Thermal dileptons from coarse-grained transport as probes of hot and dense QCD matter

TECHNISCHE UNIVERSITÄT DARMSTADT

Lunch Club Seminar, Universität Gießen

Florian Seck – TU Darmstadt in collaboration with T. Galatyuk, R. Rapp & J. Stroth

Electromagnetic probes in heavy-ion collisions

Experiments across the QCD phase diagram

A NA60 (μ+μ-) : H.J.Specht: AIP Conf. Proc. 1322 (2010)

Search for

- phase boundary(ies)
 - \rightarrow fluctuations of conserved quantum numbers
 - → flavor production (multi-strange, charm)
- change in microscopic degrees of freedom
- restoration of chiral symmetry
- emitting source temperature
 - → electromagnetic probes leave collision zone undistorted
 - \rightarrow real γ characterized by transverse momentum
 - → dileptons carry extra information: invariant mass

Electromagnetic probes in heavy-ion collisions

CBM cocktail – invariant mass of dielectrons

TECHNISCHE UNIVERSITÄT DARMSTADT

Electromagnetic probes in heavy-ion collisions

Insights from theory

integrated yield of thermal radiation in the mass range 0.3-0.7 GeV/c² is sensitive to the lifetime of the fireball

R. Rapp, H. van Hees: Phys. Lett. B 753 (2016) 586

- dilepton yield determined by interplay between temperature and fireball volume
- slope of dileptons in the intermediate-mass range constitutes a blue-shift free fireball thermometer
- What happens at low energies?

Realistic dilepton emission rates

8-differential thermal production rate

$$\frac{dN_{ll}}{d^4xd^4q} = -\frac{\alpha_{\rm EM}^2}{\pi^3 M^2} f^B(q \cdot u; T) \operatorname{Im}\Pi_{\rm EM}(M, q; \mu_B, T)$$

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} \propto \operatorname{Im}\Pi_{\rm EM}^{\rm vac} \underset{M^2}{\overset{n^2}{M^2}} \overset{n^2}{\underset{v=\rho,\omega,\phi}{\overset{maxremits}{\int_{0}^{t} \frac{d^2}{g_v} \int_{0}^{t} \frac{d^2}{g_v} \int_$$

TECHNISCHE UNIVERSITÄT DARMSTADT

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 5 / 21

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 6 / 21

Realistic dilepton emission rates

-10

-8

-6

-4

-2

0

mD_ρ [GeV⁻²]

TECHNISCHE UNIVERSITÄT DARMSTADT

Realistic dilepton emission rates

Hadronic matter

R. Rapp, J. Wambach: Eur. Phys. J. A 6 (1999) 415

depends on

- temperature T
- effective baryon density ρ_{eff}

$$\varrho_{\rm eff} = \varrho_{\rm N} + \varrho_{\bar{\rm N}} + \frac{1}{2} \left(\varrho_{\rm R} + \varrho_{\bar{\rm R}} \right)$$

• pion chemical potential μ_{π}

reproduces excess in experimental data

- CERES
- NA60
- STAR (including BES)
- PHENIX with HBD
- at higher masses: include hadronic continuum radiation

E. V. Shuryak: Rev. Mod. Phys. 69 (1993) 1

Space-time evolution of a heavy-ion collision

Au+Au at 1.23 AGeV ($\sqrt{S_{NN}}$ = 2.4 GeV) \implies HADES energy regime

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 8 / 21

Description of the fireball evolution

Coarse-graining of hadronic transport

- "combine" the advantages of both descriptions: hydrodynamics & transport
- simulate events with a transport model
 - ----> ensemble average to obtain smooth space-time distributions
- divide space-time evolution into 4-dimesional cells
 - 21 x 21 x 21 space cells (1fm³), 30 time steps \longrightarrow ~ 280 k cells
- determine for each cell the bulk properties like T, $\rho_B \& v_{coll}$
- calculate dilepton rates based on these inputs
 - → parameterization of RW in-medium spectral function
- sum up the contributions of all cells
- similar approaches by
 - Huovinen et al.: PRC 66 (2002) 014903
 - Endres et al.: PRC 91 (2015) 054911, PRC 92 (2015) 014911, PRC 93 (2016) 054901, PRC 94 (2016) 024912

Local thermalization

Momentum distributions of nucleons ($n_{coll} \ge 3$) & evolution of n_{coll}

- Gaussian shaped p_z distribution builds up for nucleons with $n_{coll} \ge 3$
- m_t spectra have exponential shape

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 10 / 21

Determination of bulk properties

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 11 / 21

Out of chemical equilibrium?

Build-up of effective chemical potentials

- thermal emission rates assume chemical equilibrium
- chemical non-equilibrium possible, e.g. after chemical freeze-out
 - no more inelastic interactions -> pion number conserved
 - system in thermal equilibrium cools down further -> over-population of pions
 - build-up of an effective chemical potential μ_{π}
- induces a factor $(z_{\pi})^{\kappa}$ in the dilepton rates with the fugacity $z = \exp\left(\frac{\mu_{\pi}}{T}\right)$
 - exponent κ reflects the main production mechanism of ρ mesons
 - at HADES energies UrQMD suggests $\kappa = 1.12$

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 12 / 21

Time-evolution

Au+Au at 1.23 AGeV

- evolution of T, ρ_{eff} and μ_{π} in the central cube of 7x7x7 cells
- trajectories of the cells in the temperature-density plane

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 13 / 21

Interplay temperature – fireball volume

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 14 / 21

Dileptons as fireball probes

Au+Au at 1.23 AGeV

- time evolution of cumulative dilepton yield in mass window M = 0.3-0.7 GeV/c²
- active radiation window ~13 fm/c follows build-up of collective medium flow is fireball lifetime
- ▶ strong medium effects on p-meson ⇒ remarkably structure-less low-mass spectrum > $dR_{ll}/dM \propto (MT)^{3/2} \exp(-M/T)$
- inverse slope parameter: $T_s = 88 \pm 5$ MeV in IMR, $T_s = 64 \pm 5$ MeV in LMR

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 15 / 21

Dileptons as fireball probes

Ar+KCl at 1.76 AGeV (\sqrt{SNN} = 2.6 GeV)

- evolution of T, ρ_{eff} and μ_{π} in the inner cube of 5x5x5 cells
- T and μ_{π} [MeV] invariant mass spectrum for the thermal radiation
- window for dilepton radiation & build-up of collectivity ~ 8fm/c

100

80

60

40

20

TECHNISCHE UNIVERSITÄT DARMSTADT

1.8

1.6

- 4

^{الل}ے8.0

0.6

0.4

0.2

Excitation function of dilepton production

TECHNISCHE UNIVERSITÄT DARMSTADT

Yield in low-mass window tracks fireball lifetime

fireball dominated by incoming nucleons at lower energies

- number of charged particles N_{ch} not a good proxy for thermal excitation energy
- \blacktriangleright normalization to number of charged pions N_{π}
- lifetime from dilepton yield in mass window 0.3-0.7 GeV/c²: $\frac{N_{l+l-}}{N_{-+}} \cdot 10^6 \simeq 1.45 \cdot \tau_{\rm fb}$

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 17 / 21

Comparison to experimental excess spectra

Ar+KCI at 1.76 AGeV & Au+Au at 1.23 AGeV (min. bias)

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 18 / 21

TECHNISCHE UNIVERSITÄT DARMSTADT

Exploring the QCD phase diagram –

with dileptons

 chemical freeze-out from measured particle yields analyzed with SHM THERMUS 2.3

TECHNISCHE UNIVERSITÄT DARMSTADT

- trajectories extracted from inner cube of cells with coarse-grained UrQMD
- time-window of dilepton emission
 - radiation stops shortly after chemical freeze-out
 - access to hot and dense stage of the heavy-ion collision

Exploring the QCD phase diagram –

- with dileptons

- NA60 intermediate mass µ⁺µ⁻
- trajectories at SIS18
- trajectories at SIS100

Summary

THANK YOU FOR YOUR ATTENTION !

- dileptons are excellent fireball probes
 - thermometer & chronometer
 - new insights into the matter created under extreme conditions
- thermal dilepton spectra from highest to lowest energies
 - realistic thermal dilepton emission rates
 - \blacktriangleright accurate description of fireball evolution in terms of T, $\rho_{eff},$ v_{coll} and μ_{π}
 - coarse-graining of hadronic transport at SIS energies
- baseline for future experimental explorations
 - any significant deviation can indicate new physics!

Backup slides

Excitation function of hadron yields

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 23 / 21

Virtual photon radiation from hot and dense QCD matter

Model: Ralf Rapp STAR: QM2014, NA60: EPJC 59 (2009) 607, CERES: Phys. Lett. B 666 (2006) 425, HADES: Phys.Rev.C84 (2011) 014902

 highly interesting results from RHIC, SPS, SIS18
 → lepton pairs as true messengers of the dense phase

 μ_{B}

HADES at GSI, Darmstadt

- Fixed target
- 50 kHz event rate (400 Mbyte/s peak data rate)
- Full azimuthal coverage, 18° to 85° in polar angle
- Hadron and lepton identification:
 - Tracking with 4x6 Multiwire Drift Chambers and superconducting magnet
 - Time of flight measurement with ToF and RPC Walls
 - Specific energy loss in MDC and ToF
 - RICH and shower detectors to identify leptons

CBM at the future FAIR facility, Darmstadt

- QCD matter equation of state at neutron star core densities studied in heavy-ion collisions
 - Observable: collective phenomena in charged particle phase space distributions
- restoration of chiral symmetry (ρ-a₁ mixing) observed in heavy-ion collisions
 - Observable: yield of intermediate mass lepton pairs
- evidence for a first order phase transition in QCD matter

Observables:

- excitation function of temperatures measured with intermediate mass dileptons
- excitation function of the yield of multi-antistrange hyperons
- extension of the nuclear chart into the strange sector

Dileptons

Invariant-mass spectrum

Invariant-mass excess spectrum

LMR:

broadening of *p*-spectral function

- larger excess in support of the decisive role of baryon interactions, will get maximal at low energies (HADES)
- linked to the chiral symmetry restoration (yet in model dependent way!)

measure excitation function of ρ -spectral function

- critical point?
- first order phase transition?

IMR:

- ρ -a₁ chiral mixing \rightarrow signal for χ -symmetry restoration
- onset of QGP radiation measure:
 - πa₁→ e⁺e⁻(μ⁺μ⁻) dominant source at SIS 100 energies (correlated charm, Drell-Yan and QGP contributions decrease with lower the beam energy)

 \rightarrow direct access to ρ -a₁ chiral mixing

 decrease of T for lower beam energies (R.Rapp, arXiv:1411.4612v1 [hep-ph])
 → plateau around onset of deconfinement?

Determination of bulk properties

Temperature

- subtract mean flow of the cells from particle motion
- fill m_t spectra & fit exponential function to extract T
- use different fit ranges to get the systematics

Out of chemical equilibrium ?

Derivation of the effective chemical potentials

particle density in Boltzmann approximation

$$n = \frac{g}{(2\pi)^3} \int_{\mathbb{R}^3} d^3 \vec{p} \, \exp(-\beta \, (E-\mu))$$

moving fugacity z in front of the integral & integrating over the angles

$$n = \frac{4\pi \ g}{(2\pi)^3} \ z \ \int_0^\infty dp \ p^2 \ \exp(-\beta \ \sqrt{p^2 + m^2})$$

• carrying out the momentum integral yields $n = \frac{4\pi g m^3}{(2\pi)^3} z \frac{1}{\beta m} K_2(\beta m)$

solving for the chemical potential results in

$$\mu = T \ln\left(\frac{2\pi^2 n (\hbar c)^3}{g T m^2 K_2\left(\frac{m}{T}\right)}\right)$$

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 29 / 21

Final-state pion cocktail

Vip 2M

Final-state pion spectra

- Dominant contribution: $\Delta(1232)$ decays (cyan)
- Many more resonances contribute especially at higher p_T

Final-state pion spectra: density dependent

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 32 / 21

10⁵

~ 15% of all π

Final-state pion spectra: density dependent

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 33 / 21

Final-state pion spectra: density dependent

 $\rho/\rho_0 > 1$ at emission

May 03, 2017 | Lunch Club Seminar - Gießen | Florian Seck - TU Darmstadt | 34 / 21

TECHNISCHE UNIVERSITÄT DARMSTADT

~ 20% of all π

10⁵

10