Inhomogeneous chiral condensates

TECHNISCHE UNIVERSITÄT DARMSTADT

Michael Buballa

Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Lunch Club Seminar, JLU Gießen, December 5, 2018

Motivation

QCD phase diagram (standard picture):

Motivation

QCD phase diagram (standard picture):

• assumption: $\langle \bar{q}q \rangle$, $\langle qq \rangle$ constant in space

Motivation

QCD phase diagram (standard picture):

- assumption: $\langle \bar{q}q \rangle$, $\langle qq \rangle$ constant in space
- How about non-uniform phases ?

[D. Nickel, PRD (2009)]

December 5, 2018 | Michael Buballa | 3

[D. Nickel, PRD (2009)]

1st-order phase boundary

[D. Nickel, PRL (2009)]

completely covered by the inhomogeneous phase!

Critical point \rightarrow Lifshitz point

[D. Nickel, PRD (2009)]

[D. Nickel, PRD (2009)]

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point → Lifshitz point [D. Nickel, PRL (2009)]
- Inhomogeneous phase rather robust under model extensions and variations:
 - vector interactions
 - Polyakov-loop dynamics
 - including strange quarks
 - isospin imbalance
 - magnetic fields

[MB, S. Carignano, PPNP (2015)]

Questions addressed in this talk:

- What is the effect of nonzero bare quark masses?
 [MB, S. Carignano, arxiv:1809.10066 [hep-ph]]
- What is the influence of strange quarks?
- based on:
 - MB, S. Carignano, arxiv:1809.10066 [hep-ph]
 - MB, S. Carignano, submitted to PoS (proceedings QCHS 2018)

What is the effect of going away from the chiral limit?

- What is the effect of going away from the chiral limit?
- Andersen, Kneschke, PRD (2018):

No inhomogeneous phase in the 2-flavor quark-meson model for $m_\pi > 37.1~{\rm MeV}$

- What is the effect of going away from the chiral limit?
- Andersen, Kneschke, PRD (2018):
 No inhomogeneous phase in the 2-flavor quark-meson model for m_π > 37.1 MeV

Nickel, PRD (2009):

Inhomogeneous phase in 2-flavor NJL gets smaller but still reaches the CEP

 $m_{\mu,d} = 0, 5 \text{ MeV}, 10 \text{ MeV}$

- What is the effect of going away from the chiral limit?
- Andersen, Kneschke, PRD (2018):
 No inhomogeneous phase in the 2-flavor quark-meson model for m_π > 37.1 MeV

 Nickel, PRD (2009): Inhomogeneous phase in 2-flavor NJL

gets smaller but still reaches the CEP

Can we investigate this more systematically?

► Lagrangian:

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi + G\left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right]$$

► Lagrangian:

$$\mathcal{L}=\bar{\psi}(i\partial\!\!\!/-m)\psi+G\left[(\bar{\psi}\psi)^2+(\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right]$$

► bosonize: $\sigma(x) = \bar{\psi}(x)\psi(x), \quad \vec{\pi}(x) = \bar{\psi}(x)i\gamma_5\vec{\tau}\psi(x)$

$$\Rightarrow \quad \mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m + 2G_S(\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \right) \psi - G \left(\sigma^2 + \vec{\pi}^2 \right)$$

► Lagrangian:

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi + G\left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right]$$

► bosonize: $\sigma(x) = \bar{\psi}(x)\psi(x)$, $\vec{\pi}(x) = \bar{\psi}(x)i\gamma_5\vec{\tau}\psi(x)$

$$\Rightarrow \quad \mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m + 2G_S(\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \right) \psi - G \left(\sigma^2 + \vec{\pi}^2 \right)$$

mean-field approximation:

$$\sigma(\mathbf{x}) \to \langle \sigma(\mathbf{x}) \rangle \equiv \phi_{\mathcal{S}}(\vec{\mathbf{x}}), \quad \pi_{a}(\mathbf{x}) \to \langle \pi_{a}(\mathbf{x}) \rangle \equiv \phi_{\mathcal{P}}(\vec{\mathbf{x}}) \, \delta_{a3}$$

- $\phi_{S}(\vec{x}), \phi_{P}(\vec{x})$ time independent classical fields
- retain space dependence !

► Lagrangian:

$$\mathcal{L} = \bar{\psi}(i\partial\!\!/ - m)\psi + G\left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right]$$

► bosonize: $\sigma(x) = \bar{\psi}(x)\psi(x), \quad \vec{\pi}(x) = \bar{\psi}(x)i\gamma_5\vec{\tau}\psi(x)$

$$\Rightarrow \quad \mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m + 2G_S(\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \right) \psi - G \left(\sigma^2 + \vec{\pi}^2 \right)$$

mean-field approximation:

$$\sigma(\mathbf{x}) \to \langle \sigma(\mathbf{x}) \rangle \equiv \phi_{\mathcal{S}}(\vec{\mathbf{x}}), \quad \pi_{a}(\mathbf{x}) \to \langle \pi_{a}(\mathbf{x}) \rangle \equiv \phi_{\mathcal{P}}(\vec{\mathbf{x}}) \, \delta_{a3}$$

- $\phi_{S}(\vec{x}), \phi_{P}(\vec{x})$ time independent classical fields
- retain space dependence !
- mean-field Lagrangian:

$$\mathcal{L}_{MF} = \bar{\psi}(x) \left[i \partial \!\!\!/ - m + 2G \left(\phi_{S}(\vec{x}) + i \gamma_{5} \tau_{3} \phi_{P}(\vec{x}) \right) \right] \psi(x) - G \left[\phi_{S}^{2}(\vec{x}) + \phi_{P}^{2}(\vec{x}) \right]$$

Mean-field thermodynamic potential

mean-field thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{T}{V} \ln \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(\int_{x \in [0,\frac{1}{T}] \times V} (\mathcal{L}_{MF} + \mu\bar{\psi}\gamma^{0}\psi)\right)$$

Mean-field thermodynamic potential

mean-field thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{T}{V} \ln \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(\int_{x \in [0,\frac{1}{T}] \times V} (\mathcal{L}_{MF} + \mu\bar{\psi}\gamma^{0}\psi)\right)$$

• \mathcal{L}_{MF} bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out:

$$\Omega_{MF}(T,\mu) = -\frac{T}{V} \operatorname{Tr} \log\left(\frac{S^{-1}}{T}\right) + G \frac{1}{V} \int d^3x \, \left(\phi_S^2(\vec{x}) + \phi_P^2(\vec{x})\right)$$

- inverse dressed propagator: $S^{-1}(x) = i\partial + \mu\gamma^0 m + 2G_S\left(\phi_S(\vec{x}) + i\gamma_5\tau_3\phi_P(\vec{x})\right)$
- ▶ **Tr**: functional trace over Euclidean $V_4 = [0, \frac{1}{7}] \times V$, Dirac, color, and flavor

Mean-field thermodynamic potential

mean-field thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{T}{V} \ln \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(\int_{x \in [0,\frac{1}{T}] \times V} (\mathcal{L}_{MF} + \mu\bar{\psi}\gamma^{0}\psi)\right)$$

• \mathcal{L}_{MF} bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out:

$$\Omega_{MF}(T,\mu) = -\frac{T}{V} \operatorname{Tr} \log\left(\frac{S^{-1}}{T}\right) + G \frac{1}{V} \int d^3x \, \left(\phi_S^2(\vec{x}) + \phi_P^2(\vec{x})\right)$$

- ► inverse dressed propagator: $S^{-1}(x) = i\partial + \mu\gamma^0 m + 2G_S \left(\phi_S(\vec{x}) + i\gamma_5\tau_3\phi_P(\vec{x})\right)$
- ▶ **Tr**: functional trace over Euclidean $V_4 = [0, \frac{1}{7}] \times V$, Dirac, color, and flavor
- $\Rightarrow \quad \Omega_{MF} = \Omega_{MF}[\phi_{S}(\vec{x}), \phi_{P}(\vec{x})] \quad \text{minimization extremly difficult } !$

Ginzburg-Landau analysis

Simplifications:

- chiral limit m = 0 (will be relaxed later)
- $\phi_P = 0$ (to simplify the notation, can be included straightforwardly)
- \rightarrow order parameter $M(\vec{x}) = -2G\phi_S(\vec{x})$ ("constituent quark mass")
- $\rightarrow \Omega_{MF} = \Omega_{MF}[M]$

Ginzburg-Landau analysis

Simplifications:

- chiral limit m = 0 (will be relaxed later)
- $\phi_P = 0$ (to simplify the notation, can be included straightforwardly)
- \rightarrow order parameter $M(\vec{x}) = -2G\phi_S(\vec{x})$ ("constituent quark mass")
- $\rightarrow \Omega_{MF} = \Omega_{MF}[M]$
- Assumptions: M, $|\nabla M|$ small (holds near the LP)
 - \rightarrow expansion of the thermodynamic potential.

$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^{3}x \left\{ \alpha_{2} M^{2}(\vec{x}) + \alpha_{4,a} M^{4}(\vec{x}) + \alpha_{4,b} |\vec{\nabla} M(\vec{x})|^{2} + \dots \right\}$$

- $\alpha_n = \alpha_n(T, \mu)$: GL coefficients
- chiral symmetry: only even powers allowed
- stability: higher-order coeffs. positive

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• <u>case 1:</u> $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• <u>case 1:</u> $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• <u>case 1:</u> $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• <u>case 1:</u> $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

<u>case 1.1:</u> $\alpha_{4,a} > 0$

• 2nd-order p.t. at $\alpha_2 = 0$

<u>case 1.2:</u> *α*_{4,*a*} < 0

• 1st-order phase trans. at $\alpha_2 > 0$

 \Rightarrow tricritical point (TCP): $\alpha_2 = \alpha_{4,a} = 0$

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• <u>case 1:</u> $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

- <u>case 1.1:</u> $\alpha_{4,a} > 0$
- 2nd-order p.t. at \alpha_2 = 0

 \Rightarrow tricritical point (TCP): $\alpha_2 = \alpha_{4,a} = 0$

<u>case 1.2:</u> *α*_{4,a} < 0

• 1st-order phase trans. at $\alpha_2 > 0$

► <u>case 2:</u> α_{4,b} < 0</p>

inhomogeneous phase possible

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• <u>case 1:</u> $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

- <u>case 1.1:</u> $\alpha_{4,a} > 0$
- 2nd-order p.t. at \alpha_2 = 0

 \Rightarrow tricritical point (TCP): $\alpha_2 = \alpha_{4,a} = 0$

<u>case 1.2:</u> *α*_{4,a} < 0

• 1st-order phase trans. at $\alpha_2 > 0$

► <u>case 2:</u> α_{4,b} < 0</p>

- inhomogeneous phase possible
- P 2nd-order phase boundary inhom. restored: α_{4,b} < 0, α₂ > 0 finite wavelength, amplitude → 0

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• case 1: $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

case 1.1:
$$\alpha_{4,a} > 0$$

 \Rightarrow tricritical point (TCP): $\alpha_2 = \alpha_{4,a} = 0$

<u>case 1.2:</u> *α*_{4,a} < 0

• 1st-order phase trans. at $\alpha_2 > 0$

► <u>case 2:</u> α_{4,b} < 0</p>

- ▶ inhomogeneous phase possible Lifshitz point (LP): $\alpha_2 = \alpha_{4,b} = 0$
- P 2nd-order phase boundary inhom. restored: α_{4,b} < 0, α₂ > 0 finite wavelength, amplitude → 0

Away from the chiral limit

- $m \neq 0$: no chirally restored solution M = 0
 - \rightarrow expand about a priory unknown constant mass M_0 :

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_1 \delta M + \alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

- ▶ small parameters: $\delta M(\vec{x}) \equiv M(\vec{x}) M_0$, $|\nabla \delta M(\vec{x})|$
- GL coefficients: $\alpha_j = \alpha_j(T, \mu, M_0)$
- odd powers allowed
- require M₀ = extremum of Ω at given T and μ

 $\Rightarrow \alpha_1(T, \mu, M_0) = 0 \rightarrow M_0 = M_0(T, \mu)$ (= homogeneous gap equation)

CEP and pseudo Lifshitz point

► GL expansion:

 $\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$

► GL expansion:

 $\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous

> no restored phase, but 1st-order ph. trans. between different minima possible

► GL expansion:

 $\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible
- 2 minima + 1 maximum \rightarrow 1 minimum

 \Rightarrow critical endpoint (CEP): $\alpha_2 = \alpha_3 = 0$

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible
- 2 minima + 1 maximum \rightarrow 1 minimum

 \Rightarrow critical endpoint (CEP): $\alpha_2 = \alpha_3 = 0$

▶ spinodals: left: $\alpha_2 = 0$, $\alpha_3 < 0$, right: $\alpha_2 = 0$, $\alpha_3 > 0$,

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1:</u> $\alpha_{4,b} > 0 \Rightarrow$ homogeneous

CEP: $\alpha_2 = \alpha_3 = 0$

• case 2: $\alpha_{4,b} < 0 \Rightarrow$ inhomogeneous phases possible

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• case 1: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous

CEP:
$$\alpha_2 = \alpha_3 = 0$$

• <u>case 2</u>: $\alpha_{4,b} < 0 \Rightarrow$ inhomogeneous phases possible

▶ strictly: only two phases – homogeneous and inhomogeneous \Rightarrow no LP

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

- <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous CEP: $\alpha_2 = \alpha_3 = 0$
- <u>case 2</u>: $\alpha_{4,b} < 0 \Rightarrow$ inhomogeneous phases possible
 - \blacktriangleright strictly: only two phases homogeneous and inhomogeneous $\ \Rightarrow \ {\sf no} \ {\sf LP}$
 - ► There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the *inhomogeneous* part of $M(\vec{x})$ goes to zero

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous CEP: $\alpha_2 = \alpha_3 = 0$

• <u>case 2</u>: $\alpha_{4,b} < 0 \Rightarrow$ inhomogeneous phases possible

- strictly: only two phases homogeneous and inhomogeneous \Rightarrow no LP
- ► There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the *inhomogeneous* part of $M(\vec{x})$ goes to zero
- M_0 homogeneous ground state $\Rightarrow \delta M(\vec{x}) \rightarrow 0$ along this phase boundary

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous CEP: $\alpha_2 = \alpha_3 = 0$

• <u>case 2</u>: $\alpha_{4,b} < 0 \Rightarrow$ inhomogeneous phases possible

- strictly: only two phases homogeneous and inhomogeneous \Rightarrow no LP
- ► There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the *inhomogeneous* part of M(x) goes to zero
- M_0 homogeneous ground state $\Rightarrow \delta M(\vec{x}) \rightarrow 0$ along this phase boundary
- in general: $\nabla \delta M(\vec{x}) \neq 0$ along this phase boundary

 \Rightarrow as in the chiral limit: $\alpha_{4,b} < 0, \alpha_2 > 0$

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous CEP: $\alpha_2 = \alpha_3 = 0$

• <u>case 2</u>: $\alpha_{4,b} < 0 \Rightarrow$ inhomogeneous phases possible

- strictly: only two phases homogeneous and inhomogeneous \Rightarrow no LP
- There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the *inhomogeneous* part of M(x) goes to zero
- M_0 homogeneous ground state $\Rightarrow \delta M(\vec{x}) \rightarrow 0$ along this phase boundary
- in general: $\nabla \delta M(\vec{x}) \neq 0$ along this phase boundary

 \Rightarrow as in the chiral limit: $\alpha_{4,b} < 0, \alpha_2 > 0$

 \rightarrow pseudo Lifshitz point (PLP): $\alpha_2 = \alpha_{4,b} = 0$

Summarizing: GL analysis of critical and Lifshitz points

- chiral limit (m = 0):
 - expansion about M = 0
 - TCP: α₂ = α_{4,a} = 0
 - LP: $\alpha_2 = \alpha_{4,b} = 0$
- away from the chiral limit $(m \neq 0)$:
 - expansion about $M_0(T, \mu)$ solving $\alpha_1(T, \mu, M_0) = 0$
 - CEP: α₂ = α₃ = 0
 - PLP: α₂ = α_{4,b} = 0

NJL mean-field thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{\tau}{V} \text{Tr} \log\left(\frac{S^{-1}}{T}\right) + G \frac{1}{V} \int d^3x \, \left(\phi_S^2(\vec{x}) + \phi_P^2(\vec{x})\right)$$

NJL mean-field thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{T}{V} \text{Tr} \log\left(\frac{S^{-1}}{T}\right) + G \frac{1}{V} \int d^3 x \left(\phi_S^2(\vec{x}) + \phi_P^2(\vec{x})\right)$$

► again assume $\phi_P = 0$ \rightarrow $M(\vec{x}) = m - 2G\phi_S(\vec{x}) \equiv M_0 + \delta M(\vec{x})$

NJL mean-field thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{T}{V} \operatorname{Tr} \log\left(\frac{S^{-1}}{T}\right) + G \frac{1}{V} \int d^3x \, \left(\phi_{S}^2(\vec{x}) + \phi_{P}^2(\vec{x})\right)$$

► again assume $\phi_P = 0$ \rightarrow $M(\vec{x}) = m - 2G\phi_S(\vec{x}) \equiv M_0 + \delta M(\vec{x})$

$$\Rightarrow \quad \Omega_{MF} = -\frac{T}{V} \operatorname{Tr} \log(S_0^{-1} - \delta M) + \frac{1}{V} \int_V d^3 x \, \frac{(M_0 - m + \delta M(\vec{x}))^2}{4G}$$

► $S_0^{-1}(x) = i\partial + \mu\gamma^0 - M_0$ inverse propagator of a free fermion with mass M_0

NJL mean-field thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{T}{V} \operatorname{Tr} \log\left(\frac{S^{-1}}{T}\right) + G \frac{1}{V} \int d^3x \, \left(\phi_S^2(\vec{x}) + \phi_P^2(\vec{x})\right)$$

► again assume $\phi_P = 0$ \rightarrow $M(\vec{x}) = m - 2G\phi_S(\vec{x}) \equiv M_0 + \delta M(\vec{x})$

$$\Rightarrow \quad \Omega_{MF} = -\frac{T}{V} \operatorname{Tr} \log(S_0^{-1} - \delta M) + \frac{1}{V} \int_V d^3 x \, \frac{(M_0 - m + \delta M(\bar{x}))^2}{4G}$$

- ► $S_0^{-1}(x) = i\partial + \mu\gamma^0 M_0$ inverse propagator of a free fermion with mass M_0
- expand logarithm:

$$\log(S_0^{-1} - \delta M) = \log(S_0^{-1}) + \log(1 - S_0 \delta M) = \log(S_0^{-1}) - \sum_{n=1}^{\infty} \frac{1}{n} (S_0 \delta M)^n$$

• Thermodynamic potential: $\Omega_{MF} = \sum_{n=0}^{\infty} \Omega^{(n)}$

 $\Omega^{(n)}$: contribution of order $(\delta M)^n$:

$$\Omega^{(0)} = -\frac{T}{V} \operatorname{Tr} \log S_0^{-1} + \frac{1}{V} \int_{V} d^3 x \frac{(M_0 - m)^2}{4G}$$
$$\Omega^{(1)} = \frac{T}{V} \operatorname{Tr} (S_0 \delta M) + \frac{M_0 - m}{2G} \frac{1}{V} \int_{V} d^3 x \, \delta M(\vec{x}) ,$$
$$\Omega^{(2)} = \frac{1}{2} \frac{T}{V} \operatorname{Tr} (S_0 \delta M)^2 + \frac{1}{4G} \frac{1}{V} \int_{V} d^3 x \, \delta M^2(\vec{x}) ,$$
$$\Omega^{(n)} = \frac{1}{n} \frac{T}{V} \operatorname{Tr} (S_0 \delta M)^n \quad \text{for } n \ge 3.$$

functional trace:

$$\mathbf{Tr} \left(S_0 \delta M\right)^n = 2N_c \int \prod_{i=1}^n d^4 x_i \operatorname{tr}_{\mathsf{D}} \left[S_0(x_n, x_1) \delta M(\vec{x}_1) S_0(x_1, x_2) \delta M(\vec{x}_2) \dots S_0(x_{n-1}, x_n) \delta M(\vec{x}_n)\right]$$

functional trace:

$$\mathbf{Tr} \left(S_0 \delta M\right)^n = 2N_c \int \prod_{i=1}^n d^4 x_i \operatorname{tr}_{\mathsf{D}} \left[S_0(x_n, x_1) \delta M(\vec{x}_1) S_0(x_1, x_2) \delta M(\vec{x}_2) \dots S_0(x_{n-1}, x_n) \delta M(\vec{x}_n)\right]$$

- ► gradient expansion: $\delta M(\vec{x}_i) = \delta M(\vec{x}_1) + \nabla M(\vec{x}_1) \cdot (\vec{x}_i \vec{x}_1) + ...$
 - $\Rightarrow \quad \Omega^{(n)} = \sum_{j=0}^{\infty} \Omega^{(n,j)} \ , \quad j = \text{number of gradients}$

functional trace:

$$\mathbf{Tr} \left(S_0 \delta M\right)^n = 2N_c \int \prod_{i=1}^n d^4 x_i \operatorname{tr}_{\mathsf{D}} \left[S_0(x_n, x_1) \delta M(\vec{x}_1) S_0(x_1, x_2) \delta M(\vec{x}_2) \dots S_0(x_{n-1}, x_n) \delta M(\vec{x}_n)\right]$$

► gradient expansion: $\delta M(\vec{x}_i) = \delta M(\vec{x}_1) + \nabla M(\vec{x}_1) \cdot (\vec{x}_i - \vec{x}_1) + \dots$

$$\Rightarrow \quad \Omega^{(n)} = \sum_{j=0}^{\infty} \Omega^{(n,j)} , \quad j = \text{number of gradients}$$

- ► final steps:
 - Insert momentum-space rep. of the free propagators S₀ and turn out all but one d⁴x_i integrals.
 - Compare results with GL expansion of Ω_{MF} to read off the GL coefficients.

Resulting coefficients:

$$\begin{split} \alpha_1 &= \frac{M_0 - m}{2G} + M_0 F_1 \,, \qquad \alpha_2 = \frac{1}{4G} + \frac{1}{2} F_1 + M_0^2 F_2 \,, \qquad \alpha_3 = M_0 \left(F_2 + \frac{4}{3} M_0^2 F_3 \right) \,, \\ \alpha_{4,a} &= \frac{1}{4} F_2 + 2M_0^2 F_3 + 2M_0^4 F_4 \,, \qquad \alpha_{4,b} = \frac{1}{4} F_2 + \frac{1}{3} M_0^2 F_3 \end{split}$$

•
$$F_n = 8N_c \int \frac{d^3p}{(2\pi)^3} T \sum_j \frac{1}{[(i\omega_j + \mu)^2 - \bar{p}^2 - M_0^2]^n}, \quad \omega_j = (2j+1)\pi T$$

Resulting coefficients:

$$\begin{split} \alpha_1 &= \frac{M_0 - m}{2G} + M_0 F_1 \,, \qquad \alpha_2 = \frac{1}{4G} + \frac{1}{2} F_1 + M_0^2 F_2 \,, \qquad \alpha_3 = M_0 \left(F_2 + \frac{4}{3} M_0^2 F_3 \right) \,, \\ \alpha_{4,a} &= \frac{1}{4} F_2 + 2M_0^2 F_3 + 2M_0^4 F_4 \,, \qquad \alpha_{4,b} = \frac{1}{4} F_2 + \frac{1}{3} M_0^2 F_3 \end{split}$$

•
$$F_n = 8N_c \int \frac{d^3p}{(2\pi)^3} T \sum_j \frac{1}{[(i\omega_j + \mu)^2 - \vec{p}^2 - M_0^2]^n}, \quad \omega_j = (2j+1)\pi T$$

- ► chiral limit:
 - $m = 0 \Rightarrow M_0 = 0$ solves gap equation $\alpha_1 = 0$
 - $M_0 = 0 \Rightarrow \alpha_3 = 0$ (no odd powers)
 - $M_0 = 0 \Rightarrow \alpha_{4,a} = \alpha_{4,b} \Rightarrow \text{TCP} = \text{LP}$ [Nickel, PRL (2009)]

Resulting coefficients:

$$\begin{split} \alpha_1 &= \frac{M_0 - m}{2G} + M_0 F_1 \,, \qquad \alpha_2 = \frac{1}{4G} + \frac{1}{2} F_1 + M_0^2 F_2 \,, \qquad \alpha_3 = M_0 \left(F_2 + \frac{4}{3} M_0^2 F_3 \right) \,, \\ \alpha_{4,a} &= \frac{1}{4} F_2 + 2M_0^2 F_3 + 2M_0^4 F_4 \,, \qquad \alpha_{4,b} = \frac{1}{4} F_2 + \frac{1}{3} M_0^2 F_3 \end{split}$$

•
$$F_n = 8N_c \int \frac{d^3p}{(2\pi)^3} T \sum_j \frac{1}{[(i\omega_j + \mu)^2 - \vec{p}^2 - M_0^2]^n}, \quad \omega_j = (2j+1)\pi T$$

towards the chiral limit:

►
$$M_0 \rightarrow 0 \Rightarrow \alpha_3, \alpha_{4ba}, \alpha_{4,b} \propto F_2 \Rightarrow \mathsf{CEP} \rightarrow \mathsf{TCP} = \mathsf{LP}$$

Resulting coefficients:

$$\begin{split} \alpha_1 &= \frac{M_0 - m}{2G} + M_0 F_1 \,, \qquad \alpha_2 = \frac{1}{4G} + \frac{1}{2} F_1 + M_0^2 F_2 \,, \qquad \alpha_3 = M_0 \left(F_2 + \frac{4}{3} M_0^2 F_3 \right) \,, \\ \alpha_{4,a} &= \frac{1}{4} F_2 + 2M_0^2 F_3 + 2M_0^4 F_4 \,, \qquad \alpha_{4,b} = \frac{1}{4} F_2 + \frac{1}{3} M_0^2 F_3 \end{split}$$

•
$$F_n = 8N_c \int \frac{d^3p}{(2\pi)^3} T \sum_j \frac{1}{[(i\omega_j + \mu)^2 - \vec{p}^2 - M_0^2]^n}, \quad \omega_j = (2j+1)\pi T$$

► away from the chiral limit:

•
$$M_0 \neq 0 \Rightarrow \alpha_3 = 4M_0\alpha_{4,b} \Rightarrow \mathsf{CEP} = \mathsf{PLP}$$

Resulting coefficients:

$$\begin{split} \alpha_1 &= \frac{M_0 - m}{2G} + M_0 F_1 \,, \qquad \alpha_2 = \frac{1}{4G} + \frac{1}{2} F_1 + M_0^2 F_2 \,, \qquad \alpha_3 = M_0 \left(F_2 + \frac{4}{3} M_0^2 F_3 \right) \,, \\ \alpha_{4,a} &= \frac{1}{4} F_2 + 2M_0^2 F_3 + 2M_0^4 F_4 \,, \qquad \alpha_{4,b} = \frac{1}{4} F_2 + \frac{1}{3} M_0^2 F_3 \end{split}$$

•
$$F_n = 8N_c \int \frac{d^3p}{(2\pi)^3} T \sum_j \frac{1}{[(\omega_j + \mu)^2 - \vec{p}^2 - M_0^2]^n}, \quad \omega_j = (2j+1)\pi T$$

- away from the chiral limit:
 - $M_0 \neq 0 \Rightarrow \alpha_3 = 4M_0\alpha_{4,b} \Rightarrow \text{CEP} = \text{PLP}$

The CEP coincides with the PLP!

Results:

• phase diagram for m = 10 MeV:

Results:

• phase diagram for m = 10 MeV:

dominant instability in the scalar channel

Results:

Including strange quarks

▶ 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP

- ▶ 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?

- ▶ 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies

[D. Müller et al. PLB (2013)]

- ▶ 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?

[D. Müller et al. PLB (2013)]

- ▶ 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?
- 3-flavor QCD with very small quark masses:
 - CEP reaches T-axis
 - $\stackrel{?}{\Rightarrow}$ PLP reaches *T*-axis
 - chance to study the inhomogeneous phase on the lattice!

[from de Forcrand et al., POSLAT 2007]

- ▶ 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?
- 3-flavor QCD with very small quark masses:
 - CEP reaches T-axis
 - $\stackrel{?}{\Rightarrow}$ PLP reaches *T*-axis
 - chance to study the inhomogeneous phase on the lattice!
- Here: Ginzburg-Landau study for 3-flavor NJL

[from de Forcrand et al., POSLAT 2007]

3-flavor NJL model

- Lagrangian: $\mathcal{L} = \bar{\psi}(i\partial \hat{m})\psi + \mathcal{L}_4 + \mathcal{L}_6$
 - Fields and bare masses: $\psi = (u, d, s)^T$, $\hat{m} = \text{diag}_f(0, 0, m_s)$
 - 4-point interaction: $\mathcal{L}_4 = G \sum_{a=0}^8 \left[(\bar{\psi} \tau_a \psi)^2 + (\bar{\psi} i \gamma_5 \tau_a \psi)^2 \right]$
 - 6-point ('t Hooft) interaction: $\mathcal{L}_6 = -K \left[\det_f \bar{\psi} (1 + \gamma_5) \psi + \det_f \bar{\psi} (1 \gamma_5) \psi \right]$
3-flavor NJL model

- ► Lagrangian: $\mathcal{L} = \bar{\psi}(i\partial \hat{m})\psi + \mathcal{L}_4 + \mathcal{L}_6$
 - Fields and bare masses: $\psi = (u, d, s)^T$, $\hat{m} = \text{diag}_f(0, 0, m_s)$
 - 4-point interaction: $\mathcal{L}_4 = G \sum_{a=0}^8 \left[(\bar{\psi}\tau_a \psi)^2 + (\bar{\psi}i\gamma_5\tau_a \psi)^2 \right]$
 - 6-point ('t Hooft) interaction: $\mathcal{L}_6 = -K \left[\det_f \bar{\psi} (1 + \gamma_5) \psi + \det_f \bar{\psi} (1 \gamma_5) \psi \right]$
- Mean fields:
 - ► light sector: $\langle \bar{u}u \rangle = \langle \bar{d}d \rangle \equiv \frac{S}{2}$, $\langle \bar{u}i\gamma_5 u \rangle = -\langle \bar{d}i\gamma_5 d \rangle \equiv \frac{P}{2}$ (⇒ $\langle \bar{\psi}_\ell \psi_\ell \rangle \equiv \langle \bar{u}u \rangle + \langle \bar{d}d \rangle = S$, $\langle \bar{\psi}_\ell i\gamma_5 \tau_3 \psi_\ell \rangle \equiv \langle \bar{u}i\gamma_5 u \rangle - \langle \bar{d}i\gamma_5 d \rangle = P$)
 - strange sector: $\langle \bar{s}s \rangle \equiv S_s$, $\langle \bar{s}i\gamma_5 s \rangle = 0$
 - no flavor-nondiagonal mean fields
 - ► allow for inhomogeneities: $S = S(\vec{x})$, $P = P(\vec{x})$, $S_s = S_s(\vec{x})$

Mean-field Thermodynamic Potential

- $\blacktriangleright \ \Omega_{MF}(T,\mu) = \frac{\tau}{V} \text{Tr} \log \left(i\partial \!\!\!/ \!\!/ + \mu \gamma^0 \hat{M} \right) + \frac{1}{V} \int d^3x \, \mathcal{V}(\vec{x})$
 - dressed "masses": $\hat{M}_{u,d}(\vec{x}) = -(2G KS_s(\vec{x}))(S(\vec{x}) \pm i\gamma_5 P(\vec{x}))$

$$\hat{M}_{s}(\vec{x}) = m_{s} - 4GS_{s}(\vec{x}) + \frac{1}{2}K(S^{2}(\vec{x}) + P^{2}(\vec{x}))$$

• "potential field": $\mathcal{V}(\vec{x}) = G(S^2(\vec{x}) + P^2(\vec{x}) + 2S_s(\vec{x})) - KS_s(\vec{x})(S^2(\vec{x}) + P^2(\vec{x}))$

Mean-field Thermodynamic Potential

- $\blacktriangleright \ \Omega_{MF}(T,\mu) = -\frac{T}{V} \text{Tr} \log \left(i\partial \!\!\!/ \!\!/ + \mu \gamma^0 \hat{M} \right) + \frac{1}{V} \int d^3x \, \mathcal{V}(\vec{x})$
 - dressed "masses": $\hat{M}_{u,d}(\vec{x}) = -(2G KS_s(\vec{x}))(S(\vec{x}) \pm i\gamma_5 P(\vec{x}))$

$$\hat{M}_s(\vec{x}) = m_s - 4GS_s(\vec{x}) + \frac{1}{2}K\left(S^2(\vec{x}) + P^2(\vec{x})\right)$$

- "potential field": $\mathcal{V}(\vec{x}) = G(S^2(\vec{x}) + P^2(\vec{x}) + 2S_s(\vec{x})) KS_s(\vec{x})(S^2(\vec{x}) + P^2(\vec{x}))$
- ► K = 0: light and strange sectors decouple! $\hat{M}_{u,d} = -2G(S \pm i\gamma_5 P), \quad \hat{M}_s(\vec{x}) = m_s - 4GS_s; \qquad \mathcal{V} = G(S^2 + P^2) + 2GS_s$

Mean-field Thermodynamic Potential

- $\blacktriangleright \ \Omega_{MF}(T,\mu) = -\frac{T}{V} \text{Tr} \log \left(i\partial \!\!\!/ + \mu \gamma^0 \hat{M} \right) + \frac{1}{V} \int d^3x \, \mathcal{V}(\vec{x})$
 - dressed "masses": $\hat{M}_{u,d}(\vec{x}) = -(2G KS_s(\vec{x}))(S(\vec{x}) \pm i\gamma_5 P(\vec{x}))$

$$\hat{M}_s(\vec{x}) = m_s - 4GS_s(\vec{x}) + \frac{1}{2}K\left(S^2(\vec{x}) + P^2(\vec{x})\right)$$

- "potential field": $\mathcal{V}(\vec{x}) = G(S^2(\vec{x}) + P^2(\vec{x}) + 2S_s(\vec{x})) KS_s(\vec{x})(S^2(\vec{x}) + P^2(\vec{x}))$
- ► K = 0: light and strange sectors decouple! $\hat{M}_{u,d} = -2G(S \pm i\gamma_5 P), \quad \hat{M}_s(\vec{x}) = m_s - 4GS_s; \qquad \mathcal{V} = G(S^2 + P^2) + 2GS_s$
- Chiral density wave ansatz for the light sector:

$$\begin{split} S(\vec{x}) &= \phi_0 \cos(\vec{q} \cdot \vec{x}), \quad P(\vec{x}) = \phi_0 \sin(\vec{q} \cdot \vec{x}), \quad S_s = \phi_s = const. \\ \Rightarrow \quad \hat{M}_{u,d} &= \Delta e^{\pm i \gamma_5 \vec{q} \cdot \vec{x}}, \quad \Delta \equiv -(2G - K\phi_s)\phi_0, \\ M_s &= const., \quad \mathcal{V} = const. \end{split}$$

consistent with the literature [Moreira et al., PRD (2014)]

Ginzburg-Landau expansion

- ▶ Difficulty at $m_s \neq 0$: No $SU(3)_L \times SU(3)_R$ restored solution
- $\blacktriangleright m_u = m_d = 0$
 - \Rightarrow Expand about two-flavor restored solution S = P = 0:

$$\Omega_{MF}[S, P, S_s] = \Omega_{MF}[0, 0, S_s^{(0)}] + \frac{1}{V} \int d^3x \ \Omega_{GL}[S(\vec{x}), P(\vec{x}), X(\vec{x})]$$

- ► strange condensate: $S_s(\vec{x}) = S_S^{(0)} + X(\vec{x})$
- ▶ $S_S^{(0)}$: homogeneous solution of the gap equation for S = P = 0 at given T and μ
- Expand Ω_{GL} in *S*, *P* and *X*, and their gradients.

• Define: $\Delta_{\ell} = -2G(S + iP), \quad \Delta_s = -4GX$

 $[\Delta_i] = (\text{mass}) \rightarrow \text{counting scheme: } \mathcal{O}(\vec{\nabla}) = \mathcal{O}(\Delta_i)$

• Define: $\Delta_{\ell} = -2G(S + iP), \quad \Delta_s = -4GX$

 $[\Delta_i] = (\text{mass}) \rightarrow \text{counting scheme: } \mathcal{O}(\vec{\nabla}) = \mathcal{O}(\Delta_i)$

Resulting structure:

$$\begin{split} \Omega_{GL} &= a_2 |\Delta_{\ell}|^2 + a_{4,a} |\Delta_{\ell}|^4 + a_{4,b} |\vec{\nabla} \Delta_{\ell}|^2 \\ &+ b_1 \Delta_s + b_2 \Delta_s^2 + b_3 \Delta_s^3 + b_{4,a} \Delta_s^4 + b_{4,b} (\vec{\nabla} \Delta_s)^2 \\ &+ c_3 |\Delta_{\ell}|^2 \Delta_s + c_4 |\vec{\nabla} \Delta_{\ell}|^2 (\vec{\nabla} \Delta_s)^2 &+ \mathcal{O}(\Delta_i^5) \end{split}$$

• Define: $\Delta_{\ell} = -2G(S + iP), \quad \Delta_s = -4GX$

 $[\Delta_i] = (\text{mass}) \rightarrow \text{counting scheme: } \mathcal{O}(\vec{\nabla}) = \mathcal{O}(\Delta_i)$

Resulting structure:

$$\begin{split} \Omega_{GL} &= a_2 |\Delta_{\ell}|^2 + a_{4,a} |\Delta_{\ell}|^4 + a_{4,b} |\vec{\nabla} \Delta_{\ell}|^2 \\ &+ b_1 \Delta_s + b_2 \Delta_s^2 + b_3 \Delta_s^3 + b_{4,a} \Delta_s^4 + b_{4,b} (\vec{\nabla} \Delta_s)^2 \\ &+ c_3 |\Delta_{\ell}|^2 \Delta_s + c_4 |\vec{\nabla} \Delta_{\ell}|^2 (\vec{\nabla} \Delta_s)^2 &+ \mathcal{O}(\Delta_i^5) \end{split}$$

► Stationarity condition: $\frac{\partial \Omega_{GL}}{\partial \Delta_s}|_{\Delta_\ell = \Delta_s = 0} = 0 \quad \Leftrightarrow \quad b_1 = 0$

• Define: $\Delta_{\ell} = -2G(S + iP), \quad \Delta_s = -4GX$

 $[\Delta_i] = (\text{mass}) \rightarrow \text{counting scheme: } \mathcal{O}(\vec{\nabla}) = \mathcal{O}(\Delta_i)$

Resulting structure:

$$\begin{split} \Omega_{GL} &= a_2 |\Delta_{\ell}|^2 + a_{4,a} |\Delta_{\ell}|^4 + a_{4,b} |\vec{\nabla} \Delta_{\ell}|^2 \\ &+ b_2 \Delta_s^2 + b_3 \Delta_s^3 + b_{4,a} \Delta_s^4 + b_{4,b} (\vec{\nabla} \Delta_s)^2 \\ &+ c_3 |\Delta_{\ell}|^2 \Delta_s + c_4 |\vec{\nabla} \Delta_{\ell}|^2 (\vec{\nabla} \Delta_s)^2 + \mathcal{O}(\Delta_i^5) \end{split}$$

► Stationarity condition: $\frac{\partial \Omega_{GL}}{\partial \Delta_s}|_{\Delta_\ell = \Delta_s = 0} = 0 \quad \Leftrightarrow \quad b_1 = 0$

• Define: $\Delta_{\ell} = -2G(S + iP), \quad \Delta_s = -4GX$

 $[\Delta_i] = (\text{mass}) \rightarrow \text{counting scheme: } \mathcal{O}(\vec{\nabla}) = \mathcal{O}(\Delta_i)$

Resulting structure:

$$\begin{split} \Omega_{GL} &= a_2 |\Delta_\ell|^2 + a_{4,a} |\Delta_\ell|^4 + a_{4,b} |\vec{\nabla} \Delta_\ell|^2 \\ &+ b_2 \Delta_s^2 + b_3 \Delta_s^3 + b_{4,a} \Delta_s^4 + b_{4,b} (\vec{\nabla} \Delta_s)^2 \\ &+ c_3 |\Delta_\ell|^2 \Delta_s + c_4 |\vec{\nabla} \Delta_\ell|^2 (\vec{\nabla} \Delta_s)^2 + \mathcal{O}(\Delta_i^5) \end{split}$$

► Stationarity condition: $\frac{\partial \Omega_{GL}}{\partial \Delta_s}|_{\Delta_\ell = \Delta_s = 0} = 0 \quad \Leftrightarrow \quad b_1 = 0$

$$\Rightarrow \quad M_s^{(0)} = m_s - 16N_c \, G \, T \sum_n \int \frac{d^3 p}{(2\pi)^3} \, \frac{M_s^{(0)}}{(i\omega_n + \mu)^2 - \vec{p}^2 - M_s^{(0)/2}}$$

(= gap equation for $M_s^{(0)} \equiv \hat{M}_s|_{S=P=X=0} = m_s - 4GS_S^{(0)}$)

- Extremizing Ω_{MF} w.r.t. $\Delta_s(\vec{x})$
 - \rightarrow Euler-Lagrange equation $\frac{\partial \Omega_{GL}}{\partial \Delta_s} \partial_i \frac{\partial \Omega_{GL}}{\partial \partial_i \Delta_s} = 0$

$$\Leftrightarrow \quad \Delta_s = - \tfrac{c_3}{2b_2} |\Delta_\ell|^2 + \mathcal{O}(|\Delta_\ell|^4)$$

- Extremizing Ω_{MF} w.r.t. $\Delta_s(\vec{x})$
 - \rightarrow Euler-Lagrange equation $\frac{\partial \Omega_{GL}}{\partial \Delta_s} \partial_i \frac{\partial \Omega_{GL}}{\partial \partial_i \Delta_s} = 0$

$$\Leftrightarrow \quad \Delta_{s} = -\frac{c_{3}}{2b_{2}} |\Delta_{\ell}|^{2} + \mathcal{O}(|\Delta_{\ell}|^{4})$$

Insert into Ω_{GL}:

$$\Omega_{GL} = a_2 |\Delta_{\ell}|^2 + \left(a_{4,a} - \frac{c_3^2}{4b_2}\right) |\Delta_{\ell}|^4 + a_{4,b} |\vec{\nabla}\Delta_{\ell}|^2 + \mathcal{O}(\Delta_{\ell}^6)$$

- Extremizing Ω_{MF} w.r.t. $\Delta_s(\vec{x})$
 - \rightarrow Euler-Lagrange equation $\frac{\partial \Omega_{GL}}{\partial \Delta_s} \partial_i \frac{\partial \Omega_{GL}}{\partial \partial_i \Delta_s} = 0$

$$\Leftrightarrow \quad \Delta_{s} = -\frac{c_{3}}{2b_{2}} |\Delta_{\ell}|^{2} + \mathcal{O}(|\Delta_{\ell}|^{4})$$

Insert into Ω_{GL}:

$$\Omega_{GL} = a_2 |\Delta_\ell|^2 + (a_{4,a} - \frac{c_3^2}{4b_2}) |\Delta_\ell|^4 + a_{4,b} |\vec{\nabla}\Delta_\ell|^2 + \mathcal{O}(\Delta_\ell^6)$$

Critical and Lifshitz points:

• CP:
$$a_2 = a_{4,a} - \frac{c_3^2}{4b_2} = 0$$

- Extremizing Ω_{MF} w.r.t. $\Delta_s(\vec{x})$
 - \rightarrow Euler-Lagrange equation $\frac{\partial \Omega_{GL}}{\partial \Delta_s} \partial_i \frac{\partial \Omega_{GL}}{\partial \partial_i \Delta_s} = 0$

$$\Leftrightarrow \quad \Delta_{s} = -\frac{c_{3}}{2b_{2}} |\Delta_{\ell}|^{2} + \mathcal{O}(|\Delta_{\ell}|^{4})$$

Insert into Ω_{GL}:

$$\Omega_{GL} = a_2 |\Delta_\ell|^2 + (a_{4,a} - \frac{c_3^2}{4b_2}) |\Delta_\ell|^4 + a_{4,b} |\vec{\nabla}\Delta_\ell|^2 + \mathcal{O}(\Delta_\ell^6)$$

Critical and Lifshitz points:

• CP:
$$a_2 = a_{4,a} - \frac{c_3^2}{4b_2} = 0$$

► LP: *a*₂ = *a*_{4,b} = 0

CP and LP don't coincide anymore!

Relevant GL coefficients (no guarantee yet!):

$$\begin{aligned} a_{2} &= \frac{1}{4G} (1+2\delta) + (1+\delta)^{2} \ 4N_{c} \ \frac{1}{V_{4}} \sum \frac{1}{\rho^{2}} + \frac{K}{2G^{2}} \ N_{c} \frac{1}{V_{4}} \sum \frac{M_{s}^{(0)}}{\rho^{2} - M_{s}^{(0)/2}} \\ a_{4,a} &= (1+\delta)^{4} \ 2N_{c} \ \frac{1}{V_{4}} \sum \frac{1}{\rho^{4}} + \frac{K^{2}}{32G^{4}} \ N_{c} \frac{1}{V_{4}} \sum \frac{\rho^{2} + M_{s}^{(0)/2}}{\left[\rho^{2} - M_{s}^{(0)/2}\right]^{2}} \\ a_{4,b} &= (1+\delta)^{2} \ 2N_{c} \ \frac{1}{V_{4}} \sum \frac{1}{\rho^{4}} \\ c_{3} &= \frac{K}{2G^{2}} \left[\frac{1}{8G} + (1+\delta) \ 2N_{c} \ \frac{1}{V_{4}} \sum \frac{1}{\rho^{2}} + N_{c} \frac{1}{V_{4}} \sum \frac{\rho^{2} + M_{s}^{(0)/2}}{\left[\rho^{2} - M_{s}^{(0)/2}\right]^{2}} \right] \\ & \flat \text{ abbreviations:} \quad \delta \equiv -\frac{K}{2G} S_{s}^{(0)}, \qquad \frac{1}{V_{4}} \sum \equiv T \sum_{n} \int \frac{d^{3}\rho}{(2\pi)^{3}} \end{aligned}$$

Relevant GL coefficients (no guarantee yet!):

Interesting limits:

•
$$K = 0 \Rightarrow \delta = 0 \Rightarrow CP=LP$$

Relevant GL coefficients (no guarantee yet!):

$$\begin{aligned} a_{2} &= \frac{1}{4G} (1+2\delta) + (1+\delta)^{2} \ 4N_{c} \ \frac{1}{V_{4}} \sum \frac{1}{p^{2}} + \frac{K}{2G^{2}} \ N_{c} \frac{1}{V_{4}} \sum \frac{M_{s}^{(0)}}{p^{2} - M_{s}^{(0)}{}^{2}} \\ a_{4,a} &= (1+\delta)^{4} \ 2N_{c} \ \frac{1}{V_{4}} \sum \frac{1}{p^{4}} + \frac{K^{2}}{32G^{4}} \ N_{c} \frac{1}{V_{4}} \sum \frac{p^{2} + M_{s}^{(0)}{}^{2}}{\left[p^{2} - M_{s}^{(0)}{}^{2}\right]^{2}} \\ a_{4,b} &= (1+\delta)^{2} \ 2N_{c} \ \frac{1}{V_{4}} \sum \frac{1}{p^{4}} \\ c_{3} &= \frac{K}{2G^{2}} \left[\frac{1}{8G} + (1+\delta) \ 2N_{c} \ \frac{1}{V_{4}} \sum \frac{1}{p^{2}} + N_{c} \frac{1}{V_{4}} \sum \frac{p^{2} + M_{s}^{(0)}{}^{2}}{\left[p^{2} - M_{s}^{(0)}{}^{2}\right]^{2}} \right] \\ & \bullet \ \text{abbreviations:} \quad \delta \equiv -\frac{K}{2G} S_{s}^{(0)}, \qquad \frac{1}{V_{4}} \sum \equiv T \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} \end{aligned}$$

Interesting limits:

•
$$K = 0 \Rightarrow \delta = 0 \Rightarrow CP=LP$$

 $\blacktriangleright \ m_s \rightarrow 0 \ \Rightarrow \ M_s^{(0)}, S_s^{(0)}, \delta \rightarrow 0 \ \Rightarrow \ \mathsf{LP} \rightarrow \mathsf{LP}(\mathsf{K=0}) \neq \mathsf{CP}$

Relevant GL coefficients (no guarantee yet!):

Interesting limits:

•
$$K = 0 \Rightarrow \delta = 0 \Rightarrow CP=LP$$

- $\blacktriangleright \ m_s \rightarrow 0 \ \Rightarrow \ M_s^{(0)}, S_s^{(0)}, \delta \rightarrow 0 \ \Rightarrow \ \mathsf{LP} \rightarrow \mathsf{LP}(\mathsf{K=0}) \neq \mathsf{CP}$
- Numerical survey of the general case still to be done.

Conclusions

- Ginzburg-Landau analysis of the effect of bare quark masses and strange quarks the inhomogeneous chiral phase in the NJL model
- ► nonzero *m*_{*u*,*d*}:
 - PLP coincides with CEP
 - dominant instability towards inhomogeneities in the scalar channel
 - numerical result: inhomogeneous phase survives large (higher than physical) quark masses
- strange quarks:
 - CP and LP no longer agree as a consequence of the axial anomaly
 - detailed numerical study to be done
- studies in the QM model underway
- ► QCD?