → If ρα(s) ~ δ(s-s0)  then N=0

 → If ρα(s) ~ δ'(s-s1) then N>0

Note: this is the full (indefinite 
inner product) space of states

3. Confinement and the CDP



 22

● If both conditions (1) and (2) are satisfied, then the correlation strength 
between clusters of fields       and       behaves like: 

● In the case where       and      are quark fields one                                   
can effectively think of F(r) as describing the                                  
“force” between the quarks in the two spacelike                               
separated clusters O1 and O2

● But is there a way to test whether the CDP is violated in QCD?

→ Yes, one can calculate the Schwinger function Δα(t) for coloured         
     correlators using non-perturbative techniques 

 

3. Confinement and the CDP
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[Oliveira, Dudal, Silva 1210.7794] [Alkofer, Detmold, Fischer, Maris hep-ph/0309077]

3. Confinement and the CDP

● There is evidence to suggest that Δα(t) becomes negative at some value 
of t for both the quark and gluon spectral densities 

   

● This behaviour is sometimes interpreted as evidence that ρα(s) is negative 
over some continuous range of s  

                        → But this is not necessarily the case!
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3. Confinement and the CDP

● The spectral densities ρα(s) are (tempered) distributions, not functions, 
and so they do not necessarily depend continuously on s (i.e. they may 
not be regular distributions)

● By including a singular non-measure term like δ'(s-s1) in the spectral 
density, this can cause Δα(t) to become negative     

● In fact, a purely singular ansatz of the form: ρα(s) ~ Aδ(s-s0) + Bδ'(s-s1) 
(with A>0, B<0) can also reproduce the qualitative behaviour of Δα(t)  

● Hence, Δα(t) violating non-negativity can be interpreted as evidence that 
ρα(s) contains a non-measure component, and thus N > 0

→ Suggestive that confinement occurs due a violation of the CDP

Key point:  confinement arising from a violation of the CDP depends crucially 
                    on whether ρα(s) defines a measure or not                                          
               → ρα(s) being non-negative is sufficient but not necessary for ρα(s) to  
                    define a measure 



 25

The confinement puzzle in QCD →how does confinement occur? 

● An increase in the correlation strength between coloured fields provides 
a mechanism by which coloured states can be confined  

● Whether or not this occurs depends on the structure of the spectral 
densities ρα(s) of correlators involving coloured fields  

● There is evidence from lattice QCD and Schwinger-Dyson calculations 
to suggest that this does indeed occur for clusters of quark and gluon 
fields

4. Summary and outlook
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4. Summary and outlook

Outstanding questions

● To what extent are the calculations performed using non-perturbative 
techniques sensitive to the distributional nature of QFT quantities?

● Can non-measure defining distributions like δ'(s-a) be directly tested on 
the lattice or using Schwinger-Dyson?

● Is it possible to generalise the CDP confinement scenario to non locally 
quantised gauge theories (e.g. in Coulomb gauge)? What are the 
characteristic features? 

● Are there quantities other than Δα(t) that would be sensitive to non-
measure contributions?     
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Backup

● The parameter N is characterised by the following theorem:   

● In the context of the cluster decomposition theorem, N corresponds to 
the order of the distribution  

● In principle, if one knows the structure of            , then it is possible to 
put an upper bound on the value of N

● It is important to note that the cluster decomposition theorem refers to 
the space of states          , and so it is possible for                                       
to have a mass gap, but for           to not
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Backup

● In order to better understand confinement it is important to analyse the 
non-perturbative structure of the gluon propagator. After taking into 
account the constraints from the ETCRs and equations of motion, one 
has [PL 1702.02954]:

● It is therefore possible that a violation of the CDP can arise from these 
non spectral density terms!

● This behaviour can perhaps be looked for in lattice calculations of the 
Schwinger function Δα(t) since it would lead to additional t polynomial 
contributions 

By contrast to the photon propagator, the gluon 
propagator is permitted to contain explicit 

polynomials in derivatives of δ(p)     
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