Inhomogeneous chiral condensates

Michael Buballa

Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Lunch Club Seminar, JLU Gießen, December 5, 2018

Motivation

- QCD phase diagram (standard picture):

Motivation

- QCD phase diagram (standard picture):

- assumption: $\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space

Motivation

- QCD phase diagram (standard picture):

- assumption: $\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space
- How about non-uniform phases ?

NJL-model studies

[D. Nickel, PRD (2009)]

NJL-model studies

[D. Nickel, PRD (2009)]

NJL-model studies

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point \rightarrow Lifshitz point [D. Nickel, PRL (2009)]
[D. Nickel, PRD (2009)]

NJL-model studies

including inhomogeneous phase

[D. Nickel, PRD (2009)]

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point \rightarrow Lifshitz point [D. Nickel, PRL (2009)]
- Inhomogeneous phase rather robust under model extensions and variations:
- vector interactions
- Polyakov-loop dynamics
- including strange quarks
- isospin imbalance
- magnetic fields
[MB, S. Carignano, PPNP (2015)]

Questions addressed in this talk:

- What is the effect of nonzero bare quark masses?
[MB, S. Carignano, arxiv:1809.10066 [hep-ph]]
- What is the influence of strange quarks?
- based on:
- MB, S. Carignano, arxiv:1809.10066 [hep-ph]
- MB, S. Carignano, submitted to PoS (proceedings QCHS 2018)

Nonzero bare quark masses

Nonzero bare quark masses

- What is the effect of going away from the chiral limit?

Nonzero bare quark masses

- What is the effect of going away from the chiral limit?
- Andersen, Kneschke, PRD (2018):

No inhomogeneous phase in the 2-flavor quark-meson model for $m_{\pi}>37.1 \mathrm{MeV}$

Nonzero bare quark masses

- What is the effect of going away from the chiral limit?
- Andersen, Kneschke, PRD (2018):

No inhomogeneous phase in the 2-flavor quark-meson model for $m_{\pi}>37.1 \mathrm{MeV}$

$$
m_{u, d}=0,5 \mathrm{MeV}, 10 \mathrm{MeV}
$$

- Nickel, PRD (2009):

Inhomogeneous phase in 2-flavor NJL gets smaller but still reaches the CEP

Nonzero bare quark masses

- What is the effect of going away from the chiral limit?
- Andersen, Kneschke, PRD (2018):

No inhomogeneous phase in the 2-flavor quark-meson model for $m_{\pi}>37.1 \mathrm{MeV}$

$$
m_{u, d}=0,5 \mathrm{MeV}, 10 \mathrm{MeV}
$$

- Nickel, PRD (2009):

Inhomogeneous phase in 2-flavor NJL gets smaller but still reaches the CEP

- Can we investigate this more systematically?

NJL Model

- Lagrangian:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+\boldsymbol{G}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

NJL Model

- Lagrangian:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

NJL Model

- Lagrangian:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+\boldsymbol{G}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

- mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv \phi_{S}(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv \phi_{P}(\vec{x}) \delta_{a 3}
$$

- $\phi_{s}(\vec{X}), \phi_{P}(\vec{X})$ time independent classical fields
- retain space dependence!

NJL Model

- Lagrangian:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+\boldsymbol{G}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

- mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv \phi_{S}(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv \phi_{P}(\vec{x}) \delta_{a 3}
$$

- $\phi_{s}(\vec{x}), \phi_{P}(\vec{x})$ time independent classical fields
- retain space dependence!
- mean-field Lagrangian:

$$
\mathcal{L}_{M F}=\bar{\psi}(x)\left[i \not \partial-m+2 G\left(\phi_{S}(\vec{x})+i \gamma_{5} \tau_{3} \phi_{P}(\vec{x})\right)\right] \psi(x)-G\left[\phi_{S}^{2}(\vec{x})+\phi_{P}^{2}(\vec{x})\right]
$$

Mean-field thermodynamic potential

- mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \ln \int \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(\int_{x \in\left[0, \frac{1}{T}\right] \times V}\left(\mathcal{L}_{M F}+\mu \bar{\psi} \gamma^{0} \psi\right)\right)
$$

Mean-field thermodynamic potential

- mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \ln \int \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(\int_{x \in\left[0, \frac{1}{T}\right] \times V}\left(\mathcal{L}_{M F}+\mu \bar{\psi} \gamma^{0} \psi\right)\right)
$$

- $\mathcal{L}_{\text {MF }}$ bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(\phi_{S}^{2}(\vec{x})+\phi_{P}^{2}(\vec{x})\right)
$$

- inverse dressed propagator: $\mathcal{S}^{-1}(x)=i \not \partial+\mu \gamma^{0}-m+2 G_{S}\left(\phi_{S}(\vec{x})+i \gamma_{5} \tau_{3} \phi_{P}(\vec{x})\right)$
- Tr: functional trace over Euclidean $V_{4}=\left[0, \frac{1}{T}\right] \times V$, Dirac, color, and flavor

Mean-field thermodynamic potential

- mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \ln \int \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(\int_{x \in\left[0, \frac{1}{T}\right] \times V}\left(\mathcal{L}_{M F}+\mu \bar{\psi} \gamma^{0} \psi\right)\right)
$$

- $\mathcal{L}_{\text {MF }}$ bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(\phi_{S}^{2}(\vec{x})+\phi_{P}^{2}(\vec{x})\right)
$$

- inverse dressed propagator: $\mathcal{S}^{-1}(x)=i \not \partial+\mu \gamma^{0}-m+2 G_{S}\left(\phi_{S}(\vec{x})+i \gamma_{5} \tau_{3} \phi_{P}(\vec{x})\right)$
- Tr: functional trace over Euclidean $V_{4}=\left[0, \frac{1}{T}\right] \times V$, Dirac, color, and flavor
$\Rightarrow \quad \Omega_{M F}=\Omega_{M F}\left[\phi_{S}(\vec{x}), \phi_{P}(\vec{x})\right] \quad$ minimization extremly difficult !

Ginzburg-Landau analysis

- Simplifications:
- chiral limit $m=0$ (will be relaxed later)
- $\phi_{P}=0 \quad$ (to simplify the notation, can be included straightforwardly)
\rightarrow order parameter $M(\vec{X})=-2 G \phi_{S}(\vec{X}) \quad$ ("constituent quark mass")
$\rightarrow \Omega_{M F}=\Omega_{M F}[M]$

Ginzburg-Landau analysis

- Simplifications:
- chiral limit $m=0$ (will be relaxed later)
- $\phi_{P}=0 \quad$ (to simplify the notation, can be included straightforwardly)
\rightarrow order parameter $M(\vec{x})=-2 G \phi_{S}(\vec{x}) \quad$ ("constituent quark mass")
$\rightarrow \Omega_{M F}=\Omega_{M F}[M]$
- Assumptions: $\quad M,|\nabla M|$ small (holds near the LP)
\rightarrow expansion of the thermodynamic potential.

$$
\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}(\vec{x})+\alpha_{4, a} M^{4}(\vec{x})+\alpha_{4, b}|\vec{\nabla} M(\vec{x})|^{2}+\ldots\right\}
$$

- $\alpha_{n}=\alpha_{n}(T, \mu)$: GL coefficients
- chiral symmetry: only even powers allowed
- stability: higher-order coeffs. positive

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- $\alpha_{2}>0 \Rightarrow$ restored phase

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- $\alpha_{2}<0 \Rightarrow$ hom. broken phase

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$

case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$

case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$

case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$

$\Rightarrow \quad$ tricritical point (TCP): $\quad \alpha_{2}=\alpha_{4, a}=0$

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$
\Rightarrow tricritical point (TCP): $\quad \alpha_{2}=\alpha_{4, a}=0$
case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$
- case 2: $\alpha_{4, b}<0$
- inhomogeneous phase possible

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$
\Rightarrow tricritical point (TCP): $\quad \alpha_{2}=\alpha_{4, a}=0$
case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$
- case 2: $\alpha_{4, b}<0$
- inhomogeneous phase possible
- 2nd-order phase boundary inhom. - restored: $\alpha_{4, b}<0, \alpha_{2}>0$ finite wavelength, amplitude $\rightarrow 0$

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$
\Rightarrow tricritical point (TCP): $\quad \alpha_{2}=\alpha_{4, a}=0$
case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$
- case 2: $\alpha_{4, b}<0$
- inhomogeneous phase possible

Lifshitz point (LP): $\quad \alpha_{2}=\alpha_{4, b}=0$

- 2nd-order phase boundary inhom. - restored: $\alpha_{4, b}<0, \alpha_{2}>0$ finite wavelength, amplitude $\rightarrow 0$

Away from the chiral limit

- $m \neq 0$: no chirally restored solution $M=0$
\rightarrow expand about a priory unknown constant mass M_{0} :

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{1} \delta M+\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- small parameters: $\delta M(\vec{x}) \equiv M(\vec{x})-M_{0}, \quad|\nabla \delta M(\vec{x})|$
- GL coefficients: $\alpha_{j}=\alpha_{j}\left(T, \mu, M_{0}\right)$
- odd powers allowed
- require $M_{0}=$ extremum of Ω at given T and μ

$$
\Rightarrow \alpha_{1}\left(T, \mu, M_{0}\right)=0 \quad \rightarrow \quad M_{0}=M_{0}(T, \mu) \quad(=\text { homogeneous gap equation })
$$

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible
- 2 minima +1 maximum $\rightarrow 1$ minimum

$$
\Rightarrow \quad \text { critical endpoint (CEP): } \quad \alpha_{2}=\alpha_{3}=0
$$

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible
- 2 minima +1 maximum $\rightarrow 1$ minimum

$$
\Rightarrow \quad \text { critical endpoint (CEP): } \quad \alpha_{2}=\alpha_{3}=0
$$

- spinodals: left: $\alpha_{2}=0, \alpha_{3}<0$, right: $\alpha_{2}=0, \alpha_{3}>0$,

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous CEP: $\quad \alpha_{2}=\alpha_{3}=0$
- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

CEP: $\quad \alpha_{2}=\alpha_{3}=0$

- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP

CEP and pseudo Lifshitz point

- GL expansion:
$\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

CEP: $\quad \alpha_{2}=\alpha_{3}=0$

- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP
- There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the inhomogeneous part of $M(\vec{x})$ goes to zero

CEP and pseudo Lifshitz point

- GL expansion:
$\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

CEP: $\quad \alpha_{2}=\alpha_{3}=0$

- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP
- There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the inhomogeneous part of $M(\vec{x})$ goes to zero
- M_{0} homogeneous ground state $\Rightarrow \delta M(\vec{x}) \rightarrow 0$ along this phase boundary

CEP and pseudo Lifshitz point

- GL expansion:
$\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

CEP: $\quad \alpha_{2}=\alpha_{3}=0$

- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP
- There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the inhomogeneous part of $M(\vec{x})$ goes to zero
- M_{0} homogeneous ground state $\Rightarrow \delta M(\vec{x}) \rightarrow 0$ along this phase boundary
- in general: $\nabla \delta M(\vec{x}) \neq 0$ along this phase boundary
\Rightarrow as in the chiral limit: $\quad \alpha_{4, b}<0, \alpha_{2}>0$

CEP and pseudo Lifshitz point

- GL expansion:
$\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

CEP: $\quad \alpha_{2}=\alpha_{3}=0$

- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP
- There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the inhomogeneous part of $M(\vec{x})$ goes to zero
- M_{0} homogeneous ground state $\Rightarrow \delta M(\vec{x}) \rightarrow 0$ along this phase boundary
- in general: $\nabla \delta M(\vec{x}) \neq 0$ along this phase boundary
\Rightarrow as in the chiral limit: $\quad \alpha_{4, b}<0, \alpha_{2}>0$
\rightarrow pseudo Lifshitz point (PLP): $\quad \alpha_{2}=\alpha_{4, b}=0$

Summarizing:
 GL analysis of critical and Lifshitz points

- chiral limit ($m=0$):
- expansion about $M=0$
- TCP: $\alpha_{2}=\alpha_{4, a}=0$
- LP: $\alpha_{2}=\alpha_{4, b}=0$
- away from the chiral limit $(m \neq 0)$:
- expansion about $M_{0}(T, \mu)$ solving $\alpha_{1}\left(T, \mu, M_{0}\right)=0$
- CEP: $\alpha_{2}=\alpha_{3}=0$
- PLP: $\alpha_{2}=\alpha_{4, b}=0$

Determination of the GL coefficients

Determination of the GL coefficients

- NJL mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(\phi_{S}^{2}(\vec{x})+\phi_{P}^{2}(\vec{x})\right)
$$

Determination of the GL coefficients

- NJL mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{s^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(\phi_{S}^{2}(\vec{x})+\phi_{P}^{2}(\vec{x})\right)
$$

- again assume $\phi_{P}=0 \quad \rightarrow \quad M(\vec{x})=m-2 G \phi_{S}(\vec{x}) \equiv M_{0}+\delta M(\vec{x})$

Determination of the GL coefficients

- NJL mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(\phi_{S}^{2}(\vec{x})+\phi_{P}^{2}(\vec{x})\right)
$$

- again assume $\phi_{P}=0 \quad \rightarrow \quad M(\vec{x})=m-2 G \phi_{S}(\vec{x}) \equiv M_{0}+\delta M(\vec{x})$
$\Rightarrow \quad \Omega_{M F}=-\frac{T}{V} \operatorname{Tr} \log \left(S_{0}^{-1}-\delta M\right)+\frac{1}{V} \int_{V} d^{3} x \frac{\left(M_{0}-m+\delta M(\bar{x})\right)^{2}}{4 G}$
- $S_{0}^{-1}(x)=i \not \partial+\mu \gamma^{0}-M_{0} \quad$ inverse propagator of a free fermion with mass M_{0}

Determination of the GL coefficients

- NJL mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(\phi_{S}^{2}(\vec{x})+\phi_{P}^{2}(\vec{x})\right)
$$

- again assume $\phi_{P}=0 \quad \rightarrow \quad M(\vec{x})=m-2 G \phi_{S}(\vec{x}) \equiv M_{0}+\delta M(\vec{x})$
$\Rightarrow \quad \Omega_{M F}=-\frac{T}{V} \operatorname{Tr} \log \left(S_{0}^{-1}-\delta M\right)+\frac{1}{V} \int_{V} d^{3} x \frac{\left(M_{0}-m+\delta M(\bar{x})\right)^{2}}{4 G}$
- $S_{0}^{-1}(x)=i \not \partial+\mu \gamma^{0}-M_{0} \quad$ inverse propagator of a free fermion with mass M_{0}
- expand logarithm:

$$
\log \left(S_{0}^{-1}-\delta M\right)=\log \left(S_{0}^{-1}\right)+\log \left(1-S_{0} \delta M\right)=\log \left(S_{0}^{-1}\right)-\sum_{n=1}^{\infty} \frac{1}{n}\left(S_{0} \delta M\right)^{n}
$$

Determination of the GL coefficients

- Thermodynamic potential: $\quad \Omega_{M F}=\sum_{n=0}^{\infty} \Omega^{(n)}$
$\Omega^{(n)}:$ contribution of order $(\delta M)^{n}$:

$$
\begin{aligned}
& \Omega^{(0)}=-\frac{T}{V} \operatorname{Tr} \log S_{0}^{-1}+\frac{1}{V} \int_{V} d^{3} x \frac{\left(M_{0}-m\right)^{2}}{4 G} \\
& \Omega^{(1)}=\frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)+\frac{M_{0}-m}{2 G} \frac{1}{V} \int_{V} d^{3} x \delta M(\vec{x}), \\
& \Omega^{(2)}=\frac{1}{2} \frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)^{2}+\frac{1}{4 G} \frac{1}{V} \int_{V} d^{3} x \delta M^{2}(\vec{x}), \\
& \Omega^{(n)}=\frac{1}{n} \frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)^{n} \quad \text { for } n \geq 3 .
\end{aligned}
$$

Determination of the GL coefficients

- functional trace:

$$
\operatorname{Tr}\left(S_{0} \delta M\right)^{n}=2 N_{c} \int \prod_{i=1}^{n} d^{4} x_{i} \operatorname{tr}_{0}\left[S_{0}\left(x_{n}, x_{1}\right) \delta M\left(\vec{x}_{1}\right) S_{0}\left(x_{1}, x_{2}\right) \delta M\left(\vec{x}_{2}\right) \ldots S_{0}\left(x_{n-1}, x_{n}\right) \delta M\left(\vec{x}_{n}\right)\right]
$$

Determination of the GL coefficients

- functional trace:
$\operatorname{Tr}\left(S_{0} \delta M\right)^{n}=2 N_{c} \int \prod_{i=1}^{n} d^{4} x_{i} \operatorname{tr}_{\mathrm{D}}\left[S_{0}\left(x_{n}, x_{1}\right) \delta M\left(\vec{x}_{1}\right) S_{0}\left(x_{1}, x_{2}\right) \delta M\left(\vec{x}_{2}\right) \ldots S_{0}\left(x_{n-1}, x_{n}\right) \delta M\left(\vec{x}_{n}\right)\right]$
- gradient expansion: $\quad \delta M\left(\vec{x}_{i}\right)=\delta M\left(\vec{x}_{1}\right)+\nabla M\left(\vec{x}_{1}\right) \cdot\left(\vec{x}_{i}-\vec{x}_{1}\right)+\ldots$
$\Rightarrow \quad \Omega^{(n)}=\sum_{j=0}^{\infty} \Omega^{(n, j)}, \quad j=$ number of gradients

Determination of the GL coefficients

- functional trace:
$\operatorname{Tr}\left(S_{0} \delta M\right)^{n}=2 N_{c} \int \prod_{i=1}^{n} d^{4} x_{i} \operatorname{tr}\left[S_{0}\left(x_{n}, x_{1}\right) \delta M\left(\vec{x}_{1}\right) S_{0}\left(x_{1}, x_{2}\right) \delta M\left(\vec{x}_{2}\right) \ldots S_{0}\left(x_{n-1}, x_{n}\right) \delta M\left(\vec{x}_{n}\right)\right]$
- gradient expansion: $\delta M\left(\vec{x}_{i}\right)=\delta M\left(\vec{x}_{1}\right)+\nabla M\left(\vec{x}_{1}\right) \cdot\left(\vec{x}_{i}-\vec{x}_{1}\right)+\ldots$
$\Rightarrow \quad \Omega^{(n)}=\sum_{j=0}^{\infty} \Omega^{(n, j)}, \quad j=$ number of gradients
- final steps:
- Insert momentum-space rep. of the free propagators S_{0} and turn out all but one $d^{4} x_{i}$ integrals.
- Compare results with GL expansion of $\Omega_{M F}$ to read off the GL coefficients.

GL coefficients: results

- Resulting coefficients:

$$
\begin{aligned}
& \alpha_{1}=\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
& \alpha_{4, a}=\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3} \\
& -F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(i \omega_{j}+\mu\right)^{2}-\vec{\rho}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T
\end{aligned}
$$

GL coefficients: results

- Resulting coefficients:

$$
\begin{aligned}
& \alpha_{1}=\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
& \alpha_{4, a}=\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3} \\
& F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(\omega \omega_{j}+\mu\right)^{2}-\vec{\rho}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T
\end{aligned}
$$

- chiral limit:
- $m=0 \Rightarrow M_{0}=0$ solves gap equation $\alpha_{1}=0$
- $M_{0}=0 \Rightarrow \alpha_{3}=0$ (no odd powers)
- $M_{0}=0 \Rightarrow \alpha_{4, a}=\alpha_{4, b} \Rightarrow$ TCP = LP [Nickel, PRL (2009)]

GL coefficients: results

- Resulting coefficients:

$$
\begin{aligned}
& \alpha_{1}=\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
& \alpha_{4, a}=\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3} \\
& -F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(\omega \omega_{j}+\mu\right)^{2}-\vec{\rho}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T
\end{aligned}
$$

- towards the chiral limit:
- $M_{0} \rightarrow 0 \Rightarrow \alpha_{3}, \alpha_{4 b a}, \alpha_{4, b} \propto F_{2} \Rightarrow$ CEP \rightarrow TCP $=\mathrm{LP}$

GL coefficients: results

- Resulting coefficients:

$$
\begin{aligned}
& \alpha_{1}=\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
& \alpha_{4, a}=\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3} \\
& -F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(i \omega_{j}+\mu\right)^{2}-\vec{p}^{2}-M_{0}^{2}\right] n}, \quad \omega_{j}=(2 j+1) \pi T
\end{aligned}
$$

- away from the chiral limit:
- $M_{0} \neq 0 \Rightarrow \alpha_{3}=4 M_{0} \alpha_{4, b} \Rightarrow$ CEP $=$ PLP

GL coefficients: results

- Resulting coefficients:

$$
\begin{aligned}
& \alpha_{1}=\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
& \alpha_{4, a}=\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3} \\
& -F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(i \omega_{j}+\mu\right)^{2}-\vec{\rho}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T
\end{aligned}
$$

- away from the chiral limit:
- $M_{0} \neq 0 \Rightarrow \alpha_{3}=4 M_{0} \alpha_{4, b} \Rightarrow$ CEP $=$ PLP

The CEP coincides with the PLP!

Results:

- phase diagram for $m=10 \mathrm{MeV}$:

Results:

- phase diagram for $m=10 \mathrm{MeV}$:

- dominant instability in the scalar channel

Results:

- position of the CEP=PLP for different m :

Including strange quarks

Motivation

- 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP

[D. Nickel, PRD (2009)]

Motivation

- 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?

[D. Nickel, PRD (2009)]

Motivation

- 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies

[D. Müller et al. PLB (2013)]

Motivation

- 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?

[D. Müller et al. PLB (2013)]

Motivation

- 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?
- 3-flavor QCD with very small quark masses:
- CEP reaches T-axis
$\stackrel{?}{\Rightarrow}$ PLP reaches T-axis
- chance to study the inhomogeneous phase

[from de Forcrand et al., POSLAT 2007]

Motivation

- 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?
- 3-flavor QCD with very small quark masses:
- CEP reaches T-axis
$\stackrel{?}{\Rightarrow}$ PLP reaches T-axis
- chance to study the inhomogeneous phase on the lattice!
- Here: Ginzburg-Landau study for 3-flavor NJL

3-flavor NJL model

- Lagrangian: $\quad \mathcal{L}=\bar{\psi}(i \not \partial-\hat{m}) \psi+\mathcal{L}_{4}+\mathcal{L}_{6}$
- fields and bare masses: $\psi=(u, d, s)^{T}, \quad \hat{m}=\operatorname{diag}_{f}\left(0,0, m_{s}\right)$
- 4-point interaction:

$$
\mathcal{L}_{4}=G \sum_{a=0}^{8}\left[\left(\bar{\psi} \tau_{a} \psi\right)^{2}+\left(\bar{\psi} i_{5} \tau_{a} \psi\right)^{2}\right]
$$

- 6-point ('t Hooft) interaction: $\mathcal{L}_{6}=-K\left[\operatorname{det}_{f} \bar{\psi}\left(1+\gamma_{5}\right) \psi+\operatorname{det}_{f} \bar{\psi}\left(1-\gamma_{5}\right) \psi\right]$

3-flavor NJL model

- Lagrangian: $\quad \mathcal{L}=\bar{\psi}(i \not \partial-\hat{m}) \psi+\mathcal{L}_{4}+\mathcal{L}_{6}$
- fields and bare masses: $\psi=(u, d, s)^{T}, \quad \hat{m}=\operatorname{diag}_{f}\left(0,0, m_{s}\right)$
- 4-point interaction:

$$
\mathcal{L}_{4}=G \sum_{a=0}^{8}\left[\left(\bar{\psi} \tau_{a} \psi\right)^{2}+\left(\bar{\psi} i_{5} \tau_{a} \psi\right)^{2}\right]
$$

- 6-point ('t Hooft) interaction: $\mathcal{L}_{6}=-K\left[\operatorname{det}_{f} \bar{\psi}\left(1+\gamma_{5}\right) \psi+\operatorname{det}_{f} \bar{\psi}\left(1-\gamma_{5}\right) \psi\right]$
- Mean fields:
- light sector: $\langle\bar{u} u\rangle=\langle\bar{d} d\rangle \equiv \frac{s}{2}, \quad\left\langle\bar{u} i \gamma_{5} u\right\rangle=-\left\langle\bar{d} i \gamma_{5} d\right\rangle \equiv \frac{P}{2}$

$$
\left(\Rightarrow\left\langle\bar{\psi}_{\ell} \psi_{\ell}\right\rangle \equiv\langle\bar{u} u\rangle+\langle\bar{d} d\rangle=S, \quad\left\langle\bar{\psi}_{\ell} i \gamma_{5} \tau_{3} \psi_{\ell}\right\rangle \equiv\left\langle\bar{u} i \gamma_{5} u\right\rangle-\left\langle\bar{d} i \gamma_{5} d\right\rangle=P\right)
$$

- strange sector: $\langle\bar{s} s\rangle \equiv S_{s}, \quad\left\langle\bar{s} i \gamma_{5} s\right\rangle=0$
- no flavor-nondiagonal mean fields
- allow for inhomogeneities: $\quad S=S(\vec{x}), \quad P=P(\vec{x}), \quad S_{s}=S_{s}(\vec{x})$

Mean-field Thermodynamic Potential

- $\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(i \not \partial+\mu \gamma^{0}-\hat{M}\right)+\frac{1}{V} \int d^{3} \times \mathcal{V}(\vec{x})$
- dressed "masses": $\quad \hat{M}_{u, d}(\vec{X})=-\left(2 G-K S_{s}(\vec{x})\right)\left(S(\vec{x}) \pm i \gamma_{5} P(\vec{x})\right)$

$$
\hat{M}_{s}(\vec{x})=m_{s}-4 G S_{s}(\vec{x})+\frac{1}{2} K\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

- "potential field": $\quad \mathcal{V}(\vec{x})=G\left(S^{2}(\vec{x})+P^{2}(\vec{x})+2 S_{s}(\vec{x})\right)-K S_{s}(\vec{x})\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$

Mean-field Thermodynamic Potential

- $\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(i \not \partial+\mu \gamma^{0}-\hat{M}\right)+\frac{1}{V} \int d^{3} \times \mathcal{V}(\vec{x})$
- dressed "masses": $\quad \hat{M}_{u, d}(\vec{X})=-\left(2 G-K S_{s}(\vec{x})\right)\left(S(\vec{x}) \pm i \gamma_{5} P(\vec{x})\right)$

$$
\hat{M}_{s}(\vec{x})=m_{s}-4 G S_{s}(\vec{x})+\frac{1}{2} K\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

- "potential field": $\quad \mathcal{V}(\vec{x})=G\left(S^{2}(\vec{x})+P^{2}(\vec{x})+2 S_{s}(\vec{x})\right)-K S_{s}(\vec{x})\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$
- $K=0$: light and strange sectors decouple!

$$
\hat{M}_{u, d}=-2 G\left(S \pm i \gamma_{5} P\right), \quad \hat{M}_{s}(\vec{x})=m_{s}-4 G S_{s} ; \quad \mathcal{V}=G\left(S^{2}+P^{2}\right)+2 G S_{s}
$$

Mean-field Thermodynamic Potential

- $\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(i \not \partial+\mu \gamma^{0}-\hat{M}\right)+\frac{1}{V} \int d^{3} x \mathcal{V}(\vec{x})$
- dressed "masses": $\quad \hat{M}_{u, d}(\vec{X})=-\left(2 G-K S_{s}(\vec{x})\right)\left(S(\vec{x}) \pm i \gamma_{5} P(\vec{x})\right)$

$$
\hat{M}_{s}(\vec{x})=m_{s}-4 G S_{s}(\vec{x})+\frac{1}{2} K\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

- "potential field": $\quad \mathcal{V}(\vec{x})=G\left(S^{2}(\vec{x})+P^{2}(\vec{x})+2 S_{s}(\vec{x})\right)-K S_{s}(\vec{x})\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)$
- $K=0$: light and strange sectors decouple!

$$
\hat{M}_{u, d}=-2 G\left(S \pm i \gamma_{5} P\right), \quad \hat{M}_{s}(\vec{x})=m_{s}-4 G S_{s} ; \quad \mathcal{V}=G\left(S^{2}+P^{2}\right)+2 G S_{s}
$$

- Chiral density wave ansatz for the light sector:

$$
\begin{aligned}
& S(\vec{x})=\phi_{0} \cos (\vec{q} \cdot \vec{x}), \quad P(\vec{x})=\phi_{0} \sin (\vec{q} \cdot \vec{x}), \quad S_{s}=\phi_{s}=\text { const } . \\
& \Rightarrow \quad \hat{M}_{u, d}=\Delta e^{ \pm i \gamma_{5} \vec{q} \cdot \vec{x}}, \quad \Delta \equiv-\left(2 G-K \phi_{s}\right) \phi_{0}, \\
& M_{s}=\text { const. }, \quad \mathcal{V}=\text { const. }
\end{aligned}
$$

consistent with the literature [Moreira et al., PRD (2014)]

Ginzburg-Landau expansion

- Difficulty at $m_{s} \neq 0$: No $S U(3)_{L} \times S U(3)_{R}$ restored solution
- $m_{u}=m_{d}=0$
\Rightarrow Expand about two-flavor restored solution $S=P=0$:

$$
\Omega_{M F}\left[S, P, S_{s}\right]=\Omega_{M F}\left[0,0, S_{s}^{(0)}\right]+\frac{1}{V} \int d^{3} x \Omega_{G L}[S(\vec{x}), P(\vec{x}), X(\vec{x})]
$$

- strange condensate: $S_{s}(\vec{x})=S_{s}^{(0)}+X(\vec{x})$
- $S_{S}^{(0)}$: homogeneous solution of the gap equation for $S=P=0$ at given T and μ
- Expand $\Omega_{G L}$ in S, P and X, and their gradients.

Ginzburg-Landau potential

- Define: $\Delta_{\ell}=-2 G(S+i P), \quad \Delta_{s}=-4 G X$

$$
\left[\Delta_{i}\right]=(\text { mass }) \rightarrow \text { counting scheme: } \mathcal{O}(\vec{\nabla})=\mathcal{O}\left(\Delta_{i}\right)
$$

Ginzburg-Landau potential

- Define: $\Delta_{\ell}=-2 G(S+i P), \quad \Delta_{s}=-4 G X$

$$
\left[\Delta_{i}\right]=(\text { mass }) \rightarrow \text { counting scheme: } \mathcal{O}(\vec{\nabla})=\mathcal{O}\left(\Delta_{i}\right)
$$

- Resulting structure:

$$
\begin{aligned}
\Omega_{G L} & =a_{2}\left|\Delta_{\ell}\right|^{2}+a_{4, a}\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +b_{1} \Delta_{s}+b_{2} \Delta_{s}^{2}+b_{3} \Delta_{s}^{3}+b_{4, a} \Delta_{s}^{4}+b_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +c_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+c_{4}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}\left(\vec{\nabla} \Delta_{s}\right)^{2} \quad+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

Ginzburg-Landau potential

- Define: $\Delta_{\ell}=-2 G(S+i P), \quad \Delta_{s}=-4 G X$

$$
\left[\Delta_{i}\right]=(\text { mass }) \rightarrow \text { counting scheme: } \mathcal{O}(\vec{\nabla})=\mathcal{O}\left(\Delta_{i}\right)
$$

- Resulting structure:

$$
\begin{aligned}
\Omega_{G L} & =a_{2}\left|\Delta_{\ell}\right|^{2}+a_{4, a}\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +b_{1} \Delta_{s}+b_{2} \Delta_{s}^{2}+b_{3} \Delta_{s}^{3}+b_{4, a} \Delta_{s}^{4}+b_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +c_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+c_{4}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}\left(\vec{\nabla} \Delta_{s}\right)^{2} \quad+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

- Stationarity condition: $\left.\quad \frac{\partial \Omega_{G L}}{\partial \Delta_{s}}\right|_{\Delta_{\ell}=\Delta_{s}=0}=0 \quad \Leftrightarrow \quad b_{1}=0$

Ginzburg-Landau potential

- Define: $\Delta_{\ell}=-2 G(S+i P), \quad \Delta_{s}=-4 G X$

$$
\left[\Delta_{i}\right]=(\text { mass }) \rightarrow \text { counting scheme: } \mathcal{O}(\vec{\nabla})=\mathcal{O}\left(\Delta_{i}\right)
$$

- Resulting structure:

$$
\begin{aligned}
\Omega_{G L} & =a_{2}\left|\Delta_{\ell}\right|^{2}+a_{4, a}\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +b_{2} \Delta_{s}^{2}+b_{3} \Delta_{s}^{3}+b_{4, a} \Delta_{s}^{4}+b_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +c_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+c_{4}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}\left(\vec{\nabla} \Delta_{s}\right)^{2}+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

- Stationarity condition: $\left.\quad \frac{\partial \Omega_{G L}}{\partial \Delta_{s}}\right|_{\Delta_{\ell}=\Delta_{s}=0}=0 \quad \Leftrightarrow \quad b_{1}=0$

Ginzburg-Landau potential

- Define: $\Delta_{\ell}=-2 G(S+i P), \quad \Delta_{s}=-4 G X$

$$
\left[\Delta_{i}\right]=(\text { mass }) \rightarrow \text { counting scheme: } \mathcal{O}(\vec{\nabla})=\mathcal{O}\left(\Delta_{i}\right)
$$

- Resulting structure:

$$
\begin{aligned}
\Omega_{G L} & =a_{2}\left|\Delta_{\ell}\right|^{2}+a_{4, a}\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +b_{2} \Delta_{s}^{2}+b_{3} \Delta_{s}^{3}+b_{4, a} \Delta_{s}^{4}+b_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +c_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+c_{4}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}\left(\vec{\nabla} \Delta_{s}\right)^{2}+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

- Stationarity condition: $\left.\quad \frac{\partial \Omega_{G l}}{\partial \Delta_{s}}\right|_{\Delta_{\ell}=\Delta_{s}=0}=0 \quad \Leftrightarrow \quad b_{1}=0$

$$
\begin{aligned}
& \Rightarrow \quad M_{s}^{(0)}=m_{s}-16 N_{c} G T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{M_{s}^{(0)}}{\left(i \omega_{n}+\mu\right)^{2}-\vec{\rho}^{2}-M_{s}^{(0)}} \\
& \quad\left(=\text { gap equation for } M_{s}^{(0)} \equiv \hat{M}_{s} \mid S=P=X=0=m_{s}-4 G S_{S}^{(0)}\right)
\end{aligned}
$$

Eliminating the strange condensate

- Extremizing $\Omega_{M F}$ w.r.t. $\Delta_{s}(\vec{x})$
\rightarrow Euler-Lagrange equation $\frac{\partial \Omega_{G L}}{\partial \Delta_{s}}-\partial_{i} \frac{\partial \Omega_{G L}}{\partial \partial_{i} \Delta_{s}}=0$
$\Leftrightarrow \quad \Delta_{s}=-\frac{c_{3}}{2 b_{2}}\left|\Delta_{\ell}\right|^{2}+\mathcal{O}\left(\left|\Delta_{\ell}\right|^{4}\right)$

Eliminating the strange condensate

- Extremizing $\Omega_{M F}$ w.r.t. $\Delta_{S}(\vec{x})$
\rightarrow Euler-Lagrange equation $\frac{\partial \Omega_{G L}}{\partial \Delta_{s}}-\partial_{i} \frac{\partial \Omega_{G L}}{\partial \partial_{i} \Delta_{s}}=0$
$\Leftrightarrow \quad \Delta_{s}=-\frac{c_{3}}{2 b_{2}}\left|\Delta_{\ell}\right|^{2}+\mathcal{O}\left(\left|\Delta_{\ell}\right|^{4}\right)$
- Insert into $\Omega_{G L}$:

$$
\Omega_{G L}=a_{2}\left|\Delta_{\ell}\right|^{2}+\left(a_{4, a}-\frac{c_{3}^{2}}{4 b_{2}}\right)\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}+\mathcal{O}\left(\Delta_{\ell}^{6}\right)
$$

Eliminating the strange condensate

- Extremizing $\Omega_{M F}$ w.r.t. $\Delta_{S}(\vec{x})$
\rightarrow Euler-Lagrange equation $\frac{\partial \Omega_{G L}}{\partial \Delta_{s}}-\partial_{i} \frac{\partial \Omega_{G L}}{\partial \partial_{i} \Delta_{s}}=0$
$\Leftrightarrow \quad \Delta_{s}=-\frac{c_{3}}{2 b_{2}}\left|\Delta_{\ell}\right|^{2}+\mathcal{O}\left(\left|\Delta_{\ell}\right|^{4}\right)$
- Insert into $\Omega_{G L}$:

$$
\Omega_{G L}=a_{2}\left|\Delta_{\ell}\right|^{2}+\left(a_{4, a}-\frac{c_{3}^{2}}{4 b_{2}}\right)\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}+\mathcal{O}\left(\Delta_{\ell}^{6}\right)
$$

- Critical and Lifshitz points:
- CP: $a_{2}=a_{4, a}-\frac{c_{3}^{2}}{4 b_{2}}=0$
- LP: $a_{2}=a_{4, b}=0$

Eliminating the strange condensate

- Extremizing $\Omega_{M F}$ w.r.t. $\Delta_{S}(\vec{x})$
\rightarrow Euler-Lagrange equation $\frac{\partial \Omega_{G L}}{\partial \Delta_{s}}-\partial_{i} \frac{\partial \Omega_{G L}}{\partial \partial_{i} \Delta_{s}}=0$
$\Leftrightarrow \quad \Delta_{s}=-\frac{c_{3}}{2 b_{2}}\left|\Delta_{\ell}\right|^{2}+\mathcal{O}\left(\left|\Delta_{\ell}\right|^{4}\right)$
- Insert into $\Omega_{G L}$:

$$
\Omega_{G L}=a_{2}\left|\Delta_{\ell}\right|^{2}+\left(a_{4, a}-\frac{C_{3}^{2}}{4 b_{2}}\right)\left|\Delta_{\ell}\right|^{4}+a_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}+\mathcal{O}\left(\Delta_{\ell}^{6}\right)
$$

- Critical and Lifshitz points:
- CP: $a_{2}=a_{4, a}-\frac{c_{3}^{2}}{4 b_{2}}=0$
- LP: $a_{2}=a_{4, b}=0$

CP and LP don't coincide anymore!

Discussion

- Relevant GL coefficients (no guarantee yet!):

$$
\begin{aligned}
& a_{2}=\frac{1}{4 G}(1+2 \delta)+(1+\delta)^{2} 4 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+\frac{K}{2 G^{2}} N_{c} \frac{1}{V_{4}} \sum \frac{M_{s}^{(0)}}{p^{2}-M_{s}^{(0) 2}} \\
& a_{4, a}=(1+\delta)^{4} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}}+\frac{K^{2}}{32 G^{4}} N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left[p^{2}-M_{s}^{(0)}\right]^{2}} \\
& a_{4, b}=(1+\delta)^{2} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}} \\
& c_{3}=\frac{K}{2 G^{2}}\left[\frac{1}{8 G}+(1+\delta) 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left.\left[p^{2}-M_{s}^{(0) 2}\right]^{2}\right]}\right. \\
& \text { - abbreviations: } \quad \delta \equiv-\frac{K}{2 G} S_{s}^{(0)}, \quad \frac{1}{V_{4}} \sum \equiv T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}}
\end{aligned}
$$

Discussion

- Relevant GL coefficients (no guarantee yet!):

$$
\begin{aligned}
& a_{2}=\frac{1}{4 G}(1+2 \delta)+(1+\delta)^{2} 4 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+\frac{K}{2 G^{2}} N_{c} \frac{1}{V_{4}} \sum \frac{M_{s}^{(0)}}{p^{2}-M_{s}^{(0) 2}} \\
& a_{4, a}=(1+\delta)^{4} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}}+\frac{K^{2}}{32 G^{4}} N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left.\left[p^{2}-M_{s}^{0}\right)^{(0)}\right]^{2}} \\
& a_{4, b}=(1+\delta)^{2} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}} \\
& c_{3}=\frac{K}{2 G^{2}}\left[\frac{1}{8 G}+(1+\delta) 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left.\left[p^{2}-M_{s}^{(0) 2}\right]^{2}\right]}\right. \\
& \text { - abbreviations: } \quad \delta \equiv-\frac{K}{2 G} S_{s}^{(0)}, \quad \frac{1}{V_{4}} \sum \equiv T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}}
\end{aligned}
$$

- Interesting limits:
- $K=0 \Rightarrow \delta=0 \Rightarrow C P=L P$

Discussion

- Relevant GL coefficients (no guarantee yet!):

$$
\begin{aligned}
& a_{2}=\frac{1}{4 G}(1+2 \delta)+(1+\delta)^{2} 4 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+\frac{K}{2 G^{2}} N_{c} \frac{1}{V_{4}} \sum \frac{M_{s}^{(0)}}{p^{2}-M_{s}^{(0) 2}} \\
& a_{4, a}=(1+\delta)^{4} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}}+\frac{K^{2}}{32 G^{4}} N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left[p^{2}-M_{s}^{(0)}\right]^{2}} \\
& a_{4, b}=(1+\delta)^{2} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}} \\
& c_{3}=\frac{K}{2 G^{2}}\left[\frac{1}{8 G}+(1+\delta) 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left.\left[p^{2}-M_{s}^{(0) 2}\right]^{2}\right]}\right. \\
& \text { - abbreviations: } \quad \delta \equiv-\frac{K}{2 G} S_{s}^{(0)}, \quad \frac{1}{V_{4}} \sum \equiv T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}}
\end{aligned}
$$

- Interesting limits:
- $K=0 \Rightarrow \delta=0 \Rightarrow$ CP=LP
- $m_{s} \rightarrow 0 \Rightarrow M_{s}^{(0)}, s_{s}^{(0)}, \delta \rightarrow 0 \Rightarrow \mathrm{LP} \rightarrow \mathrm{LP}(\mathrm{K}=0) \neq \mathrm{CP}$

Discussion

- Relevant GL coefficients (no guarantee yet!):

$$
\begin{aligned}
& a_{2}=\frac{1}{4 G}(1+2 \delta)+(1+\delta)^{2} 4 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+\frac{K}{2 G^{2}} N_{c} \frac{1}{V_{4}} \sum \frac{M_{s}^{(0)}}{p^{2}-M_{s}^{(0) 2}} \\
& a_{4, a}=(1+\delta)^{4} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}}+\frac{K^{2}}{32 G^{4}} N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left[p^{2}-M_{s}^{0}(0)\right]^{2}} \\
& a_{4, b}=(1+\delta)^{2} 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{4}} \\
& c_{3}=\frac{K}{2 G^{2}}\left[\frac{1}{8 G}+(1+\delta) 2 N_{c} \frac{1}{V_{4}} \sum \frac{1}{p^{2}}+N_{c} \frac{1}{V_{4}} \sum \frac{p^{2}+M_{s}^{(0) 2}}{\left.\left[p^{2}-M_{s}^{(0) 2}\right]^{2}\right]}\right. \\
& \text { abbreviations: } \quad \delta \equiv-\frac{K}{2 G} S_{s}^{(0)}, \quad \frac{1}{V_{4}} \sum \equiv T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}}
\end{aligned}
$$

- Interesting limits:
- $K=0 \Rightarrow \delta=0 \Rightarrow C P=L P$
- $m_{s} \rightarrow 0 \Rightarrow M_{s}^{(0)}, s_{s}^{(0)}, \delta \rightarrow 0 \Rightarrow \mathrm{LP} \rightarrow \mathrm{LP}(\mathrm{K}=0) \neq \mathrm{CP}$
- Numerical survey of the general case still to be done.

Conclusions

- Ginzburg-Landau analysis of the effect of bare quark masses and strange quarks the inhomogeneous chiral phase in the NJL model
- nonzero $m_{u, d}$:
- PLP coincides with CEP
- dominant instability towards inhomogeneities in the scalar channel
- numerical result: inhomogeneous phase survives large (higher than physical) quark masses
- strange quarks:
- CP and LP no longer agree as a consequence of the axial anomaly
- detailed numerical study to be done
- studies in the QM model underway
- QCD?

