Mass Sensitivity of the QCD Phase Diagram Masters Thesis

Simon Resch

Bernd-Jochen Schaefer, Fabian Rennecke, Konstantin Otto

January 18, 2017

Lunch Club Seminar

Overview

Low energy QCD at high ${\cal T}$ and μ

- Effective quark-meson (QM) model
- Focus on three flavor dynamics
- Influence of masses on chiral phase transition
- Role of $U(1)_A$ anomaly

Non-perturbative effects with functional renormalization group (FRG)

Outline

Introduction

Symmetries of QCD

(Approximate) Symmetries of QCD with N_f light quarks

 $SU(N_c) \otimes U(1)_V \otimes SU(N_f)_V \otimes U(1)_A \otimes SU(N_f)_A$

• Exact symmetries:

- SU(N_c) gauge symmetry
- $U_V(1) \rightarrow$ baryon number conservation
- $SU(N_f)_V$ isospin symmetry \rightarrow broken by $m_{q,f} m_{q,f'} \neq 0$
- $SU(N_f)_A$ explicitly and spontaneously broken \Rightarrow quark condensate $\langle \bar{q}q \rangle > 0$, $N_f^2 - 1$ (pseudo) Goldstone bosons
- $U(1)_A$ anomalously broken

QCD Phase Diagram

Hadron Phase (Confined Phase)

Simon Resch

Mass Sensitivity of the QCD Phase Diagram

0 MeV

900 MeV

Barvon chemical

potential (µ)

Color SuperConductivity

Our World ~1015g/cm3 Compact Stars P

Functional Renormalization Group

Why FRG?

- Non-perturbative method needed for low energy QCD
- Separation of degrees of freedom

Wetterich Equation

$$\partial_k \Gamma_k = \frac{1}{2} \mathsf{STr} \left[\left(\Gamma_k^{(2)} + R_k \right)^{-1} \partial_k R_k \right]$$

- Connects microscopic action S to full quantum effective action Γ
- Fluctuations up to RG scale k are suppressed by regulator R_k

Functional Renormalization Group

One-Loop Structure

$$G_{k} = \left(\Gamma_{k}^{(2)} + R_{k}\right)^{-1} \quad \Rightarrow \quad \partial_{t}\Gamma_{k} = \frac{1}{2}\mathsf{STr}\left(G_{k} \cdot \partial_{k}R_{k}\right) = \frac{1}{2} \textcircled{\otimes}$$
$$\partial_{k}\Gamma_{k}^{(n)} \quad \text{also one-loop structure}$$

- Choice of regulator \Rightarrow path in theory space
- Theory space generally infinitely dimensional
 - \Rightarrow needs truncating

$N_f = 2 + 1$ Quark-Meson Model

 $U(N_f)_V \otimes U(N_f)_A$ Quark-Meson Action in Leading Potential Approximation (LPA)

$$\Gamma_{\Lambda} \equiv S[q, \bar{q}, \phi] = \int_{x} \left\{ \bar{q} \left(\partial \!\!\!/ + \gamma_{0} \mu + g \phi_{5} \right) q + \operatorname{Tr}(\partial_{\mu} \phi^{\dagger} \partial_{\mu} \phi) \right. \\ \left. + U_{\Lambda}(\rho_{1}, \dots, \rho_{N_{f}}) - c_{A} \det(\phi^{\dagger} + \phi) - \operatorname{Tr}\left[c_{a} T^{a}(\phi^{\dagger} + \phi) \right] \right\}$$

- Scalar σ_a and pseudoscalar π_a fields collected in matrix field $\phi = T^a(\sigma_a + i\pi_a), \ \phi_5 = T^a(\sigma_a + i\gamma_5\pi_a)$
- Yukawa interaction from bosonization of scalar-pseudoscalar four fermion vertex
- Chiral invariants $\rho_i = \text{Tr}\left[(\phi^{\dagger}\phi)^i\right]$ with $i = 1, ..., N_f$
- Meson potential U(ρ₁,..., ρ_{N_f}): meson-meson interactions of arbitrary power

 $U(N_f)_V \otimes U(N_f)_A$ Quark-Meson Action in Leading Potential Approximation (LPA)

$$\Gamma_{\Lambda} \equiv S[q, \bar{q}, \phi] = \int_{x} \left\{ \bar{q} \left(\partial \!\!\!/ + \gamma_{0} \mu + g \phi_{5} \right) q + \operatorname{Tr}(\partial_{\mu} \phi^{\dagger} \partial_{\mu} \phi) \right. \\ \left. + U_{k}(\rho_{1}, \dots, \rho_{N_{f}}) - c_{A} \det(\phi^{\dagger} + \phi) - \operatorname{Tr}\left[c_{a} T^{a}(\phi^{\dagger} + \phi) \right] \right\}$$

- c_A det(φ[†] + φ) bosonized 't Hooft determinant
 ⇒ explicitly breaks U(1)_A symmetry
- $\operatorname{Tr}\left[c_{a}T^{a}(\phi^{\dagger}+\phi)\right]$ explicitly breaks $SU(N_{f})_{V}$ (follows from bosonization of quark mass matrix)

$N_f = 2 + 1$

Order parameters: $\bar{\sigma}_I, \bar{\sigma}_s$

•
$$SU(2)_V$$
 symmetry $\rightarrow \overline{\sigma}_3 = 0$
 \Rightarrow light quarks degenerate $(m_{q,u} = m_{q,d} \equiv m_{q,l})$

• Chiral invariants $\rho_1, \rho_2, \rho_3 \rightarrow \text{drop } \rho_3$ for simplicity

VEV of Chiral Invariants and 't Hooft Determinant

$$\bar{\rho}_1 = \frac{1}{2} \left(\bar{\sigma}_I^2 + \bar{\sigma}_s^2 \right), \quad \bar{\rho}_2 = \frac{1}{8} \left(\bar{\sigma}_I^4 + 2\bar{\sigma}_s^4 \right), \quad \left\langle \det(\phi^\dagger + \phi) \right\rangle = \frac{\bar{\sigma}_s \bar{\sigma}_I^2}{2\sqrt{2}}$$

 $N_f = 2 + 1$

 ϕ decomposed in scalar and pseudoscalar mesons

$$T^{a} \pi_{a} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\pi_{0}}{\sqrt{3}} + \frac{\pi_{8}}{\sqrt{6}} & \pi^{-} & K^{-} \\ \pi^{+} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\pi_{0}}{\sqrt{3}} + \frac{\pi_{8}}{\sqrt{6}} & \bar{K}^{0} \\ K^{+} & K^{0} & \frac{\pi_{0}}{\sqrt{3}} - \frac{2\pi_{8}}{\sqrt{3}} \end{pmatrix}$$
$$T^{a} \sigma_{a} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{a_{0}^{0}}{\sqrt{2}} + \frac{\sigma_{0}}{\sqrt{3}} + \frac{\sigma_{8}}{\sqrt{6}} & a_{0}^{-} & \kappa^{-} \\ a_{0}^{+} & -\frac{a_{0}^{0}}{\sqrt{2}} + \frac{\sigma_{0}}{\sqrt{3}} + \frac{\sigma_{8}}{\sqrt{6}} & \bar{\kappa}^{0} \\ \kappa^{+} & \kappa^{0} & \frac{\sigma_{0}}{\sqrt{3}} - \frac{2\sigma_{8}}{\sqrt{3}} \end{pmatrix}$$

18 mesons!

Meson Curvature Masses

Eigenvalues of Hesse Matrix define meson curvature masses

Hesse Matrix

$$(M_{k,\varphi}^2)_{ij} = \frac{\partial^2}{\partial \varphi_j \partial \varphi_i} (U_k(\rho_1, \rho_2) - c_A \det(\phi^{\dagger} + \phi))$$

with $\varphi = (\sigma_I, \sigma_1, \dots, \sigma_7, \sigma_s, \pi_0, \dots, \pi_8)$

- Explicit symmetry breaking (SB) of SU(N_f)_V does not appear in meson masses (~ φ)
- 't Hooft determinant enters in meson masses (~ $arphi^3$)
- Scalar and pseudoscalar mixing angles from diagonalization of Hesse matrix

$$\begin{pmatrix} f_0 \\ \sigma \end{pmatrix} = R(\phi_S) \cdot \begin{pmatrix} \sigma_l \\ \sigma_s \end{pmatrix}, \quad \begin{pmatrix} \eta \\ \eta' \end{pmatrix} = R(\theta_P) \cdot \begin{pmatrix} \pi_0 \\ \pi_8 \end{pmatrix}$$

Flow Equation for Effective Potential

QM Flow Equation in Leading Potential Approximation

$$\partial_k \mathcal{U}_k(T,\mu_f,\phi)|_{\phi=\langle\phi\rangle} = \frac{k^4}{12\pi^2} \left[\sum_{i=1}^{2N_f^2} \frac{1}{E_i} \operatorname{coth}\left(\frac{E_i}{2T}\right) -2N_c \sum_{f=1}^{N_f} \frac{1}{E_{q,f}} \left(\tanh\left(\frac{E_{q,f}+\mu_f}{2T}\right) + \tanh\left(\frac{E_{q,f}-\mu_f}{2T}\right) \right) \right]$$
$$E_i = \sqrt{k^2 + m_i^2}, \quad E_{q,l} = \sqrt{k^2 + \left(g\frac{\sigma_l}{2}\right)^2}, \quad E_{q,s} = \sqrt{k^2 + \left(g\frac{\sigma_s}{\sqrt{2}}\right)^2}$$

 $m_i^2 \sim \partial_{\varphi_i}^2 \mathcal{U}_k \Rightarrow$ partial differential equation

Numerical Solution Techniques

Global Methods

- Solve $\partial_k \mathcal{U}_k(\rho)$ on grid of field values $\rho \to \rho_i$
- Derivatives $\partial_{\rho}\mathcal{U}, \partial_{\rho}^{2}\mathcal{U}$ e.g. from finite difference formulas or interpolation methods
- 1st order can be determined, but computationally expensive

Taylor Expansion

- Taylor expansion of $U_k(\rho) = \sum_{n=0}^{N} \frac{a_{n,k}}{n!} (\rho \rho_0)^n$ \Rightarrow coupled ODE for $\partial_k a_{n,k}$
- Co-moving: $\rho_0 \equiv \rho_0(k)$ follows the minimum of $\mathcal{U}_k(\rho)$
- Static: ρ_0 is fixed \rightarrow better convergence!
- Fast, but hard to resolve 1st order

Numerical Solution Techniques

Bilocal Expansion

- 2 coupled Taylor expansions
- Closer to global solution

 \Rightarrow 1st order can be determined with only 4 couplings (N = 4)

[[]Resch et al.,2017] to be published

Numerical Implementation and UV Parameters

Numerical Setup

- \mathcal{U} approximated on a 2D grid in coordinates $x = \sigma_I^2$, $y = 2\sigma_s^2 \sigma_I^2$ \Rightarrow reliable identification of 1st order phase transition
- Derivatives in m_{arphi_i} by cubic spline interpolation of $\mathcal{U}_k(x,y)$
- Resulting ordinary differential equation solved with semi-implicit time stepping algorithm

Parameter Fixing

Ansatz:

$$\mathcal{U}_{\Lambda} = a_{10}\rho_1 + \frac{a_{20}}{2}\rho_1^2 + a_{01}\tilde{\rho}_2 - c_A \det(\phi + \phi^{\dagger}) - c_l\sigma_l - c_s\sigma_s$$

Parameters fixed at $\Lambda = 700, 1000$ MeV to experimental values $m_{\pi}, f_{\pi}, m_{K}, f_{K}, m_{\eta} + m'_{\eta}, m_{q,l}$ and $m_{\sigma} = 400, ..., 560$ MeV in IR.

Meson Masses

Without $U(1)_A$ breaking

- η' becomes a (pseudo) Goldstone boson, degenerates with π
- a_0 and π degenerate for $T > T_c$

Condensates and Phase Diagram

- Crossover at $\mu = 0$
- Light chiral symmetry restored first
- Strange condensate melts relatively slow

- T_c increases with sigma mass
- Slightly smaller 1st order region compared to N_f = 2

Mass Sensitivity of the Phase Diagram

Two Scenarios for the Columbia Plot

[Brandt,Philipsen,et al.,2016]

Limits of the Columbia Plot

- 1^{st} order phase transition for $N_f \geq 3$ massles quarks [Pisarski,Wilczek,1984]
- 1^{st} or 2^{nd} order depending on $U(1)_A$ anomaly at T_c for $N_f = 2$
- 1^{st} order for infinitely heavy quarks $\rightarrow N_c = 3$ Yang-Mills theory
- Is there a tricritical point on the $m_l = 0$ axis?
 - Lattice simulations expensive for light fermions
 - Possible universality classes: Z(2), O(4), U(2) with critical exponents $\delta\beta \approx 1.56$, 1.86, 1.85 (too close to call)
 - \Rightarrow No conclusive answer from Lattice calculations yet

MFA Columbia Plot

Order of chiral phase transition in (m_{π}, m_{K}) plane. No meson fluctuations and quark vacuum term (MFA)

- m_{π} , m_{K} adjusted with explicit SB c_{I} , c_{s}
- No tricritical point at $m_{\pi} = 0$ independent of $U(1)_A$ breaking
- m_{σ} high because $\bar{\sigma}_{l}$ vanishes in chiral limit for $m_{\sigma} \lesssim 700$ MeV

FRG Analysis

Condensates towards the chiral limit

• Parameter α interpolates between N_f = 3 chiral limit and physical point

$$\begin{pmatrix} c_l \\ c_s \end{pmatrix} = \alpha \cdot \begin{pmatrix} c_{l,phys} \\ c_{s,phys} \end{pmatrix}$$

 σ_I, σ_s vanish in chiral limit (α → 0) at T = 0! ⇒ No spontaneous SB in chiral limit?

FRG Analysis

- Lattice with N_f = 8 light quarks: clear sign of spontaneous SB [Appelquist et al.,2014]
- Likely a result of parameter fixing procedure not valid in chiral limit
- Idea: adjust Λ to fix $\bar{\sigma}_{l}(T=0) = f_{\pi} = 93$ MeV independent of c_{l}, c_{s} ; other parameters unchanged \Rightarrow forces spontaneous SB in chiral limit
- Constituent quark mass $m_{q,l} = g\bar{\sigma}_l/2$ almost entirely generated by spontaneous SB

FRG Columbia Plot

With explicit breaking of $U(1)_A$ (left):

• Small 1st order region around chiral limit

cf. [Pisarski,Wilczek,1984]

- Tricritical point at $m_{K,tric} \sim 25 \text{ MeV}$
- 2nd order line connects to $SU(2)_R \otimes SU(2)_L$ model for $m_K \to \infty$

FRG Columbia Plot

Without breaking of $U(1)_A$ (right):

• Tricritical point in the $N_f = 2$ limit

Restoration of $U(1)_A$ in the QM Model

What constitutes restoration of $U(1)_A$?

- In action: ~ $c_A \bar{\sigma}_I^2 \bar{\sigma}_s$ \Rightarrow small for $T > T_c$ because of $\bar{\sigma}_I^2$
- Meson spectrum: $m_{a_0}^2 m_{\pi}^2 \sim c_A \bar{\sigma}_s$ \Rightarrow mass gap persists for $T > T_c$ due to slowly vanishing $\bar{\sigma}_s$

Recent Lattice Results $\Delta M_{PS}^{m_{ud}=0}(T = T_c) = -81(282) \text{ MeV by chiral extrapolation} \qquad \text{[Brandt,Philipsen et} \\ \Rightarrow U(1)_A \text{ anomaly weak at } T_c?$

 $c_A(T,k)$ needed in QM model? External input?

MFA Columbia Plot (finite μ)

- Standard scenario: positive curvature
- Should also hold in FRG (CEP at physical m_{π}, m_{K})

Outlook

- Finite μ curvature of chiral critical line with FRG
- Temperature and fluctuation dependence of 't Hooft determinant
- Increase truncation beyond LPA
 - Mixing angles sensitive to CEP?
- Polyakov loop → deconfinement transition

End goal: Full QCD flow.

[Rennecke,Schaefer,2016]