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Motivation

QCD has critical point at end of CT line
At 2OPT, things happen

Scale invariance
Universality

⇒ Strong predictions about static quantities

Phase diagram exploration in collision experiment:
non-static

⇒ Finding signatures of a critical point in dynamic
observables
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The Theory

Real Scalar Field Theory

L (ϕ) =
1
2

(
∂µϕ∂µϕ−m2ϕ2

)
− λ

4!
ϕ4

−Jϕ

(1)

free field with additional self-interaction term ϕ4

m2 < 0: Has 2nd order phase transition
Well-known (see e.g. Montvay-Münster)
Easy to model on a lattice

Lattice of real numbers
Hamiltonian Dynamics with conjugate momentum field
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Second Order Phase Transitions

Second Order Phase Transitions

Phase transition of nth order⇔ discontinuity in nth
derivative of G (Ehrenfest classification)
More modern: Continuous phase transition

Infinite correlation length ξ
Divergent susceptibility χ
Power law decays of correlators near critical point

Examples: CO2, QCD, φ4
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Second Order Phase Transitions

Example I
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Figure: Phase diagram of CO2. The line between liquid and gas phase ends in a
critical point.
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Second Order Phase Transitions

Example II
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Figure: Semi-quantitative phase diagram of QCD, from: M. A. Stephanov: QCD phase
diagram: an overview ; PoS LAT2006:024,2006.
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Second Order Phase Transitions

Example III
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Figure: Simplified phase diagram of a ferromagnet/φ4. The line between between
opposing magnetization phases ends in a critical point at the curie temperature.
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Quantification of Critical Behaviour

Quantification of Critical Behaviour

Thermodynamic potential:

G = U − TS (2)

Antagonizing minimization processes
Low T ⇔ minimize U by maximizing order
High T ⇔ maximize S by maximizing disorder
T = TC ⇔ draw

⇒ Critical fluctuations, diverging correlation length
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Quantification of Critical Behaviour

Correlation length ξ

Defined by 〈ϕ(x)ϕ(y)〉 ∝ exp (− (x − y) /ξ)

Diverges at T = Tc ⇒ Clusterization
Strongly correlated regions
Behave like a single field variable or Ising spin
Clusters themself form larger clusters

⇒ Scale invariance

From scale invariance: universality, power laws
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Quantification of Critical Behaviour

Order Parameter

M = 〈φ〉 = 〈
∑
ϕ(x)〉

〈φ〉 ∝ ∂G
∂J

a.k.a.
magnetization, chiral
condensate, ∆n 0

0.5
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−0.2 −0.1 0 0.1 0.2
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M

〈φ〉 (T ) ∝

{
(Tc − T )β T < Tc

0 T ≥ Tc
(3)
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Quantification of Critical Behaviour

Susceptibility

χ = ∂〈φ〉
∂J = ∂2G

∂J2 =

1
T

(
〈φ2〉 − 〈φ〉2

)
Magnetic/chiral
susceptibility,
compressibility
Diverges at T = Tc
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χ

χ ∝ |T − Tc |−γ (4)
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Quantification of Critical Behaviour

Universality Classes

More power laws for ξ, G(x − y ,T , J), C
Numerical values for exponents depend
on:

spatial dimensions
spin-like degress of freedom
range of the interaction (long vs. short)

⇒ Universality classes
one-component φ4: 3D Ising UC

β .326
γ 1.24
ν .630
η .036
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Quantification of Critical Behaviour

Visualization I
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Figure: Power laws of order parameter and susceptibility
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Quantification of Critical Behaviour

Visualization II
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Figure: Power laws compared to data
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Quantification of Critical Behaviour

Visualization III
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Figure: Finite Size Scaling of χ
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Quantification of Critical Behaviour

Finite Size Scaling

Correlation length ξ bound
by L
Observables depend on
ξ/L
S ∼ T σ

r in inf. volume
⇒ SL(T = Tc) ∼ Lσ/ν

S (Tr ,L) ≈L
σ
ν fS (ξ∞/L)

=L
σ
ν f̄S (ξ (Tr ,L) /L)

S(Tc ,L) =L
σ
ν f̄S(1) ∼ L

σ
ν
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Quantification of Critical Behaviour

What happens in real time?

Remember: huge (infinite) susceptibility and correlation
length at Tc

Known phenomenon: Critical Slowing-Down (of MC
algorithms)
Signatures of crit. point in dynamic properties?

⇒ Look at real time observables, e.g. spectral function!
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Spectral Function

Definition

G(x , y) = 〈T ϕ(x)ϕ(y)〉 (5)

= F (x , y)− i
2
ρ(x , y) sgn

(
x0 − y0

)
(6)

F (x , y) =
1
2
〈{ϕ(x), ϕ(y)}〉 (7)

ρ(x , y) = i 〈[φ (x) , φ (y)]〉 (8)

Decomposition of the time-ordered propagator
Contains information on dynamic properties
Critical behaviour predicted
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Spectral Function

Meaning

Statistical two-point function F : occupation numbers
Spectral function ρ: available states
Example: MFT spectral function

ρ(ω,~p,T ) = 2πi sgn(ω)δ
(
ω2 − ~p2 −M2(T )

)
(9)
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Dynamical Critical Exponent

Critical Behaviour of ρ

We know that

ρ(ω,0,0) ∼ ω−
2−η

z , (10)

ρ(t ,0,Tr ) ∼ t
2−η

z −1g
(

t
ξt (Tr )

)
, (11)

g(t) = exp(−t), ξt ∼ ξz
L ∼ T−(zν)r (12)

in infinite volume.

Introducing dynamic critical exponent z, correlation time ξt

z determined by a “dynamic universality class”
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Dynamical Critical Exponent

Dynamic “Universality Classes”

Additional influcences on z:
Conserved densities
Poisson brackets

Classification scheme by Halperin/Hohenberg
“Models”, ordered by conserved fields and non-vanishing
Poisson brackets
ϕ4 w. Hamiltonian dynamics: Model C→ z = 2.17
Second closest match: Model A→ z = 2.03

Challenge: Extract z from data, confirm Model C!
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Approximation

Classical Approximation I

Spectral function defined via commutator↔ Poisson
brackets, hard to calculate directly

⇒ Use fluctuation-dissipation theorem:

F (ω,~p) = −i
(

1
2

+ nT (ω)

)
ρ(ω,~p) (13)

Approximate BE distribution nT (ω) ≈ T
ω for small ω:

F (ω,~p,T ) ≈ −i
T
ω
ρ(ω,~p,T ) (14)

⇒ ρ(t , ~p,T ) ≈ − 1
T
∂

∂t
F (t , ~p,T ) (15)
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Approximation

Classical Approximation II

Use that π(x) = ∂tϕ(x):

ρ(t , ~p,T ) = − 1
T
∂t 〈ϕ(t , ~p)ϕ(0,0)〉 = − 1

T
〈π(t , ~p)ϕ(0,0)〉

(16)

Only look at ~p = 0:

ρ(t ,0,T ) = − 1
T

〈(∫
ddxπ(t , x)

)(∫
ddyϕ(0, y)

)〉
(17)

⇒ Use this approx. to find z!
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Data Generation

Lattice Data

1 Generate equilibrium state (e.g. using HMC)
2 Evolve in RT using Hamiltonian Dynamics
3 Compute ρ using approximation
4 Repeat for N uncorrelated ensembles, take average
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Evaluation

Extracting ξt , z

ρ(t , ~p = 0,Tr ) ∼ t
2−η

z −1 · exp

(
− t
ξt (Tr )

)

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000

ρ
(t
,T

c)

t

exponential
power law



Motivation Introduction Method Results Summary

Evaluation

Extracting ξt , z

ρ(t , ~p = 0,Tr ) ∼ t
2−η

z −1 · exp

(
− t
ξt (Tr )

)

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000

ρ
(t
,T

c)

t

exponential
power law

(power law)·(exponential)



Motivation Introduction Method Results Summary

Evaluation

Extracting ξt , z

ρ(t , ~p = 0,Tr ) ∼ t
2−η

z −1 · exp

(
− t
ξt (Tr )

)

0.1

1

10

10 100 1000 10000

ρ
(t
,T

c)

t

exponential
power law

(power law)·(exponential)



Motivation Introduction Method Results Summary

Evaluation

Extracting ξt , z
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Evaluation

Caveats

Simultaneous fit of power law and exponential
Power law exponent small (≈ −0.1)
Exponential decay time large (∼ 103)

Power law determined by early times (t < 200)
Exponential determined by late times (t > 1000)
Strong correlation in intermediate times
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Spectral Function around Tc

T ≥ Tc I
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Spectral Function around Tc

T ≥ Tc II
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Spectral Function around Tc

T ≤ Tc I
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Spectral Function around Tc

T ≤ Tc II
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Finite Size Scaling of ξt

Spectral Function
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Figure: Finite size scaling of the spectral function. ξt ∼ Lz
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Finite Size Scaling of ξt

Power Law of ξt I
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Figure: Finite size scaling of ξt ∼ Lz . Model C predicts z = 2.17.
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Finite Size Scaling of ξt

Power Law of ξt II

ξt increases with volume as expected

Good result of:
z = 2.15(9)

Reminder: z(Model C) = 2.17, z(Model A) = 2.03

z = 2.15(9)
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Neighbourhood T > Tc

Power Law above Tc I
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Figure: Increasing correlation time when approaching Tc . ξt ∼ T−(zν)
r
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Neighbourhood T > Tc

Power Law above Tc II
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Figure: Scaling of ξt ∼ T−(zν)
r
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Neighbourhood T > Tc

Power Law above Tc III
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Neighbourhood T > Tc

Power Law above Tc IV

Direct power law consistently overestimates z

Edge of peak of ξt (Tr ) underestimates z

Underwhelming precision, but increases with lattice volume

Conservative estimate:

z = 2.2(2)
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Divergence of ξt

Pseudo-Critical Points I

−2

0

2

4

6

8

0 20 40 60 80 100 120 140

ρ
(t
,T

r)

t

−.039
−.018
−.005
Tr ≈ 0



Motivation Introduction Method Results Summary

Divergence of ξt

Pseudo-Critical Points II
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Divergence of ξt

Pseudo-Critical Points III
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Divergence of ξt

Pseudo-Critical Points IV
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Figure: Comparison between ξt and χ. The peaks hardly overlap for identical lattice
volumes.
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Divergence of ξt

Pseudo-Critical Points V

Maximum of ξt below Tc

Increasingly hard to fit

Further away from therm. limit than χ
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Summary

Result of z = 2.15(9) consistent Model C
Exact calculation of z difficult, best results with FSS at Tc

Huge lattices needed for good precision

Outlook
Increasing field components
Different evolution algorithms
Different models/theories
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Pseudo-Critical Points I
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Pseudo-Critical Points II
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Figure: The ξt -peaks “rescaled”. The edge resembles a power law.
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Pseudo-Critical Points III
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Figure: The ξt -peaks “rescaled”. The edge resembles a power law with exponent
z = 2.17
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