8.4	1.2	12.		2		
	.0		х.			

Introduction

Method

Results

Summary

Dynamic Critical Behaviour of φ^4

D. Schweitzer

Institut für theoretische Physik Justus-Liebig-Universität Gießen

Lunch Club Seminar, November 14, 2017

Motivation	Introduction	Method	Re
	000000000000000000000000000000000000000	000	00

Motivation

- QCD has critical point at end of CT line
- At 2OPT, things happen
 - Scale invariance
 - Universality
 - \Rightarrow Strong predictions about static quantities
- Phase diagram exploration in collision experiment: non-static
- ⇒ Finding signatures of a critical point in dynamic observables

5.4	- 414	1.0.0
		vation

Method

Results

Summary

The Theory

Real Scalar Field Theory

$$\mathcal{L}(\varphi) = \frac{1}{2} \left(\partial^{\mu} \varphi \partial_{\mu} \varphi - m^{2} \varphi^{2} \right) - \frac{\lambda}{4!} \varphi^{4}$$
(1)

- free field with additional self-interaction term φ^4
- $m^2 < 0$: Has 2nd order phase transition
- Well-known (see e.g. Montvay-Münster)
- Easy to model on a lattice
 - Lattice of real numbers
 - Hamiltonian Dynamics with conjugate momentum field

A 4 11 11 11
mouvation

Method

Results

Summary

The Theory

Real Scalar Field Theory

$$\mathcal{L}(\varphi) = \frac{1}{2} \left(\partial^{\mu} \varphi \partial_{\mu} \varphi - m^{2} \varphi^{2} \right) - \frac{\lambda}{4!} \varphi^{4} - \mathbf{J} \varphi$$
(1)

- free field with additional self-interaction term φ^4
- $m^2 < 0$: Has 2nd order phase transition
- Well-known (see e.g. Montvay-Münster)
- Easy to model on a lattice
 - Lattice of real numbers
 - Hamiltonian Dynamics with conjugate momentum field

Motivation

Introduction

Method

Results

Summary

Second Order Phase Transitions

Second Order Phase Transitions

- Phase transition of nth order ⇔ discontinuity in nth derivative of G (Ehrenfest classification)
- More modern: Continuous phase transition
 - Infinite correlation length ξ
 - Divergent susceptibility χ
 - Power law decays of correlators near critical point
- Examples: CO₂, QCD, ϕ^4

Figure: Phase diagram of CO_2 . The line between liquid and gas phase ends in a critical point.

Figure: Semi-quantitative phase diagram of QCD, from: M. A. Stephanov: *QCD phase diagram: an overview*; PoS LAT2006:024,2006.

Figure: Simplified phase diagram of a ferromagnet/ ϕ^4 . The line between between opposing magnetization phases ends in a critical point at the curie temperature.

Viotivation	Introduction
	000000000000000000000000000000000000000

Results

Summary

(2)

Quantification of Critical Behaviour

Quantification of Critical Behaviour

Thermodynamic potential:

$$G = U - TS$$

- Antagonizing minimization processes
 - Low $T \Leftrightarrow$ minimize U by maximizing order
 - High T ⇔ maximize S by maximizing disorder
 - $T = T_C \Leftrightarrow draw$
- \Rightarrow Critical fluctuations, diverging correlation length

Motivation	Introduction
	000000000000000000000000000000000000000

Results

Summary

Quantification of Critical Behaviour

Correlation length ξ

- Defined by $\langle arphi(x)arphi(y)
 angle\propto\exp\left(-\left(x-y
 ight)/\xi
 ight)$
- Diverges at $T = T_c \Rightarrow Clusterization$
 - Strongly correlated regions
 - Behave like a single field variable or Ising spin
 - Clusters themself form larger clusters
 - \Rightarrow Scale invariance

Motivation	Introduction
	000000000000000000000000000000000000000

Results

Summary

Quantification of Critical Behaviour

Correlation length ξ

- Defined by $\langle arphi(x)arphi(y)
 angle\propto\exp\left(-\left(x-y
 ight)/\xi
 ight)$
- Diverges at $T = T_c \Rightarrow Clusterization$
 - Strongly correlated regions
 - Behave like a single field variable or Ising spin
 - Clusters themself form larger clusters
 - \Rightarrow Scale invariance
- From scale invariance: universality, power laws

Motivation	Introduction ○○○○○○●○○○○○○○○○○○○	Method 000	Results 000000000000000	Summai
Quantification of	Critical Behaviour			

Order Parameter

$$\left< \phi \right> (T) \propto \begin{cases} (T_c - T)^{\beta} & T < T_c \\ 0 & T \ge T_c \end{cases}$$

Motivation	Introduction	Method 000	Results	Summary
Quantification of Critic	al Behaviour			
Susceptil	oility			

 Magnetic/chiral susceptibility, compressibility

• Diverges at $T = T_c$

 $\chi \propto |\mathbf{T} - \mathbf{T_c}|^{-\gamma}$

Motivation	Introduction
	000000000000000000000000000000000000000

Results

Summary

Quantification of Critical Behaviour

Universality Classes

- More power laws for ξ , G(x y, T, J), C
- Numerical values for exponents depend on:
 - spatial dimensions
 - spin-like degress of freedom
 - range of the interaction (long vs. short)
- \Rightarrow Universality classes
 - one-component ϕ^4 : 3D Ising UC

β	.326
γ	1.24
ν	.630
η	.036

Figure: Power laws of order parameter and susceptibility

Figure: Power laws compared to data

Motivation	Introduction	Method 000	Results	Summary
Quantification of Critic	al Behaviour			
Visualiza	tion III			

Figure: Finite Size Scaling of χ

Motivation	Introduction
	000000000000000000000000000000000000000

Results

Summary

Quantification of Critical Behaviour

Finite Size Scaling

- Correlation length ξ bound by L
- Observables depend on ξ/L
- $S \sim T_r^{\sigma}$ in inf. volume $\Rightarrow S_L(T = T_c) \sim L^{\sigma/\nu}$

$$S(T_r, L) \approx L^{\frac{\sigma}{\nu}} f_S(\xi_{\infty}/L)$$
$$= L^{\frac{\sigma}{\nu}} \overline{f}_S(\xi(T_r, L)/L)$$
$$S(T_c, L) = L^{\frac{\sigma}{\nu}} \overline{f}_S(1) \sim L^{\frac{\sigma}{\nu}}$$

Motivation	Introduction
	00000 000000000 000000

Results

Summary

Quantification of Critical Behaviour

What happens in real time?

- Remember: huge (infinite) susceptibility and correlation length at T_c
- Known phenomenon: Critical Slowing-Down (of MC algorithms)
- Signatures of crit. point in dynamic properties?
- \Rightarrow Look at real time observables, e.g. spectral function!

Motivation	Introduction	Method	Results
	000000000000000000000000000000000000000	000	000000

Spectral Function

Definition

$$G(x,y) = \langle T \varphi(x)\varphi(y) \rangle$$
(5)

$$=F(x,y)-\frac{i}{2}\rho(x,y)\,sgn\left(x^{0}-y^{0}\right) \tag{6}$$

$$F(x,y) = \frac{1}{2} \langle \{\varphi(x), \varphi(y)\} \rangle$$
(7)

$$\rho(\mathbf{x}, \mathbf{y}) = i \left\langle \left[\phi(\mathbf{x}), \phi(\mathbf{y}) \right] \right\rangle \tag{8}$$

- Decomposition of the time-ordered propagator
- Contains information on dynamic properties
- Critical behaviour predicted

Motivation	Introduction	Method 000	Re
Spectral Function			

Meaning

- Statistical two-point function F: occupation numbers
- Spectral function *ρ*: available states
- Example: MFT spectral function

$$\rho(\omega, \vec{p}, T) = 2\pi i \, sgn(\omega) \delta\left(\omega^2 - \vec{p}^2 - M^2(T)\right) \tag{9}$$

Motivation	Introduction
	000000000000000000000000000000000000000

Results

Summary

Dynamical Critical Exponent

Critical Behaviour of ρ

We know that

$$\rho(\omega, \mathbf{0}, \mathbf{0}) \sim \omega^{-\frac{2-\eta}{z}},\tag{10}$$

$$\rho(t,0,T_r) \sim t^{\frac{2-\eta}{2}-1}g\left(\frac{t}{\xi_t(T_r)}\right),\tag{11}$$

$$g(t) = \exp(-t), \quad \xi_t \sim \xi_L^z \sim T_r^{-(z\nu)}$$
(12)

in infinite volume.

- Introducing dynamic critical exponent z, correlation time ξ_t
- z determined by a "dynamic universality class"

Motivation	Introduction	
	000000000000000000000000000000000000000	

Results

Summary

Dynamical Critical Exponent

Dynamic "Universality Classes"

- Additional influcences on z:
 - Conserved densities
 - Poisson brackets
- Classification scheme by Halperin/Hohenberg
 - "Models", ordered by conserved fields and non-vanishing Poisson brackets
 - φ^4 w. Hamiltonian dynamics: Model C \rightarrow z = 2.17
 - Second closest match: Model A $\rightarrow z = 2.03$

Motivation	Introduction	
	000000000000000000000000000000000000000	

Results

Summary

Dynamical Critical Exponent

Dynamic "Universality Classes"

- Additional influcences on z:
 - Conserved densities
 - Poisson brackets
- Classification scheme by Halperin/Hohenberg
 - "Models", ordered by conserved fields and non-vanishing Poisson brackets
 - φ^4 w. Hamiltonian dynamics: Model C \rightarrow z = 2.17
 - Second closest match: Model A \rightarrow z = 2.03

Challenge: Extract z from data, confirm Model C!

Motivation	Introduction
	000000000000000000000000000000000000000

Results

Summary

Approximation

Classical Approximation I

- Spectral function defined via commutator ↔ Poisson brackets, hard to calculate directly
- \Rightarrow Use fluctuation-dissipation theorem:

$$F(\omega, \vec{p}) = -i\left(\frac{1}{2} + n_T(\omega)\right)\rho(\omega, \vec{p})$$
(13)

• Approximate BE distribution $n_T(\omega) \approx \frac{T}{\omega}$ for small ω :

$$F(\omega, \vec{p}, T) \approx -i \frac{T}{\omega} \rho(\omega, \vec{p}, T)$$
 (14)

$$\Rightarrow \quad \rho(t, \vec{p}, T) \approx -\frac{1}{T} \frac{\partial}{\partial t} F(t, \vec{p}, T)$$
(15)

Motivation	Introduction	Meth
	0000000000000000000000000	000

Results

Summary

Approximation

Classical Approximation II

• Use that
$$\pi(x) = \partial_t \varphi(x)$$
:

$$\rho(t,\vec{p},T) = -\frac{1}{T} \partial_t \left\langle \varphi(t,\vec{p})\varphi(0,0) \right\rangle = -\frac{1}{T} \left\langle \pi(t,\vec{p})\varphi(0,0) \right\rangle$$
(16)

• Only look at
$$\vec{p} = 0$$
:

$$\rho(t,0,T) = -\frac{1}{T} \left\langle \left(\int \mathrm{d}^{d} x \pi(t,x) \right) \left(\int \mathrm{d}^{d} y \varphi(0,y) \right) \right\rangle$$
(17)

 \Rightarrow Use this approx. to find *z*!

Motivation	Introduction
	000000000000000000000000000000000000000

Results

Summary

Data Generation

Lattice Data

- Generate equilibrium state (e.g. using HMC)
- ② Evolve in RT using Hamiltonian Dynamics
- 3 Compute ρ using approximation
- ④ Repeat for N uncorrelated ensembles, take average

Motivation	Introduction	Method	Resul
	000000000000000000000000000000000000000	000	0000

Evaluation

$$\rho(t,\vec{p}=0,T_r)\sim t^{\frac{2-\eta}{z}-1}\cdot \exp\left(-\frac{t}{\xi_t(T_r)}\right)$$

Motivation	Introduction	Method	Result
	000000000000000000000000000000000000000	000	00000

Evaluation

$$\rho(t,\vec{p}=0,T_r)\sim t^{\frac{2-\eta}{z}-1}\cdot \exp\left(-\frac{t}{\xi_t(T_r)}\right)$$

Motivation	Introduction	Method	Results
	000000000000000000000000000000000000000	000	000000000

Evaluation

$$\rho(t,\vec{p}=0,T_r)\sim t^{\frac{2-\eta}{z}-1}\cdot \exp\left(-\frac{t}{\xi_t(T_r)}\right)$$

Motivation	Introduction	Method	Results
	000000000000000000000000000000000000000	000	000000

Evaluation

$$\rho(t,\vec{p}=0,T_r)\sim t^{\frac{2-\eta}{z}-1}\cdot \exp\left(-\frac{t}{\xi_t(T_r)}\right)$$

lotivation	Introduction
	000000000000000000000000000000000000000

Method ○○● Results

Summary

Evaluation

Caveats

- Simultaneous fit of power law and exponential
 - Power law exponent small (≈ -0.1)
 - Exponential decay time large ($\sim 10^3$)
- Power law determined by early times (t < 200)
- Exponential determined by late times (t > 1000)
- Strong correlation in intermediate times

Motivation	Introduction	Method 000	Results ●●oooooooooooooo	Summary
Spectral Function are	ound T _c			
$T \ge T_c$ l				

Motivation	Introduction	Method 000	Results ●●oo	Summary
Spectral Function	n around T _c			
$T > T_{c}$	II			

Motivation	Introduction	Method 000	Results oo●●oooooooooooo	Summary
Spectral Function ar	round T _c			
$T \leq T_c$ l				

Motivation	Introduction	Method 000	Results ooe●○○○○○○○○○○○	Summary
Spectral Function are	bund T _c			
$T \leq T_c \parallel$	l			

Motivation	Introduction	Method	Results	S
	000000000000000000000000000000000000000	000	000000000000000000000000000000000000000	

Finite Size Scaling of ξ_t

Spectral Function

Figure: Finite size scaling of the spectral function. $\xi_t \sim L^z$

Motivation	Introduction	Method	Results	Summary
	000000000000000000000000000000000000000	000	000000000000000000000000000000000000000	

Finite Size Scaling of ξ_t

Power Law of ξ_t I

Figure: Finite size scaling of $\xi_t \sim L^z$. Model C predicts z = 2.17.

Motivation	Introduction	Method
	000000000000000000000000000000000000000	000

Results

Summary

Finite Size Scaling of ξ_t

Power Law of $\xi_t \parallel$

- ξ_t increases with volume as expected
- Good result of:

• Reminder: *z*(Model C) = 2.17, *z*(Model A) = 2.03

Motivation	Introduction	Method
	000000000000000000000000000000000000000	000

Results

Summary

Neighbourhood $T > T_c$

Power Law above T_c I

Figure: Increasing correlation time when approaching T_c . $\xi_t \sim T_r^{-(z\nu)}$

Motivation	Introduction	Ν
	000000000000000000000000000000000000000	C

Results

Summary

Neighbourhood $T > T_c$

Power Law above $T_c \parallel$

Figure: Scaling of $\xi_t \sim T_r^{-(z\nu)}$

Motivation	Introduction	Method	Results
	000000000000000000000000000000000000000	000	000000000000000000000000000000000000000

Neighbourhood $T > T_c$

Power Law above T_c III

Summary

Motivation	Introduction
	000000000000000000000000000000000000000

Results

Summary

Neighbourhood $T > T_c$

Power Law above T_c IV

- Direct power law consistently overestimates z
- Edge of peak of $\xi_t(T_r)$ underestimates z
- Underwhelming precision, but increases with lattice volume
- Conservative estimate:

$$z = 2.2(2)$$

Motivation	Introduction
	000000000000000000000000000000000000000

Results

Summary

Divergence of ξ_t

Pseudo-Critical Points I

Motivation	Introduction
	000000000000000000000000000000000000000

Results

Summary

Divergence of ξ_t

Pseudo-Critical Points II

Motivation	Introduction	
	000000000000000000000000000000000000000	

Results

Divergence of ξ_t

Pseudo-Critical Points III

Summary

Motivation	otivation Introduction	Metho
	000000000000000000000000000000000000000	000

Results

Summary

Divergence of ξ_t

Pseudo-Critical Points IV

Figure: Comparison between ξ_t and χ . The peaks hardly overlap for identical lattice volumes.

Motivation	Introduction
	000000000000000000000000000000000000000

Results

Summary

Divergence of ξ_t

Pseudo-Critical Points V

- Maximum of ξ_t below T_c
- Increasingly hard to fit
- Further away from therm. limit than χ

Motivation	Introduction	Method
	000000000000000000000000000000000000000	000

Results

Summary

Summary

- Result of z = 2.15(9) consistent Model C
- Exact calculation of z difficult, best results with FSS at Tc
- Huge lattices needed for good precision
- Outlook
 - Increasing field components
 - Different evolution algorithms
 - Different models/theories

Motivation	Introduction	Method	Results
	000000000000000000000000000000000000000	000	00000

Pseudo-Critical Points I

Motivation	Introduction	Method	Results
	000000000000000000000000000000000000000	000	000000000000000000000000000000000000000

Pseudo-Critical Points II

Figure: The ξ_t -peaks "rescaled". The edge resembles a power law.

Summary

Motivation	Introduction	Method	Results
	000000000000000000000000000000000000000	000	000000000000000000000000000000000000000

Pseudo-Critical Points III

Figure: The ξ_t -peaks "rescaled". The edge resembles a power law with exponent z = 2.17

Summary