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What this talk is about … 
… on the fixed-point structure 

of hot and dense QCD with 
two massless quark flavors 

… symmetry breaking patterns 
… qualitative 
… first steps on a longer trip
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What this talk is NOT … 
… quantitative 
… “untechnical”
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Role of gluon-induced four-fermion interactions?
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g2 > g2cr
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Figure 6.3: Representation of the terms on the right-hand side of the RG flow equa-
tion (6.9) by means of 1PI Feynman diagrams, see Refs. [73, 338]. Our functional RG
approach, see e. g. Sect. 6.5, includes resummations of all diagram types including
ladder-diagrams generated by type (b) and (c) as well as the corresponding crossed-
ladder diagrams.

theories. The role of the vector-coupling in our simple model is now played by the
squared gauge coupling g2. In gauge theories, exponential scaling behavior near a
quantum critical point is also known as Miransky scaling [151, 152].

The following analysis is by no means bound to QCD. To make this explicit, we
shall keep our discussion as general as possible and consider a very general class of
theories where symmetry breaking and condensate formation is driven by fermionic self-
interactions. Independently of whether these interactions may be fluctuation-induced
(as in QCD) or fundamental (as in beyond standard-model applications) This class of
theories can be parameterized by the following action:

SM =

Z
ddx

n
 ̄(i/@ + ḡ/A) + �̄↵��� ̄↵ � ̄� �

o
, (6.8)

where ↵,� . . . denote a specific set of collective indices including, e. g., flavor and/or
color indices. In general, we expect to have more than just one four-fermion interaction
channel as it is indeed the case in QCD, see Eq. (5.38).

From the action (6.8) we can derive the � function of the dimensionless four-fermion
coupling � in the point-like limit. It assumes the following simple form:

�� ⌘ @t� = (d� 2)�� a�2 � b�g2 � cg4 . (6.9)

The couplings � ⇠ �̄/k(d�2) and g ⇠ ḡ/k4�d denote dimensionless and suitably renor-
malized couplings. The quantities a, b and c do not depend on the RG scale but
may depend on control parameters, such as the number of fermion flavors Nf or the
number of colors Nc in QCD. This �� function can be directly compared to the flow
equation (3.82) of our toy model, where the role of g2 is played by the vector coupling.
Note that the coe�cients a, b and c can depend implicitly on the RG scale as soon as
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color indices. In general, we expect to have more than just one four-fermion interaction
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[Gies & Jaeckel ’05; JB & Gies ’05, ’06]

k is the RG scale:  
k~p (“momentum scale”)

Role of gluon-induced four-fermion interactions

fixed-point  
annihilation
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g2 = 0

g2 = g2cr

g2 > g2cr

critical gauge coupling         : g2cr

if                                        no fixed points     g2 >g2cr
(� ! 1)

[Gies & Jaeckel ’05; JB & Gies ’05, ’06]
Role of gluon-induced four-fermion interactions

fixed-point  
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How many four-quark channels? Symmetries!



How many four-quark channels? Symmetries!
[Gies & Jaeckel ’05; JB & Gies ’05, ’06; Mitter, Pawlowski, Strodthoff ’14; JB, Leonhardt, Pospiech’ 18]

symmetry group
color
chiral
vector
axial

# of channels 4
# of fixed points 16

Poincare x
time reversal

parity
charge conjugation

SU(Nc)

SUL(2)⌦ SUR(2)

UV (1)

UA(1)

Fierz-complete 
set



How many four-quark channels? Symmetries!
[Mitter, Pawlowski, Strodthoff ’14; JB, Leonhardt, Pospiech’ 18]

symmetry group
color
chiral
vector
axial

# of channels 6
# of fixed points 64

Poincare x
time reversal

parity
charge conjugation

SU(Nc)

SUL(2)⌦ SUR(2)

UV (1)

UA(1)

Fierz-complete 
set



How many four-quark channels? Symmetries!
[JB, Leonhardt, Pospiech’ 18]

symmetry group
color
chiral
vector
axial

# of channels 8
# of fixed points 256

Poincare x
time reversal

parity
charge conjugation

SU(Nc)

SUL(2)⌦ SUR(2)

UV (1)

UA(1)

Fierz-complete 
set



How many four-quark channels? Symmetries!
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color
chiral
vector
axial

# of channels 10
# of fixed points 1024

Poincare x
time reversal

parity
charge conjugation

SU(Nc)

SUL(2)⌦ SUR(2)

UV (1)

UA(1)

Fierz-complete 
set

[JB, Leonhardt, Pospiech’ 18]
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Running of gluon-induced four-quark interactions
[JB ’06; Mitter, Pawlowski, Strodthoff ’14; Springer, JB, Rechenberger, Rennecke’ 16]

•scalar-pseudoscalar channel is dominantly generated 
at high scales 

•at high scales: similar behavior at finite temperature 
and chemical potential
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Four-quark interactions and symmetry breaking?



Aspects of the low-energy regime: brief reminder

•spontaneous (chiral) symmetry breaking:

⇥�̄�⇤ �= 0

•classical action (NJL model): 

S =

Z

x

�
 ̄i@/ + �̄(��⇡)

⇥
( ̄ )2 � ( ̄�5~⌧ )

2
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Aspects of the low-energy regime: brief reminder

•bosonized version:

S =

Z

x

n
 ̄i@/ +  ̄(� + i�5~⌧ · ~⇡) � �̄�1

(��⇡)(�
2 + ~⇡2)

o
(� ⇠  ̄ , ~⇡ ⇠  ̄�5~⌧ )

no fermion mass/gap
h ̄ i = 0

(symmetric phase)

U(φ̄1, φ̄2)

φ̄1

φ̄2

�

V (�,⇡)

⇡

m2 > 0

U(φ̄1, φ̄2)

φ̄1

φ̄2

�

V (�,⇡)
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m2 < 0

finite fermion mass/gap
h ̄ i 6= 0

(broken phase)

wine-bottle 
potential

large four-fermion 
coupling indicates  

onset of chiral  
symmetry breaking
m2 ⇠ 1/�̄(��⇡)



Effective low-energy description
[JB, Leonhardt, Pospiech ’18]

•complicated ground state: many “wine bottles” …
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•Fierz-complete ansatz for the effective action:
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[JB, Leonhardt, Pospiech ’18]



UA(1)

•         -breaking channels:UA(1)

Effective low-energy description

(S� P) =
�
 ̄ 

�2 �
�
 ̄�5~⌧ 

�2

(CSC) = 4
�
i ̄�5~⌧ T

a C
� �

i ̄C�5~⌧ T
a 

�

(S + P)� =
�
 ̄ 

�2 �
�
 ̄�5~⌧ 

�2

+
�
 ̄�5 

�2 �
�
 ̄~⌧ 

�2

(S + P)adj� =
�
 ̄T a 

�2 �
�
 ̄�5~⌧T

a 
�2

+
�
 ̄�5T

a 
�2 �

�
 ̄~⌧T a 

�2

•         -symmetric channels: the remaining six channels

[associated with 
the formation of a  

chiral condensate]

[associated with 
the formation of a  

diquark condensate]

[JB, Leonhardt, Pospiech ’18]
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•leading order in the derivative expansion, allows to 
preserve Fierz-completeness 

•parameter fixing inspired by gluon-induced four-quark 
flows:
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λσλ∗
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RG flow of four-quark interactions at low energies
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∂tλσ

λσλ∗
σ

(four-fermion coupling 
grows rapidly; onset 

of symmetry breaking)

RG flow of four-quark interactions at low energies

@t� ⌘ k@k� ' 2�� λσ λσ� �



∂tλσ

λσλ∗
σ

initial condition of the differential equation 
determines whether, e.g., chiral symmetry is 

spontaneously broken or not

U(φ̄1, φ̄2)

φ̄1

φ̄2

�

V (�,⇡)

⇡

U(φ̄1, φ̄2)

φ̄1

φ̄2

�

V (�,⇡)

⇡

RG flow of four-quark interactions at low energies
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1
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∂tλσ

λσλ∗
σ

RG flow of four-quark interactions at low energies

U(φ̄1, φ̄2)

φ̄1

φ̄2

�

V (�,⇡)

⇡

U(φ̄1, φ̄2)

φ̄1

φ̄2

�

V (�,⇡)

⇡

no direct access to low-energy observables but the 
scale for low-energy observables       is set by the scale       at which 

the four-fermion coupling diverges, Ldddd(ddkS):1/�(k0) = 0
k0

[JB’ 11]
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∂tλσ

λσλ∗
σ

(fine-)tuning of the initial condition  
“mimics” the effect of the gauge degrees of 

freedom in a “gluon-free” low-energy 
parametrization of QCD
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U(φ̄1, φ̄2)
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RG flow of four-quark interactions at low energies
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RG flows: finite temperature (but zero density)

∂tλ

λλ∗

T, µ = 0

T, µ > 0

λ λ

+µ

+µ

[JB, Janot ’11; JB, Herbst’ 12]

@t� ⌘ k@k� ' 2�� λσ λσ� �

T = 0

T/k > 0

(decreases with increasing temperature)

�(⇤)

T

T



kT ⇠ k0
p

const.� T 2

RG flows: finite temperature (but zero density)

∂tλ

λλ∗

T, µ = 0

T, µ > 0

λ λ

+µ

+µ

[JB, Janot ’11; JB, Herbst’ 12]

T = 0

T/k > 0

�(⇤)

scale for low-energy observables  
now depends on the temperature:
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λλ∗

T, µ = 0

T, µ > 0

λ λ

+µ

+µ

@t� ⌘ k@k� ' 2�� λσ λσ� �

µ/k > 0

T = 0

(decreases with  
increasing chemical potential)

�(⇤)

RG flows: finite density I (but zero temperature)

+µ

+µ

[JB, Leonhardt, Pospiech ’17]
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λλ∗

T, µ = 0

T, µ > 0

λ λ

+µ

+µ

µ/k > 0

T = 0

�(⇤)

RG flows: finite density I (but zero temperature)

similar symmetry restoration effect 
as at finite temperature

[JB, Leonhardt, Pospiech ’17]



RG flows: finite density II (but zero temperature)

∂tλ

λλ∗

µ > 0

µ = 0 λ λ

+µ

−µ
µ/k > 0

@t� ⌘ k@k� ' 2��
+µ

λσ λσ� �

�µ

[JB, Leonhardt, Pospiech ’17]



kµ ⇠ exp
�
�const./µ2

�

RG flows: finite density II (but zero temperature)

∂tλ

λλ∗

µ > 0

µ = 0 λ λ

+µ

−µ
µ/k > 0

“BCS instability”,  
symmetry breaking for any value of the chemical potential

[JB, Leonhardt, Pospiech ’17]
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BUT: more than one coupling — competing effects

∂tλσ

λσλ∗

σ

λV > 0

λV = 0

[JB’ 11]

(e.g. fixed-point annihilation may be induced by competing effects)

@t�i

�⇤
i

�j > 0

�j = 0

�i



Fixed-point structure and phases: 1 channel
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Z

x

n
(kinetic term) +

1

2
�̄(��⇡) (S� P)

o

Fixed-point structure and phases: 1 channel

•effective action:

•note: RG flow of the 1-channel approximation can be 
mapped on the mean-field gap equation for the 
quark mass: [JB ’ 11]

•scale-fixing procedure: adjust the initial condition of 
the scalar-pseudoscalar coupling such that a given 
value for the symmetry breaking scale      is obtained 
in the vacuum limit

k0

mq(k0) ⇡ 300MeV , m�(k0) ⇡ 800MeV

[JB, Leonhardt, Pospiech ’18]



Fixed-point structure and phases: 1 channel
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Fixed-point structure and phases: 1 channel
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(“large value” because of the large sigma mass, 
cf. also [Schaefer, Wagner ’08])
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Fixed-point structure and phases: 2 channels

•effective action:
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Fixed-point structure and phases: 2 channels
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Fixed-point structure and phases: 2 channels
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Fixed-point structure and phases: 2 channels
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Fixed-point structure and phases: 2 channels
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T/k ⇡ 0.05 , µ/k = 0
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Fixed-point structure and phases: 2 channels
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T/k ⇡ 0.10 , µ/k = 0
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Fixed-point structure and phases: 2 channels
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T/k ⇡ 0.15 , µ/k = 0
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Fixed-point structure and phases: 2 channels
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T/k ⇡ 0.20 , µ/k = 0
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Fixed-point structure and phases: 2 channels
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T/k ⇡ 0.25 , µ/k = 0
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Fixed-point structure and phases: 2 channels
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T/k ⇡ 0.30 , µ/k = 0
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Fixed-point structure and phases: 2 channels
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T/k ⇡ 0.35 , µ/k = 0
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Fixed-point structure and phases: 2 channels
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T/k ⇡ 0.40 , µ/k = 0
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Fixed-point structure and phases: 2 channels
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T/k ⇡ 0.45 , µ/k = 0
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Fixed-point structure and phases: 2 channels
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T/k ⇡ 0.50 , µ/k = 0



Fixed-point structure and phases: 2 channels
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Fixed-point structure and phases: 2 channels
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Fixed-point structure and phases: 2 channels
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Fixed-point structure and phases: 2 channels
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nothing happens …

T/k = 0 , µ/k ⇡ 0.25
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Fixed-point structure and phases: 2 channels
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“fixed-point creation”

T/k = 0 , µ/k ⇡ 0.30
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Fixed-point structure and phases: 2 channels
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T/k = 0 , µ/k ⇡ 0.35
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Fixed-point structure and phases: 2 channels
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T/k = 0 , µ/k ⇡ 0.40
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Fixed-point structure and phases: 2 channels
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T/k = 0 , µ/k ⇡ 0.45
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Fixed-point structure and phases: 2 channels
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“fixed-point annihilation” 
induces dominance of 
the diquark channel

T/k = 0 , µ/k ⇡ 0.50
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Fixed-point structure and phases: 2 channels
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T/k = 0 , µ/k ⇡ 0.55
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Fixed-point structure and phases: 2 channels
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T/k = 0 , µ/k ⇡ 0.60
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Fixed-point structure and phases: 2 channels
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T/k = 0 , µ/k ⇡ 0.65
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Fixed-point structure and phases: 2 channels

�
cs
c

�(��⇡)

T/k = 0 , µ/k ⇡ 0.70
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Fixed-point structure and phases: 2 channels
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T/k = 0 , µ/k ⇡ 0.75
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Fixed-point structure and phases: 2 channels
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T/k = 0 , µ/k ⇡ 0.80
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Fixed-point structure and phases: 2 channels
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T/k = 0 , µ/k ⇡ 0.85
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Fixed-point structure and phases: 2 channels
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T/k = 0 , µ/k ⇡ 0.90
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Fixed-point structure and phases: 2 channels
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T/k = 0 , µ/k ⇡ 0.95
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four-fermion coupling(s) 
diverge(s) for all values of 
the chemical potential: 

“BCS instability”  
at high density

T/k = 0 , µ/k ⇡ 1.00



Fixed-point structure and phases: 2 channels
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no symmetry restoration

Fixed-point structure and phases: 6 channels
(Fierz-complete at T=0     and  m=0  )T = 0 µ = 0
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Fixed-point structure and phases: 6 channels
(Fierz-complete at T=0     and  m=0  )T = 0 µ = 0
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no symmetry restoration

Fixed-point structure and phases: Fierz-complete
(10 coupled channels)



no symmetry restoration

Fixed-point structure and phases: Fierz-complete
(10 coupled channels)
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Fixed-point structure and phases: Fierz-complete
(10 coupled channels)
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Fixed-point structure and phases: U_A(1 breaking

•Fierz-complete 10-channel basis can be mapped onto 
a Fierz-complete          -symmetric 8-channel basis          

•“measure” strength of           breaking with sum rules:
[dashed lines]

[solid lines]
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But what about a           -symmetric world?UA(1)
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no symmetry restoration

Fixed-point structure and phases: Fierz-complete
(10 coupled channels)
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does not matter?!?



Fixed-point structure and phases: many colors

•general structure of RG flow equations for many colors:

@t�(��⇡) ⇠ 2�(��⇡)�c(��⇡)�
2
(��⇡)+

X

i 6=(��⇡)
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i +. . .

@t�j ⇠ 2�j +
X

i 6=(��⇡)

c(i)j �2
i + . . .

[JB, Leonhardt, Pospiech ’18]
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Fixed-point structure and phases: many colors

•general structure of RG flow equations for many colors:

@t�(��⇡) ⇠ 2�(��⇡)�c(��⇡)�
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X

i 6=(��⇡)

c(i)(��⇡)�
2
i +. . .

@t�j ⇠ 2�j +
X

i 6=(��⇡)

c(i)j �2
i + . . .

•Using                                                                  , the 
set of flow equations reduces to:

(�(��⇡)(⇤) 6= 0,�2(⇤) = 0, . . . ,�10(⇤) = 0)

@t�j = 0
NJL trajectory: “NJL coupling lives for itself” in the limit of many colors

[JB, Leonhardt, Pospiech ’18]
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Fixed-point structure and phases: many colors

•general structure of RG flow equations for many colors:
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X
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c(i)(��⇡)�
2
i +. . .

@t�j ⇠ 2�j +
X

i 6=(��⇡)

c(i)j �2
i + . . .

•Using                                                                  , the 
set of flow equations reduces to:

(�(��⇡)(⇤) 6= 0,�2(⇤) = 0, . . . ,�10(⇤) = 0)

@t�j = 0
NJL fixed point (9 attractive & 1 repulsive direction) controls the dynamics

[JB, Leonhardt, Pospiech ’18]



no symmetry restoration

Fixed-point structure and phases: Fierz-complete
(10 coupled channels)
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Conclusions and outlook

•Fierz-complete analysis of the fixed-point structure of 
the QCD low-energy sector 

•along the phase boundary only two dominant channels 
are observed: scalar-pseudoscalar channel (at small 
chemical potential) and diquark channel (at large 
chemical potential), other channels are subdominant 

•phase boundary can be forced to assume many 
shapes (“almost any”) in Fierz-incomplete studies, even 
when the same scale-fixing procedure is used 

•in progress: dynamical inclusion of gauge degrees of 
freedom in the analysis of the fixed-point structure    
[following earlier finite-temperature studies: JB, Gies ’05,’06; JB ’11]
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Conclusions and outlook

•Fierz-complete analysis of the fixed-point structure of 
the QCD low-energy sector 

•along the phase boundary only two dominant channels 
are observed: scalar-pseudoscalar channel (at small 
chemical potential) and diquark channel (at large 
chemical potential), other channels are subdominant 
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