Quasiparticle anisotropic hydrodynamics

Michael Strickland Kent State University

Primary References: M. Alqahtani, M. Nopoush, R. Ryblewski, and MS 1703.05808 (accepted to PRL) and 1705.10191

Theoretical Hadron Physics Lunch Seminar Institute for Theoretical Physics, Justig-Liebig-Universität Giessen - July 5, 2017

Motivation

- Relativistic viscous hydrodynamical modeling for heavy ion collisions at RHIC and LHC is now ubiquitous
- Designed to describe particle production at $\mathrm{p}_{\mathrm{T}} \precsim 2 \mathrm{GeV}$
- Application is justified a posteriori by the smallness of the shear viscosity of the plasma (relative to the entropy density)
- Viscous hydrodynamics is phenomenologically quite successful, however, the extreme environment generated in HICs presents a bit of a challenge to the standard formalism if you start looking closer
- The QGP is born into a state of rapid longitudinal expansion which drives the system out of equilibrium
- There are many groups now focused on improving viscous hydrodynamics itself in order to better describe systems that are far from equilibrium, e.g. anisotropic hydrodynamics

Heavy Ion Collision Timescales

QGP momentum anisotropy cartoon

Physics 101

Cows are spheres?

Cows are spheres?

Cows are not spheres

Cows are more like ellipsoids!

Spheroidal expansion method

Viscous Hydrodynamics Expansion

$$
f(\tau, \mathbf{x}, \mathbf{p})=\frac{f_{\mathrm{eq}}(\mathbf{p}, T(\tau, \mathbf{x}))}{\uparrow_{\text {Isotropic in mom }}}+\delta f
$$

Isotropic in momentum space
Anisotropic Hydrodynamics (aHydro) Expansion

$$
f(\tau, \mathbf{x}, \mathbf{p})=f_{\text {aniso }}(\mathbf{p}, \underbrace{\Lambda(\tau, \mathbf{x})}_{T_{\perp}}, \underbrace{\xi(\tau, \mathbf{x})}_{\text {anisotropy }})+\delta \tilde{f}
$$

\rightarrow "Romatschke-Strickland" form in LRF

$$
f_{\text {aniso }}^{L R F}=f_{\text {iso }}\left(\frac{\sqrt{\mathbf{p}^{2}+\xi(\mathbf{x}, \tau) p_{z}^{2}}}{\Lambda(\mathbf{x}, \tau)}\right)
$$

moo

$$
\xi=\frac{\left\langle p_{T}^{2}\right\rangle}{2\left\langle p_{L}^{2}\right\rangle}-1
$$

What are the largest viscous corrections?

H. Song, PhD Dissertation, 0908.3656

Why spheroidal form at LO?

- What is special about this form at leading order?

$$
f_{\text {aniso }}^{L R F}=f_{\text {iso }}\left(\frac{\sqrt{\mathbf{p}^{2}+\xi(\mathbf{x}, \tau) p_{z}^{2}}}{\Lambda(\mathbf{x}, \tau)}\right)
$$

- Gives the ideal hydro limit when $\xi=0(\Lambda \rightarrow T)$
- For longitudinal ($0+1 \mathrm{~d}$) free streaming, the LRF distribution function is of spheroidal form; limit emerges automatically in 0+1d aHydro

$$
\xi_{\mathrm{FS}}(\tau)=\left(1+\xi_{0}\right)\left(\frac{\tau}{\tau_{0}}\right)^{2}-1
$$

- Since $f_{\text {iso }} \geq 0$, the one-particle distribution function and pressures are ≥ 0 (not guaranteed in standard $2^{\text {nd }}$-order viscous hydro)
- Reduces to $2^{\text {nd }}-$ order viscous hydrodynamics in limit of small anisotropies M. Martinez and MS, 1007.0889

$$
\frac{\Pi}{\mathcal{E}_{\mathrm{eq}}}=\frac{8}{45} \xi+\mathcal{O}\left(\xi^{2}\right)
$$

[^0]
The growing anisotropic hydrodynamics family

- There are two approaches being actively followed in the literature to address this problem
A. Linearize around a spheroidal distribution function and treat the perturbations using standard kinetic vHydro methods ["vaHydro"]
Bazow, Heinz, Martinez, Molnar, Niemi, Rischke, MS
B. Introduce a generalized anisotropy tensor which replaces the entire viscous stress tensor at LO and then linearize around that instead
Tinti, Ryblewski, Martinez, Nopoush, Alqahtani, Florkowski, Molnar, Niemi, Rischke, Schaefer, Bluhm, MS
- Each of these methods has its own advantages.
- In what I will show today, I will use the generalized method (B) at leading order.

Generalized aHydro formalism

In generalized aHydro, one assumes that the distribution function is of the form

$$
f(x, p)=f_{\mathrm{eq}}\left(\frac{\sqrt{p^{\mu} \Xi_{\mu \nu}(x) p^{\nu}}}{\lambda(x)}, \frac{\mu(x)}{\lambda(x)}\right)+\delta \tilde{f}(x, p)
$$

$$
\begin{aligned}
u^{\mu} u_{\mu} & =1 \\
\xi^{\mu}{ }_{\mu} & =0 \\
\Delta^{\mu}{ }_{\mu} & =3 \\
u_{\mu} \xi^{\mu \nu} & =u_{\mu} \Delta^{\mu \nu}=0
\end{aligned}
$$

- 3 degrees of freedom in u^{μ}
- 5 degrees of freedom in $\xi^{\mu \nu}$
- 1 degree of freedom in Φ

See e.g.

- M. Martinez, R. Ryblewski, and MS, 1204.1473
- L. Tinti and W. Florkowski, 1312.6614
- M. Nopoush, R. Ryblewski, and MS, 1405.1355
- 1 degree of freedom in λ
- 1 degree of freedom in μ
$\rightarrow 11$ DOFs

Equations of Motion

- Herein the EOM are obtained from moments of the Boltzmann equation in the relaxation time approximation (RTA)

$$
p^{\mu} \partial_{\mu} f=-\mathcal{C}[f] \quad \mathcal{C}[f]=\frac{p^{\mu} u_{\mu}}{\tau_{\mathrm{eq}}}\left(f-f_{\mathrm{eq}}\right)
$$

- It is relatively straightforward to use other collisional kernels (in progres)
- 1 equation from the $0^{\text {th }}$ moment [number (non-conservation)]
- 4 equations from the $1^{\text {st }}$ moment [energy-momentum conservation]
- 6 equations from the $2^{\text {nd }}$ moment [dissipative dynamics]
- We must also specify the relation between the equilibrium (isotropic) pressure and energy density (EoS). More on this later.

$$
\begin{aligned}
D_{u} n+n \theta_{u} & =\frac{1}{\tau_{\mathrm{eq}}}\left(n_{\mathrm{eq}}-n\right) \\
\partial_{\mu} T^{\mu \nu} & =0 \\
\partial_{\mu} \mathcal{I}^{\mu \nu \lambda} & =\frac{1}{\tau_{\mathrm{eq}}}\left(u_{\mu} \mathcal{I}_{\mathrm{eq}}^{\mu \nu \lambda}-u_{\mu} \mathcal{I}^{\mu \nu \lambda}\right) \quad \mathcal{I}^{\mu \nu \lambda} \equiv \int d P p^{\mu} p^{\nu} p^{\lambda} f(x, p) .
\end{aligned}
$$

Is it really better?

aHydro reproduces exact solutions to the Boltzmann equation in a variety of expanding backgrounds better than standard viscous Hydro.

Ex. 1: Entropy Generation

[D. Bazow, U. Heinz, and MS, 1311.6720]

- Number (entropy) production vanishes in two limits: ideal hydrodynamic and free streaming limits
- In the conformal model which we are testing with, number density is proportional to entropy density

Ex. 2: Conformal 0+1d aHydro results

- aHydro results (lines) on the left are from the recent paper of Molnar, Rischke, and Niemi [1606.09019]
- Exact result is shown by dots
[W. Florkowski, R. Ryblewski, and MS, 1304.0665 and 1305.7234]

Ex 3: LO aHydro for Gubser flow

Exact Solution: G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048

Isotropic initial conditions

Ex 3: LO aHydro for Gubser flow

Exact Solution: G. Denicol, U.Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048

See also Martinez, McNelis, Heinz, 1703.10955 for NLO aHydro for Gubser Flow

Towards realistic phenomenology

3+1d aHydro Equations of Motion

Assuming an ellipsoidal form for the anisotropy tensor (ignoring off-diagonal components for now), one has seven degrees of freedom $\xi_{x}, \xi_{y}, \xi_{z}, u_{x}, u_{y}, u_{z}$ and λ which are all fields of space and time.

$$
\begin{array}{r}
\begin{array}{r}
D_{u} \mathcal{E}+\mathcal{E} \theta_{u}+\mathcal{P}_{x} u_{\mu} D_{x} X^{\mu}+\mathcal{P}_{y} u_{\mu} D_{y} Y^{\mu}+\mathcal{P}_{z} u_{\mu} D_{z} Z^{\mu}=0, \\
D_{x} \mathcal{P}_{x}+\mathcal{P}_{x} \theta_{x}-\mathcal{E} X_{\mu} D_{u} u^{\mu}-\mathcal{P}_{y} X_{\mu} D_{y} Y^{\mu}-\mathcal{P}_{z} X_{\mu} D_{z} Z^{\mu}=0, \\
D_{y} \mathcal{P}_{y}+\mathcal{P}_{y} \theta_{y}-\mathcal{E} Y_{\mu} D_{u} u^{\mu}-\mathcal{P}_{x} Y_{\mu} D_{x} X^{\mu}-\mathcal{P}_{z} Y_{\mu} D_{z} Z^{\mu}=0, \\
D_{z} \mathcal{P}_{z}+\mathcal{P}_{z} \theta_{z}-\mathcal{E} Z_{\mu} D_{u} u^{\mu}-\mathcal{P}_{x} Z_{\mu} D_{x} X^{\mu}-\mathcal{P}_{y} Z_{\mu} D_{y} Y^{\mu}=0 .
\end{array} \\
\begin{array}{|l|l}
\mathcal{I}^{\mu \nu \lambda} \equiv \int d P p^{\mu} p^{\nu} p^{\lambda} f(x, p) . & \begin{array}{l}
D_{u} \mathcal{I}_{x}+\mathcal{I}_{x}\left(\theta_{u}+2 u_{\mu} D_{x} X^{\mu}\right)=\frac{1}{\tau_{\text {eq }}}\left(\mathcal{I}_{\text {eq }}-\mathcal{I}_{x}\right), \\
D_{u} \mathcal{I}_{y}+\mathcal{I}_{y}\left(\theta_{u}+2 u_{\mu} D_{y} Y^{\mu}\right)=\frac{1}{\tau_{\text {eq }}}\left(\mathcal{I}_{\text {eq }}-\mathcal{I}_{y}\right), \\
D_{u} \mathcal{I}_{z}+\mathcal{I}_{z}\left(\theta_{u}+2 u_{\mu} D_{z} Z^{\mu}\right)=\frac{1}{\tau_{\text {eq }}}\left(\mathcal{I}_{\text {eq }}-\mathcal{I}_{z}\right) . \\
\mathcal{I}_{\text {eq }}(\lambda, m)=4 \pi \tilde{N} \lambda^{5} \hat{m}^{3} K_{3}(\hat{m}),
\end{array}
\end{array} .
\end{array}
$$

First Moment

Implementing the equation of state

M. Alqahtani, M. Nopoush, R. Ryblewski, and MS, 1703.05808; 1705.10191

Quasiparticle Method

$$
\begin{aligned}
T^{\mu \nu} & =T_{\text {kinetic }}^{\mu \nu}+B g^{\mu \nu} \\
p^{\mu} \partial_{\mu} f & +\frac{1}{2} \partial_{i} m^{2} \partial_{(p)}^{i} f=-\mathcal{C}[f] \\
\partial_{\mu} B & =-\frac{1}{2} \partial_{\mu} m^{2} \int d P f(x, p)
\end{aligned}
$$

Implementing the equation of state

M. Alqahtani, M. Nopoush, R. Ryblewski, and MS, 1703.05808; 1705.10191

Quasiparticle Method

$$
\begin{aligned}
& T^{\mu \nu}=T_{\text {kinetic }}^{\mu \nu}+B g^{\mu \nu} \\
& p^{\mu} \partial_{\mu} f+\frac{1}{2} \partial_{i} m^{2} \partial_{(p)}^{i} f=-\mathcal{C}[f] \\
& \partial_{\mu} B=-\frac{1}{2} \partial_{\mu} m^{2} \int d P f(x, p)
\end{aligned}
$$

Bulk viscosity

$$
\begin{aligned}
\frac{\zeta}{\tau_{\mathrm{eq}}} & =\frac{5}{3 T} I_{3,2}-c_{s}^{2}(\mathcal{E}+\mathcal{P})+T \hat{m}^{3} \frac{d m}{d T} I_{1,1} \\
I_{3,2}(x) & =\frac{N_{\mathrm{dof}} T^{5} x^{5}}{30 \pi^{2}}\left[\frac{1}{16}\left(K_{5}(x)-7 K_{3}(x)+22 K_{1}(x)\right)-K_{i, 1}(x)\right] \\
K_{i, 1}(x) & =\frac{\pi}{2}\left[1-x K_{0}(x) \mathcal{S}_{-1}(x)-x K_{1}(x) \mathcal{S}_{0}(x)\right] \\
I_{1,1} & =\frac{g m^{3}}{6 \pi^{2}}\left[\frac{1}{4}\left(K_{3}-5 K_{1}\right)+K_{i, 1}\right]
\end{aligned}
$$

Implementing the equation of state

M. Alqahtani, M. Nopoush, R. Ryblewski, and MS, 1703.05808; 1705.10191

Quasiparticle Method

$$
\begin{aligned}
& T^{\mu \nu}=T_{\text {kinetic }}^{\mu \nu}+B g^{\mu \nu} \\
& p^{\mu} \partial_{\mu} f+\frac{1}{2} \partial_{i} m^{2} \partial_{(p)}^{i} f=-\mathcal{C}[f] \\
& \partial_{\mu} B=-\frac{1}{2} \partial_{\mu} m^{2} \int d P f(x, p)
\end{aligned}
$$

Spatiotemporal Evolution

- $\mathrm{Pb}-\mathrm{Pb}, \mathrm{b}=7 \mathrm{fm}$ collision with Monte-Carlo Glauber initial conditions $\mathrm{T}_{0}=600 \mathrm{MeV} @ \tau_{0}=0.25 \mathrm{fm} / \mathrm{c}$
- Left panel shows temperature and right shows pressure anisotropy

Anisotropic Cooper-Frye Freezeout
 D. Bazow, U. Heinz, M. Martinez, M. Nopoush, R. Ryblewski, MS, 1506.05278

M. Alqahtani, M. Nopoush, R. Ryblewski, and MS, 1703.05808; 1705.10191

- Use same ellipsoidal form for "anisotropic freeze-out" at LO.
- Form includes both shear and bulk corrections to the distribution function.
- Use energy density (scalar) to determine the freeze-out hypersurface $\Sigma \rightarrow$ e.g. $T_{\text {eff,FO }}=150 \mathrm{MeV}$

$$
\begin{aligned}
& f(x, p)=f_{\text {iso }}\left(\frac{1}{\lambda} \sqrt{p_{\mu} \Xi^{\mu \nu} p_{\nu}}\right) \\
& \Xi^{\mu \nu}=\underset{\text { isotropic }}{u^{\mu} u^{\nu}+\xi^{\mu \nu}-\Phi \Delta^{\mu \nu}} \begin{array}{c}
\text { anisotropy } \\
\text { tensor }
\end{array} \begin{array}{c}
\text { bulk } \\
\text { correction }
\end{array}
\end{aligned}
$$

$$
\left(p^{0} \frac{d N}{d p^{3}}\right)_{i}=\frac{\mathcal{N}_{i}}{(2 \pi)^{3}} \int f_{i}(x, p) p^{\mu} d \Sigma_{\mu}
$$

NOTE: Usual $2^{\text {nd }}-o r d e r ~ v i s c o u s ~ h y d r o ~ f o r m ~$

$$
\begin{gathered}
f(p, x)=f_{\mathrm{eq}}\left[1+\left(1-a f_{\mathrm{eq}}\right) \frac{p_{\mu} p_{\nu} \Pi^{\mu \nu}}{2(\epsilon+P) T^{2}}\right] \\
f_{\mathrm{eq}}=1 /[\exp (p \cdot u / T)+a] \quad a=-1,+1, \text { or } 0
\end{gathered}
$$

$$
\begin{aligned}
& \xi_{\mathrm{LRF}}^{\mu \nu} \equiv \operatorname{diag}\left(0, \xi_{x}, \xi_{y}, \xi_{z}\right) \\
& \xi^{\mu}{ }_{\mu}=0 \quad u_{\mu} \xi^{\mu}{ }_{\nu}=0
\end{aligned}
$$

- This form suffers from the problem that the distribution function can be negative in some regions of phase space \rightarrow unphysical

- Problem becomes worse when including the bulk viscous correction.

The phenomenological setup

- Use simple model using smooth optical Glauber initial conditions.
- For initial conditions we use a mixture of wounded nucleon and binary collision profiles with a binary mixing fraction of 0.15 (empirically suggested from prior viscous hydro studies).
- In the rapidity direction, we use a rapidity profile with a "tilted" central plateau and Gaussian "wings".
- We take all anisotropy parameters to be 1 initially (isotropic IC).
- We then run the code and extract the freeze-out hypersurface.
- The primordial particle production is then Monte-Carlo sampled using the Therminator 2. [Chojnacki, Kisiel, Florkowski, and Broniowski, arxiv:1102.0273]
- Therminator also takes care of all resonance feed downs.
- All data shown are from the ALICE collaboration.

Identified particle spectra

Identified particle average p_{T}

Alqahtani, Nopoush, Ryblewski, MS, 1703.05808; 1705.10191

Charged particle multiplicities

Alqahtani, Nopoush, Ryblewski, MS, 1703.05808; 1705.10191

Elliptic flow

- Quite good description of elliptic flow as well
- Problems for central collisions but this is to be expected since we have not included fluctuating initial conditions yet

Conclusions and Outlook

- Anisotropic hydrodynamics builds upon prior advances in relativistic hydrodynamics in an attempt to create a more quantitatively reliable model of QGP evolution.
- It incorporates some "facts of life" specific to the conditions generated in relativistic heavy ion collisions and, in doing so, optimizes the dissipative hydrodynamics approach.
- We now have a running 3+1d aHydro code with realistic EoS, anisotropic freeze-out, and fluctuating initial conditions.
- Our preliminary fits to experimental data using smooth Glauber initial conditions look quite nice.
- Also need to add the off-diagonal anisotropies and turn on the fluctuating initial conditions . . . Lots of work yet to do.

Backup slides

Some pretty pictures from 3d viscous hydro

- Left panels show output from the Ohio State/Kent State GPU-based viscous hydro code [Bazow, Heinz, and MS, 1608.06577]
- Solves the non-conformal DNMR (Denicol, Niemi, Molnar, Rischke) equations with a realistic EoS
- Parameterized ζ / s (plot below)
- $\eta / \mathrm{s}=0.2$
- $\mathrm{T}_{0}=600 \mathrm{MeV} @ \mathrm{t}_{0}=0.5 \mathrm{fm} / \mathrm{c}$

Pb-Pb @ 2.76 TeV - Don’t worry, be happy

p-A @ 2.76 TeV - Don’t be happy, worry

Figure (sans emoticons): H. Niemi and G. Denicol, 1404.7327

$$
\tau_{\Pi} \dot{\Pi}+\Pi=-\zeta \theta+\mathscr{J}+\mathscr{K}+\mathscr{R}
$$

$$
\tau_{n} \dot{n}^{\langle\mu\rangle}+n^{\mu}=\kappa I^{\mu}+\mathscr{J}^{\mu}+\mathscr{K}^{\mu}+\mathscr{R}^{\mu}
$$

$$
\tau_{\pi} \dot{\pi}^{\langle\mu v\rangle}+\pi^{\mu v}=2 \eta \sigma^{\mu v}+\mathscr{J}^{\mu v}+\mathscr{K}^{\mu v}+\mathscr{R}^{\mu v}
$$

- $\mathcal{J}, \mathcal{J}^{\mu}$, and $\mathcal{J}^{\mu \nu}$ are $\mathrm{O}\left(\mathrm{Kn} \mathrm{R}^{-1}\right)$
- $\mathcal{K}, \mathcal{K}^{\mu}$, and $\mathcal{K}^{\mu \nu}$ are $\mathrm{O}\left(\mathrm{Kn}^{2}\right)$
- $\mathcal{R}, \mathcal{R}^{\mu}$, and $\mathcal{R}^{\mu \nu}$ are $\mathrm{O}\left(\mathrm{R}^{-2}\right)$
- DNMR derivation assumes that $K n \sim R^{-1}$
- For this to be a reasonable approx, the $2^{\text {nd }}$ order terms should be smaller than the $O(K n)$ NavierStokes terms
- In order for code to run stably, it is necessary to "dynamically regulate" the viscous corrections

$1^{\text {st }}$ Order Hydro - 0+1d

Additionally one finds for the first order distribution function

$$
f(x, p)=f_{\mathrm{eq}}\left(\frac{p^{\mu} u_{\mu}}{T}\right)\left[1+\frac{p^{\alpha} p^{\beta} \pi_{\alpha \beta}}{2(\mathcal{E}+\mathcal{P}) T^{2}}\right] \rightarrow f_{\mathrm{eq}}\left(\frac{E}{T}\right)\left[1+\frac{\eta}{\mathcal{S}} \frac{p_{x}^{2}+p_{y}^{2}-2 p_{z}^{2}}{3 \tau T^{3}}\right]
$$

- Distribution function becomes anisotropic in momentum space
- There are also regions where $f(x, p)<0$
- Anisotropy and regions of negativity increase as τ or T decrease OR η / S increases

$1^{\text {st }}$ Order Hydro - 0+1d

Additionally one finds for the first order distribution function

$$
f(x, p)=f_{\mathrm{eq}}\left(\frac{p^{\mu} u_{\mu}}{T}\right)\left[1+\frac{p^{\alpha} p^{\beta} \pi_{\alpha \beta}}{2(\mathcal{E}+\mathcal{P}) T^{2}}\right] \rightarrow f_{\mathrm{eq}}\left(\frac{E}{T}\right)\left[1+\frac{\eta}{\mathcal{S}} \frac{p_{x}^{2}+p_{y}^{2}-2 p_{z}^{2}}{3 \tau T^{3}}\right]
$$

- Distribution function becomes anisotropic in momentum space
- There are also regions where $f(x, p)<0$
- Anisotropy and regions of negativity increase as τ or T decrease OR η / S increases

Ex 3: aHydro for Gubser flow

Exact Solution: G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048

Technicalities - A numerical challenge

- One of the most daunting challenges faced by the quasiparticle approach is that one has to evaluate a bunch of "H" functions, e.g.

$$
\begin{gathered}
\mathcal{E}=\mathcal{H}_{3}(\boldsymbol{\alpha}, \hat{m}) \lambda^{4}+B \\
\mathcal{H}_{3}(\boldsymbol{\alpha}, \hat{m})=\tilde{N} \alpha \int d^{3} \hat{p} \mathcal{R}(\boldsymbol{\alpha}, \hat{m}) f_{\mathrm{eq}}\left(\sqrt{\hat{p}^{2}+\hat{m}^{2}}\right) \\
\mathcal{R}(\boldsymbol{\alpha}, \hat{m})=\sqrt{\alpha_{x}^{2} p_{x}^{2}+\alpha_{y}^{2} p_{y}^{2}+\alpha_{z}^{2} p_{z}^{2}+m^{2}}
\end{gathered}
$$

- We evaluate these efficiently by expanding the integrand around the diagonal in anisotropy space up to $12^{\text {th }}$ order.
- We do this around two points $(1,1,1)$ and $(2,2,2)$ and switch between these two expansions smoothly.
- With this method we were able to accelerate the evaulation of H functions by a factor of 10^{5} while achieving $<0.1 \%$ accuracy.

More figures \#2

[^0]: For general (3+1d) proof of equivalence to secondorder viscous hydrodynamics using generalized RS form in the near-equilibrium limit see Tinti 1411.7268.

