Symmetry breaking patterns in QCD at high density

Jens Braun TU Darmstadt JLU Giessen 31/01/2018

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

[based on JB, Leonhardt, Pospiech, arXiv:1705.00074 & arXiv:1801.08338 & in prep.]

QCD: from high to low energies

•Renormalization Group (RG) flow:

$$S \simeq \Gamma_{k=\Lambda} = \int_{x} \left\{ \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} (\mathrm{i}\partial \!\!\!/ + \mathrm{i}\bar{g}A \!\!\!/) \psi \right\}$$

QCD: from high to low energies

•Renormalization Group (RG) flow:

$$S \simeq \Gamma_{k=\Lambda} = \int_{x} \left\{ \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} (\mathrm{i}\partial \!\!\!/ + \mathrm{i} \bar{g} A \!\!\!/) \psi \right\}$$

.

$$\Gamma_{k<\Lambda-\delta k} = \int_{x} \left\{ \frac{\bar{g}^{2}}{g^{2}} F_{\mu\nu}F_{\mu\nu} + \dots + \bar{\psi} \left(iZ_{\psi}\partial + iZ_{1}\bar{g}A \right) \psi \right. \\ \left. + \frac{1}{2} \sum_{\alpha\beta\gamma\delta} \lambda_{\alpha\beta\gamma\delta} \bar{\psi}_{\alpha}\psi_{\beta}\bar{\psi}_{\gamma}\psi_{\delta} + \dots \right\}$$

QCD: from high to low energies

•Renormalization Group (RG) flow:

$$S \simeq \Gamma_{k=\Lambda} = \int_{x} \left\{ \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} (\mathrm{i}\partial \!\!\!/ + \mathrm{i}\bar{g}A \!\!\!/) \psi \right\}$$

Role of gluon-induced four-fermion interactions?

Role of gluon-induced four-fermion interactions

[Gies & Jaeckel '05; JB & Gies '05, '06]

Role of gluon-induced four-fermion interactions

[Gies & Jaeckel '05; JB & Gies '05, '06]

[Gies & Jaeckel '05; JB & Gies '05, '06; Mitter, Pawlowski, Strodthoff '14; JB, Leonhardt, Pospiech' 18]

symmetry	group	
color	$SU(N_c)$	
chiral	$\mathrm{SU}_L(2)\otimes\mathrm{SU}_R(2)$	
vector	$U_V(1)$	
axial	$U_A(1)$	
Poincare]
time reversal		
parity		
charge conjugation		
# of channels	4	Fierz-comple set
# of fixed points	16	

[Mitter, Pawlowski, Strodthoff '14; JB, Leonhardt, Pospiech' 18]

		7
symmetry	group	
color	$SU(N_{c})$	
chiral	$\mathrm{SU}_L(2)\otimes\mathrm{SU}_R(2)$	
vector	$U_V(1)$	
axial	U X 1)	
Poincare]
time reversal		
parity		
charge conjugation		
# of channels	6	Fierz-comple set
# of fixed points	64]

[JB, Leonhardt, Pospiech' 18]

symmetry	group	
color	$SU(N_c)$	
chiral	$\mathrm{SU}_L(2)\otimes\mathrm{SU}_R(2)$	
vector	$U_V(1)$	
axial	$U_A(1)$	
Poincare	X]
time reversal		
parity		
charge conjugation		
# of channels	8	Fierz-comple set
# of fixed points	256]

[JB, Leonhardt, Pospiech' 18]

symmetry	group	
color	$SU(N_c)$	
chiral	$\mathrm{SU}_L(2)\otimes\mathrm{SU}_R(2)$	
vector	$U_V(1)$	
axial	U X 1)	
Poincare	X]
time reversal		
parity		
charge conjugation	X	
# of channels	10	Fierz-comple set
# of fixed points	1024	

[JB, Leonhardt, Pospiech' 18]

			-
	symmetry	group	
usly	color	$SU(N_{c})$	
be bro	chiral	$\mathrm{SU}_L(2)\otimes\mathrm{SU}_R(2)$	
spor	vector	$U_V(1)$	
	axial	U X 1)	
	Poincare	X]
	time reversal		
	parity		
	charge conjugation	X	
	# of channels	$\gg 10$	Fierz-complesset
	# of fixed points	$\gg 1024$]

Running of gluon-induced four-quark interactions

[JB '06; Mitter, Pawlowski, Strodthoff '14; Springer, JB, Rechenberger, Rennecke' 16]

- scalar-pseudoscalar channel is dominantly generated at high scales
- •at high scales: similar behavior at finite temperature and chemical potential

Four-quark interactions and symmetry breaking?

Aspects of the low-energy regime: brief reminder

• classical action (NJL model):

$$S = \int_{x} \left\{ \bar{\psi} i \partial \!\!\!/ \psi + \bar{\lambda}_{(\sigma - \pi)} \left[(\bar{\psi} \psi)^2 - (\bar{\psi} \gamma_5 \vec{\tau} \psi)^2 \right] \right\}$$

• spontaneous (chiral) symmetry breaking:

$$\langle \bar{\psi}\psi\rangle \neq 0$$

•bosonized version: $(\sigma \sim \bar{\psi}\psi, \quad \vec{\pi} \sim \bar{\psi}\gamma_5 \vec{\tau}\psi)$

$$S = \int_{x} \left\{ \bar{\psi} i \partial \!\!\!/ \psi + \bar{\psi} (\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \psi - \frac{\bar{\lambda}^{-1}}{(\sigma - \pi)} (\sigma^2 + \vec{\pi}^2) \right\}$$

Aspects of the low-energy regime: brief reminder

•bosonized version: $(\sigma \sim \bar{\psi}\psi, \quad \vec{\pi} \sim \bar{\psi}\gamma_5 \vec{\tau}\psi)$

$$S = \int_{x} \left\{ \bar{\psi} i \partial \!\!\!/ \psi + \bar{\psi} (\sigma + i\gamma_5 \vec{\tau} \cdot \vec{\pi}) \psi - \frac{\bar{\lambda}_{(\sigma-\pi)}^{-1}}{(\sigma^2 + \vec{\pi}^2)} \right\}$$

• Fierz-complete ansatz for the effective action:

$$\Gamma_{k} = \int_{x} \left\{ \bar{\psi} \left(iZ_{\parallel} \gamma_{0} \partial_{0} + iZ_{\perp} \gamma_{i} \partial_{i} - iZ_{\mu} \mu \gamma_{0} \right) \psi \right. \\ \left. + \frac{1}{2} \bar{\lambda}_{(\sigma - \pi)} \left(S - P \right) + \frac{1}{2} \bar{\lambda}_{csc} \left(CSC \right) \right. \\ \left. + \frac{1}{2} \bar{\lambda}_{(S + P)_{-}} \left(S + P \right)_{-} + \frac{1}{2} \bar{\lambda}_{(S + P)_{-}^{adj}} \left(S + P \right)_{+}^{adj} \right. \\ \left. + \sum_{j=5}^{10} \frac{1}{2} \bar{\lambda}_{j} \left(\mathcal{O}_{\bar{\psi}\psi} \right)^{(j)} \right\}$$

• Fierz-complete ansatz for the effective action:

$$\Gamma_{k} = \int_{x} \left\{ \bar{\psi} \left(iZ_{\parallel} \gamma_{0} \partial_{0} + iZ_{\perp} \gamma_{i} \partial_{i} - iZ_{\mu} \mu \gamma_{0} \right) \psi \right. \\ \left. + \frac{1}{2} \bar{\lambda}_{(\sigma - \pi)} \left(S - P \right) + \frac{1}{2} \bar{\lambda}_{csc} \left(CSC \right) \right. \\ \left. + \frac{1}{2} \bar{\lambda}_{(S + P)_{-}} \left(S + P \right)_{-} + \frac{1}{2} \bar{\lambda}_{(S + P)_{-}^{adj}} \left(S + P \right)_{+}^{adj} \right. \\ \left. + \sum_{j=5}^{10} \frac{1}{2} \bar{\lambda}_{j} \left(\mathcal{O}_{\bar{\psi}\psi} \right)^{(j)} \right\}$$

complicated ground state: many "wine bottles" ...

• $U_A(1)$ -breaking channels:

$$(S - P) = (\bar{\psi}\psi)^{2} - (\bar{\psi}\gamma_{5}\vec{\tau}\psi)^{2}$$

$$(S - P) = (\bar{\psi}\psi)^{2} - (\bar{\psi}\gamma_{5}\vec{\tau}\psi)^{2}$$

$$(CSC) = 4 (i\bar{\psi}\gamma_{5}\vec{\tau}T^{a}\psi^{C}) (i\bar{\psi}^{C}\gamma_{5}\vec{\tau}T^{a}\psi)$$

$$(S + P)_{-} = (\bar{\psi}\psi)^{2} - (\bar{\psi}\gamma_{5}\vec{\tau}\psi)^{2}$$

$$+ (\bar{\psi}\gamma_{5}\psi)^{2} - (\bar{\psi}\vec{\tau}\psi)^{2}$$

$$(S + P)_{-}^{adj} = (\bar{\psi}T^{a}\psi)^{2} - (\bar{\psi}\gamma_{5}\vec{\tau}T^{a}\psi)^{2}$$

$$+ (\bar{\psi}\gamma_{5}T^{a}\psi)^{2} - (\bar{\psi}\vec{\tau}T^{a}\psi)^{2}$$

• $U_A(1)$ -symmetric channels: the remaining **six** channels

• Fierz-complete ansatz for the effective action:

$$\Gamma_{k} = \int_{x} \left\{ \bar{\psi} \left(iZ_{\parallel} \gamma_{0} \partial_{0} + iZ_{\perp} \gamma_{i} \partial_{i} - iZ_{\mu} \mu \gamma_{0} \right) \psi \right. \\ \left. + \frac{1}{2} \bar{\lambda}_{(\sigma - \pi)} \left(S - P \right) + \frac{1}{2} \bar{\lambda}_{csc} \left(CSC \right) \right. \\ \left. + \frac{1}{2} \bar{\lambda}_{(S + P)_{-}} \left(S + P \right)_{-} + \frac{1}{2} \bar{\lambda}_{(S + P)_{-}^{adj}} \left(S + P \right)_{+}^{adj} \right. \\ \left. + \sum_{j=5}^{10} \frac{1}{2} \bar{\lambda}_{j} \left(\mathcal{O}_{\bar{\psi}\psi} \right)^{(j)} \right\}$$

- leading order in the derivative expansion, allows to preserve Fierz-completeness
- •parameter fixing **inspired** by gluon-induced four-quark flows: $(\overline{\lambda}_{(\sigma-\pi)}(\Lambda) \neq 0, \overline{\lambda}_{csc}(\Lambda) = 0, \dots, \overline{\lambda}_{10}(\Lambda) = 0)$

initial condition of the differential equation determines whether, e.g., chiral symmetry is spontaneously broken or not

no direct access to low-energy observables but the scale for low-energy observables O is set by the scale k_0 at which the four-fermion coupling **diverges**, $1/\lambda(k_0) = 0$:

 $\mathcal{O} \sim k_0 \sim |\lambda^* - \lambda_{\Lambda}|^{\frac{1}{\Theta}}$

(fine-)tuning of the initial condition "mimics" the effect of the gauge degrees of freedom in a "gluon-free" low-energy parametrization of QCD

[JB, Janot '11; JB, Herbst' 12]

(decreases with increasing temperature)

[JB, Janot '11; JB, Herbst' 12]

scale for low-energy observables now depends on the temperature:

 $k_T \sim k_0 \sqrt{\text{const.} - T^2}$

RG flows: finite density I (but zero temperature)

[JB, Leonhardt, Pospiech '17]

RG flows: finite density I (but zero temperature)

[JB, Leonhardt, Pospiech '17]

similar symmetry restoration effect as at finite temperature
RG flows: finite density II (but zero temperature)

[JB, Leonhardt, Pospiech '17]

RG flows: finite density II (but zero temperature)

[JB, Leonhardt, Pospiech '17]

"BCS instability", symmetry breaking for any value of the chemical potential $k_{\mu} \sim \exp\left(-\mathrm{const.}/\mu^2\right)$

BUT: more than one coupling – competing effects

$$\partial_t \lambda_i \equiv k \partial_k \lambda_i \simeq 2\lambda_i - c_i \lambda_i^2 - c_j \lambda_j^2$$

(e.g. fixed-point annihilation may be induced by competing effects)

[JB, Leonhardt, Pospiech '18]

•effective action:

$$\Gamma_k = \int_x \left\{ (\text{kinetic term}) + \frac{1}{2} \overline{\lambda}_{(\sigma - \pi)} (S - P) \right\}$$

- •scale-fixing procedure: adjust the initial condition of the scalar-pseudoscalar coupling such that a given value for the symmetry breaking scale k_0 is obtained in the vacuum limit
- note: RG flow of the 1-channel approximation can be mapped on the mean-field gap equation for the quark mass: [JB' 11]

 $m_{\rm q}(\mathbf{k}_0) \approx 300 \,\mathrm{MeV}, \quad m_{\sigma}(\mathbf{k}_0) \approx 800 \,\mathrm{MeV}$

•effective action:

$$\Gamma_{k} = \int_{x} \left\{ (\text{kinetic term}) + \frac{1}{2} \overline{\lambda}_{(\sigma - \pi)} (S - P) + \frac{1}{2} \overline{\lambda}_{csc} (CSC) \right\}$$

•same scale-fixing procedure (also same k_0) as in the 1-channel approximation: $(\overline{\lambda}_{(\sigma-\pi)}(\Lambda) \neq 0, \ \overline{\lambda}_{csc}(\Lambda) = 0)$

Fixed-point structure and phases: 6 channels (Fierz-complete at T = 0 and $\mu = 0$)

Fixed-point structure and phases: 6 channels (Fierz-complete at T = 0 and $\mu = 0$)

Fixed-point structure and phases: 6 channels (Fierz-complete at T = 0 and $\mu = 0$)

Fixed-point structure and phases: Fierz-complete

Fixed-point structure and phases: Fierz-complete (10 coupled channels)

Fixed-point structure and phases: Fierz-complete

Fixed-point structure and phases: $U_A(1)$ breaking

[JB, Leonhardt, Pospiech '18]

- •Fierz-complete 10-channel basis can be mapped onto a Fierz-complete $U_A(1)$ -symmetric 8-channel basis
- "measure" strength of $U_A(1)$ breaking with sum rules:

$$\begin{split} R_1 &\sim \bar{\lambda}_{\rm CSC} + \bar{\lambda}_{(S+P)^{\rm adj}_{-}} = 0 & \text{[dashed lines]} \\ R_2 &\sim \bar{\lambda}_{(S+P)_{-}} - \frac{2}{3} \,\bar{\lambda}_{\rm CSC} + \bar{\lambda}_{(\sigma-\pi)} = 0 & \text{[solid lines]} \end{split}$$

Fixed-point structure and phases: $U_A(1)$ breaking

[JB, Leonhardt, Pospiech '18]

- Fierz-complete 10-channel basis can be mapped onto a Fierz-complete $U_A(1)$ -symmetric 8-channel basis
- "measure" strength of $U_A(1)$ breaking with sum rules:

)_

З

$$\begin{split} R_1 &\sim \bar{\lambda}_{\rm csc} + \bar{\lambda}_{(S+P)^{\rm adj}_{-}} = 0 & \text{[dashed lines]} \\ R_2 &\sim \bar{\lambda}_{(S+P)_{-}} - \frac{2}{3} \,\bar{\lambda}_{\rm csc} + \bar{\lambda}_{(\sigma-\pi)} = 0 & \text{[solid lines]} \end{split}$$

But what about a $U_A(1)$ -symmetric world? (Fierz-complete: 8 coupled channels)

Fixed-point structure and phases: Fierz-complete

Fixed-point structure and phases: many colors [JB, Leonhardt, Pospiech '18]

general structure of RG flow equations for many colors:

$$\partial_t \lambda_{(\sigma-\pi)} \sim 2\lambda_{(\sigma-\pi)} - c_{(\sigma-\pi)} \lambda_{(\sigma-\pi)}^2 + \sum_{i \neq (\sigma-\pi)} c_{(\sigma-\pi)}^{(i)} \lambda_i^2 + \dots$$

+ $\sum c_j^{(i)} \lambda_i^2 + \dots$ $\partial_t \lambda_j \sim 2\lambda_i$ $i \neq (\sigma - \pi)$

Fixed-point structure and phases: many colors

general structure of RG flow equations for many colors:

$$\partial_t \lambda_{(\sigma-\pi)} \sim 2\lambda_{(\sigma-\pi)} - c_{(\sigma-\pi)} \lambda_{(\sigma-\pi)}^2 + \sum_{i \neq (\sigma-\pi)} c_{(\sigma-\pi)}^{(i)} \lambda_i^2 + \dots$$

$$\partial_t \lambda_j \sim 2\lambda_j + \sum_{i \neq (\sigma - \pi)} c_j^{(i)} \lambda_i^2 + \dots$$

•Using $(\lambda_{(\sigma-\pi)}(\Lambda) \neq 0, \lambda_2(\Lambda) = 0, \dots, \lambda_{10}(\Lambda) = 0)$, the set of flow equations reduces to:

$$\partial_t \lambda_{(\sigma-\pi)} = 2\lambda_{(\sigma-\pi)} - c_{(\sigma-\pi)}\lambda_{(\sigma-\pi)}^2$$
$$\partial_t \lambda_j = 0$$

NJL trajectory: "NJL coupling lives for itself" in the limit of many colors

Fixed-point structure and phases: many colors

general structure of RG flow equations for many colors:

$$\partial_t \lambda_{(\sigma-\pi)} \sim 2\lambda_{(\sigma-\pi)} - c_{(\sigma-\pi)} \lambda_{(\sigma-\pi)}^2 + \sum_{i \neq (\sigma-\pi)} c_{(\sigma-\pi)}^{(i)} \lambda_i^2 + \dots$$

$$\partial_t \lambda_j \sim 2\lambda_j + \sum_{i \neq (\sigma - \pi)} c_j^{(i)} \lambda_i^2 + \dots$$

•Using $(\lambda_{(\sigma-\pi)}(\Lambda) \neq 0, \lambda_2(\Lambda) = 0, \dots, \lambda_{10}(\Lambda) = 0)$, the set of flow equations reduces to:

$$\partial_t \lambda_{(\sigma-\pi)} = 2\lambda_{(\sigma-\pi)} - c_{(\sigma-\pi)}\lambda_{(\sigma-\pi)}^2$$
$$\partial_t \lambda_j = 0$$

NJL fixed point (9 attractive & 1 repulsive direction) controls the dynamics

Fixed-point structure and phases: Fierz-complete

- Fierz-complete analysis of the fixed-point structure of the QCD low-energy sector
- along the phase boundary only two dominant channels are observed: scalar-pseudoscalar channel (at small chemical potential) and diquark channel (at large chemical potential), other channels are subdominant
- phase boundary can be forced to assume many shapes ("almost any") in Fierz-incomplete studies, even when the same scale-fixing procedure is used
- in progress: dynamical inclusion of gauge degrees of freedom in the analysis of the fixed-point structure [following earlier finite-temperature studies: JB, Gies '05,'06; JB '11]

in progress: dynamical inclusion of gauge degrees
of freedom in the analysis of the fixed-point structure
[following earlier finite-temperature studies: JB, Gies '05,'06; JB '11]

• in progress: dynamical inclusion of gauge degrees of freedom in the analysis of the fixed-point structure [following earlier finite-temperature studies: JB, Gies '05,'06; JB '11]

- Fierz-complete analysis of the fixed-point structure of the QCD low-energy sector
- along the phase boundary only two dominant channels are observed: scalar-pseudoscalar channel (at small chemical potential) and diquark channel (at large chemical potential), other channels are subdominant
- phase boundary can be forced to assume many shapes ("almost any") in Fierz-incomplete studies, even when the same scale-fixing procedure is used
- in progress: dynamical inclusion of gauge degrees of freedom in the analysis of the fixed-point structure [following earlier finite-temperature studies: JB, Gies '05,'06; JB '11]