Nonequilibrium quark production in the expanding QCD plasma

Naoto Tanji (ECT*)

In collaboration with Juergen Berges (Heidelberg U.) arXiv: 1711.03445

> Seminar@Giessen Dec. 6th, 2017

Classical-statistical method for strong-field QCD

Numerical results

- far from equilibrium
- boost-invariant expansion in the longitudinal direction
- strong gauge fields, highly occupied gluons

 $A \sim Q_s/g$ $f_g \sim 1/g^2$

strongly interacting even though weak coupling

- far from equilibrium
- boost-invariant expansion in the longitudinal direction
- strong gauge fields, highly occupied gluons

 $A \sim Q_s/g$ $f_g \sim 1/g^2$

strongly interacting even though weak coupling

- How does the over-occupied gluon plasma evolve toward thermalization or hydrodynamization?
- Quark production?

QCD-based theoretical descriptions

QCD-based theoretical descriptions

Pure gluon systems have been extensively investigated.

Though the early stage is dominated by gluons, quarks play important roles in connection with experimental observables.

- Electromagnetic probes
- Possible signals of the chiral magnetic effect

Classical-statistical real-time lattice simulations for quark production

Schwinger-Keldysh formalism

In nonequilibrium, we are mostly interested in expectation values $\langle 0_{in}|{\cal O}|0_{in}\rangle$

Schwinger-Keldysh (closed time path) formalism

Generating functional

$$Z[J] = \int \mathcal{D}\mathcal{A}^{+}\mathcal{D}\mathcal{A}^{-}\rho_{0}[\mathcal{A}_{ini}^{+}, \mathcal{A}_{ini}^{-}]e^{i\int d^{4}x \left[\mathcal{L}_{SK}+J^{+}\mathcal{A}^{+}-J^{-}\mathcal{A}^{-}\right]}$$

initial density matrix
$$\mathcal{L}_{gauge}^{SK}\left[\mathcal{A}^{+}, \mathcal{A}^{-}\right] = \mathcal{L}_{gauge}[\mathcal{A}^{+}] - \mathcal{L}_{gauge}[\mathcal{A}^{-}]$$

Schwinger-Keldysh formalism

In nonequilibrium, we are mostly interested in expectation values $\langle 0_{\rm in} | \mathcal{O} | 0_{\rm in} \rangle$ Schwinger-Keldysh (closed time path) formalism Generating functional $Z[J] = \int \mathcal{D}\mathcal{A}^+ \mathcal{D}\mathcal{A}^- \rho_0[\mathcal{A}^+_{ini}, \mathcal{A}^-_{ini}] e^{i\int d^4x \left[\mathcal{L}_{\rm SK} + J^+ \mathcal{A}^+ - J^- \mathcal{A}^-\right]}$ initial density matrix $\mathcal{L}_{\text{gauge}}^{\text{SK}}\left[\mathcal{A}^+, \mathcal{A}^-\right] = \mathcal{L}_{\text{gauge}}\left[\mathcal{A}^+\right] - \mathcal{L}_{\text{gauge}}\left[\mathcal{A}^-\right]$ $= [D_{\mu}, F^{\mu\nu}]^{a} \eta_{\nu}^{a} + \frac{ig}{4} [D_{\mu}, \eta_{\nu}]^{a} [\eta^{\mu}, \eta^{\nu}]^{a}$ classical EOM Change variables (Keldysh rotation) $A_{\mu} = \frac{\mathcal{A}_{\mu}^{+} + \mathcal{A}_{\mu}^{-}}{2}, \ \eta_{\mu} = \mathcal{A}_{\mu}^{+} - \mathcal{A}_{\mu}^{-}$ classical field quantum field

Classical-statistical method for strong gauge fields

Classical approximation
$$A \gg \eta$$

$$\mathcal{L}_{gauge}^{SK} = [D_{\mu}, F^{\mu\nu}]^{a} \eta_{\nu}^{a} + \frac{ig}{4} [D_{\mu}, \eta_{\nu}]^{a} [\eta^{\mu}, \eta^{\nu}]^{a}$$

neglect higher order terms in $\boldsymbol{\eta}$

The path integration over η gives

$$Z \sim \int \mathcal{D}A \,\rho_0[A_{ini}] \delta\left([D_\mu, F^{\mu\nu}]\right) e^{i \int d^4 x \, JA}$$

restricts field trajectories to the classical path.

Computation procedure

- 1. Generate an ensemble of initial fields according to the initial density matrix.
- 2. Solve the classical EOM for each initial condition.
- 3. Take the average over the initial ensemble.

Fermions are always quantum, must be treated exactly.

$$\mathcal{L}_{\text{matter}} = \overline{\psi}(i\partial \!\!\!/ + g\mathcal{A} - m)\psi \implies \text{Det}\left[i\partial \!\!\!/ + g\mathcal{A} - m\right]$$

Quadratic fields can be integrated out.

Expand the determinant w.r.t. the quantum gauge field.

$$A, \eta \xrightarrow{A, \eta} (A, \eta) \xrightarrow{A, \eta} (A, \eta)$$

Kasper et al. PRD90 (2014)

The path integration over η gives

$$Z \sim \int \mathcal{D}A \,\rho_0[A_{ini}] \delta\left([D_\mu, F^{\mu\nu}] - J^\mu\right) e^{i \int d^4x \, J_{\text{ext}}A}$$

Classical Yang-Mills equation that couples to the quark current

$$[D_{\mu}, F^{\mu\nu}] = J^{\mu}$$

The color current and other quark observables can be obtained from the quark propagator $S_F(x, y)$ dressed by the classical gauge field.

$$[i\partial_x + gA(x) - m + i \operatorname{sgn}_{\mathcal{C}} \epsilon] S_F(x, y) = i \delta_{\mathcal{C}}(x, y)$$

The path integration over η gives

$$Z \sim \int \mathcal{D}A \,\rho_0[A_{ini}] \delta\left([D_\mu, F^{\mu\nu}] - J^\mu\right) e^{i\int d^4x \, J_{\text{ext}}A}$$

Classical Yang-Mills equation that couples to the quark current

$$[D_{\mu}, F^{\mu\nu}] = J^{\mu}$$

The color current and other quark observables can be obtained from the quark propagator $S_F(x, y)$ dressed by the classical gauge field.

$$[i\partial_x + gA(x) - m + i \operatorname{sgn}_{\mathcal{C}} \epsilon] S_F(x, y) = i\delta_{\mathcal{C}}(x, y)$$

The propagator can be constructed by the field operator that obey the Dirac eq.

$$[i\partial \!\!\!/ + gA(x) - m]\hat{\psi}(x) = 0$$

The path integration over η gives

$$Z \sim \int \mathcal{D}A \,\rho_0[A_{ini}] \delta\left([D_\mu, F^{\mu\nu}] - J^\mu\right) e^{i \int d^4x \, J_{\text{ext}}A}$$

Classical Yang-Mills equation that couples to the quark current

$$[D_{\mu}, F^{\mu\nu}] = J^{\mu}$$

The color current and other quark observables can be obtained from the quark propagator $S_F(x, y)$ dressed by the classical gauge field.

$$[i\partial_x + gA(x) - m + i \operatorname{sgn}_{\mathcal{C}} \epsilon] S_F(x, y) = i\delta_{\mathcal{C}}(x, y)$$

The propagator can be constructed by the field operator that obey the Dirac eq.

$$[i\partial \!\!\!/ + gA(x) - m]\,\hat{\psi}(x) = 0$$

mode expansion

$$\hat{\psi}(x) = \sum_{s,c} \int \frac{d^3p}{(2\pi)^3} \left[\psi^+_{\boldsymbol{p},s,c}(x) a_{\boldsymbol{p},s,c} + \psi^-_{\boldsymbol{p},s,c}(x) b^\dagger_{\boldsymbol{p},s,c} \right]$$

The Dirac eq. for c-number mode functions

$$[i\partial \!\!\!/ + g A(x) - m] \psi^{\pm}_{\mathbf{p},s,c}(x) = 0$$

The path integration over η gives

$$Z \sim \int \mathcal{D}A \,\rho_0[A_{ini}] \delta\left([D_\mu, F^{\mu\nu}] - J^\mu\right) e^{i\int d^4x \, J_{\text{ext}}A}$$

Classical Yang-Mills equation that couples to the quark current

$$[D_{\mu}, F^{\mu\nu}] = J^{\mu}$$

The color current and other quark observables can be obtained from the quark propagator $S_F(x, y)$ dressed by the classical gauge field.

$$[i\partial_x + gA(x) - m + i \operatorname{sgn}_{\mathcal{C}} \epsilon] S_F(x, y) = i \delta_{\mathcal{C}}(x, y)$$

The propagator can be constructed by the field operator that obey the Dirac eq.

$$[i\partial \!\!\!/ + gA(x) - m]\,\hat{\psi}(x) = 0$$

mode expansion

$$\hat{\psi}(x) = \sum_{s,c} \int \frac{d^3p}{(2\pi)^3} \left[\psi^+_{\mathbf{p},s,c}(x) a_{\mathbf{p},s,c} + \psi^-_{\mathbf{p},s,c}(x) b^\dagger_{\mathbf{p},s,c} \right]$$

The Dirac eq. for c-number mode functions

$$[i\partial \!\!\!/ + g A(x) - m] \psi_{\mathbf{p},s,c}^{\pm}(x) = 0$$

Initial conditions

Gauge sector

 $ho_0[A_{ini}]$: Gaussian density matrix that corresponds to the initial quasi-particle distribution

$$f_{\rm g}(\tau_0, p_{\perp}, p_z) = \frac{n_0}{g^2} \Theta\left(Q_s - \sqrt{p_{\perp}^2 + (\xi_0 p_z)^2}\right)$$

 n_0 : initial over-occupancy parameter ξ_0 : initial anisotropy parameter

Such an incoherent gluonic plasma is expected to appear after coherent Glasma fields decay by instabilities at the time scale of $\tau_0 \sim Q_s^{-1} \ln^2 \alpha_s^{-1}$. We employ $g = 10^{-2}$ and $Q_s \tau_0 = 100$.

Quark sector

perturbative vacuum $\psi_{\boldsymbol{p},s,c}^{\pm}(\tau_0, \boldsymbol{x}_{\perp}, \eta) = \text{free spinor}$

 Q_{\bullet}

 J_g

 n_0/g^2

Momentum distribution function

- ambiguity in interacting theory
- gauge dependence
- provide insights into the nonequilibrium evolution
- enable a direct comparison to the kinetic theory

Time evolution of the gluon distribution

$$N_{c} = 2, \ g = 10^{-2}, \ n_{0} = 1, \ \xi_{0} = 2$$

$$N_{\perp} = 48, \ N_{\eta} = 256$$

$$Q_{s}a_{\perp} = 0.625, \ a_{\eta} = 1.95 \cdot 10^{-3}$$

$$(\bigcirc 1 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.2 \\ 0.5 \\ 0$$

- ➢ IR and UV cascades
- Decrease due to the longitudinal expansion and momentum broadening
- > At later times, it reaches non-thermal fixed point

$$f_{\rm g}(\tau, p_{\perp}, p_z) = (Q_s \tau)^{-2/3} f_S\left(p_{\perp}, (Q_s \tau)^{1/3} p_z\right)$$

Berges et al. PRD89 (2014)

Time evolution of the quark number density

Integrated quark number density per unit transverse area and per unit rapidity

$$\frac{dN_{q}}{d^{2}x_{\perp}d\eta} = \nu_{q} \tau \int \frac{d^{2}p_{\perp}dp_{z}}{(2\pi)^{3}} f_{q}(\tau, p_{\perp}, p_{z}) \qquad \nu_{q} = 2 \cdot 2N_{f}N_{c}$$

$$\downarrow_{q} = 2 \cdot 2N_{f}N_{f}$$

$$\downarrow_{$$

- rapid increase at earlier times and non-perturbative production or initial quench
 nearly linear increase at later times and well explained by the kinetic theory
 - 11/18

Earlier times

Occupation number of the order of one is developed at this stage.

Quark production is an order-one effect even in weak coupling.

 $gA \sim \mathcal{O}(1)$

- Occupation numbers show slight decrease due to the expansion of the system.
- The width of the longitudinal distribution is almost constant.

In the case of the free streaming (free particles in the expanding system), the longitudinal momentum decreases as $p_z \sim 1/\tau$.

- Occupation numbers show slight decrease due to the expansion of the system.
- The width of the longitudinal distribution is almost constant.

In the case of the free streaming (free particles in the expanding system), the longitudinal momentum decreases as $p_z \sim 1/\tau$.

Later times

- Occupation numbers show slight decrease due to the expansion of the system.
- The width of the longitudinal distribution is almost constant.

In the case of the free streaming (free particles in the expanding system), the longitudinal momentum decreases as $p_z \sim 1/\tau$.

Comparison to a kinetic estimate

Boltzmann equation in the expanding geometry

$$\left(\frac{\partial}{\partial \tau} - \frac{p_z}{\tau} \frac{\partial}{\partial p_z}\right) f_{\rm g/q}(\tau, \boldsymbol{p}) = C_{\rm g/q}[f_{\rm g}, f_{\rm q}]$$

Total production rate

$$\frac{dN_{\rm q}}{d\tau d^2 x_{\perp} d\eta} = \nu_{\rm q} \tau \int \frac{d^2 p_{\perp} dp_z}{(2\pi)^3} C_{\rm q}$$

Consider only 2-2 scattering processes

Due to IR/collinear enhancement, 2-3 scatterings contribute to the leading order.

Arnold, Moore, Yaffe (2003)

14/18

Small-angle approximation

$$\begin{aligned} \frac{dN_{q}}{d\tau d^{2}x_{\perp}d\eta} &= \frac{g^{4}}{4\pi} \frac{(N_{c}^{2}-1)^{2}}{N_{c}} N_{f} \mathcal{L} I_{c} \tau \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{p} \left[f_{g}(1-2f_{q}) - f_{q} \right] \\ I_{c} &= \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{p} \left[f_{g} + f_{q} \right] \\ \mathcal{L} &= \int_{m_{D}}^{Q_{s}} \frac{dq}{q} \qquad m_{D}^{2} = 4g^{2} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{p} \left[N_{c}f_{g} + N_{f}f_{q} \right] \end{aligned}$$

Comparison to a kinetic estimate

Substitute $f_{\rm g/q}$ obtained from the lattice calculations into the kinetic formula

- \blacktriangleright Good agreement even for the initial gluon occupancy of $10/g^2$.
- The kinetic theory is normally not justified for such high density.
- The Pauli blocking is correctly described by the lattice calculations.

Quark mass dependence

- Natural mass ordering.
- \blacktriangleright Lighter quarks $m/Q_s \leq 0.1$ are almost degenerated.

mT scaling

Integrated transverse momentum spectrum

➢ For m_T ≥ Q_s, all the spectra for different masses lie on top of each other.
 ➢ It shows an exponential form exp(-m_T/Q_s), which resembles the Boltzmann distribution.

Summary

- The early stage of high-energy heavy-ion collisions is a nonequilibrium state of high-density gluons expanding to the longitudinal direction.
- The nonequilibrium evolution of quark fields and overoccupied gauge fields can be studied by classical-statistical real-time lattice computations.
- The lattice results for quark production nicely agree with the kinetic estimate that includes only 2-2 scattering processes, although the kinetic theory is not a priori justified in such a dense system.
- The transverse momentum spectra of quarks satisfy the mT scaling at high mT tails, and they show the Boltzmann-like exponential shape.