Towards a first-principles QCD phase diagram

Anton Konrad Cyrol

Ruprecht-Karls-Universität Heidelberg

Towards a first-principles QCD phase diagram

Anton Konrad Cyrol

Ruprecht-Karls-Universität Heidelberg

Idea:

- Compute phase diagram with function methods (DSE/FRG)
- This talk: FRG

Challenges:

- Qualitative understanding
- Quantitative precision

fQCD-collaboration:

 Braun, Corell, AKC, Fu, Leonhardt, Mitter, Pawlowski, Pospiech, Rennecke, Schneider, Wink, ...

Where are we?

DSE & model results

- Critical endpoint (CEP) found in (quark meson) models
- Also found in DSE calculations:

cf. also Braun, Contant, Eichmann, Fister, Huber, Leonhardt, Pawlowski, Pospiech, Rennecke, Schaefer, Smekal, Williams, ...

Outline of this talk:

- 1. FRG & QCD introduction basics, short & quick
- Yang-Mills → remember my talk from Nov. 16 AKC, Fister, Mitter, Pawlowski, Strodthoff; 1605.01856
- 3. Reconstructing the gluon AKC, Pawlowski, Rothkopf, Wink; 1804.0094
- 4. Two-Flavor QCD

AKC, Mitter, Pawlowski, Strodthoff; 1706.06326

5. Yang-Mills at finite temperature AKC, Mitter, Pawlowski, Strodthoff; 1708.03482

Where are we?

DSE & model results

- Critical endpoint (CEP) found in (quark meson) models
- Also found in DSE calculations:

cf. also Braun, Contant, Eichmann, Fister, Huber, Leonhardt, Pawlowski, Pospiech, Rennecke, Schaefer, Smekal, Williams, ...

Outline of this talk:

- 1. FRG & QCD introduction basics, short & quick
- Yang-Mills → remember my talk from Nov. 16 AKC, Fister, Mitter, Pawlowski, Strodthoff; 1605.01856
- 3. Reconstructing the gluon AKC, Pawlowski, Rothkopf, Wink; 1804.00945
- 4. Two-Flavor QCD

AKC, Mitter, Pawlowski, Strodthoff; 1706.06326

5. Yang-Mills at finite temperature

AKC, Mitter, Pawlowski, Strodthoff; 1708.03482

QCD from the functional renormaliztion group

- Exact equation
- ∂_t : integration of momentum shells controlled by regulator
- Full field-dependent equation with $G = (\Gamma^{(2)}[\Phi] + R)^{-1}$ on rhs
- Only fundamental QCD parameters needed:
 - $\alpha_{S}(\mu = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\mu = \mathcal{O}(10) \text{ GeV})$

QCD from the functional renormaliztion group

- Exact equation
- ∂_t : integration of momentum shells controlled by regulator
- Full field-dependent equation with $G = (\Gamma^{(2)}[\Phi] + R)^{-1}$ on rhs
- Only fundamental QCD parameters needed:
 - $\alpha_S(\mu = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\mu = \mathcal{O}(10) \text{ GeV})$

QCD from the functional renormaliztion group

- Exact equation
- ∂_t : integration of momentum shells controlled by regulator
- Full field-dependent equation with $G = (\Gamma^{(2)}[\Phi] + R)^{-1}$ on rhs
- Only fundamental QCD parameters needed:

•
$$\alpha_{S}(\mu = \mathcal{O}(10) \text{ GeV})$$

• $m_q(\mu = \mathcal{O}(10) \text{ GeV})$

Vertex expansion

• Approximation necessary - vertex expansion:

$$\Gamma[\Phi] = \sum_n \int_{\rho_1,\ldots,\rho_{n-1}} \Gamma^{(n)}_{\Phi_1\cdots\Phi_n}(\rho_1,\ldots,\rho_{n-1}) \Phi^1(\rho_1)\cdots\Phi^n(-\rho_1-\cdots-\rho_{n-1})$$

- Wanted: "apparent convergence" of $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$
- Current state-of-the-start truncation in pure Yang-Mills:

• Functional derivatives of $\Gamma_k[\Phi]$ with respect to fields yield equations

Truncation – closed set of equations

Running couplings (scaling solution)

AKC, Fister, Mitter, Pawlowski, Strodthoff, Phys. Rev. D 94 (2016) 054005

AKC (U Heidelberg)

Gluon propagator dressing

AKC, Fister, Mitter, Pawlowski, Strodthoff, 1605.01856; Lattice: Sternbeck et al., hep-lat/0610053

Reconstructing spectral functions [AKC, Pawlowski, Rothkopf, Wink; 1804.00945]

Källén–Lehmann representation

Analytic Continuation

$$G(p_0) = \int_0^\infty \frac{\mathrm{d}\lambda}{\pi} \frac{\lambda}{\lambda^2 + p_0^2} \,\rho(\lambda)$$

 $\rho(\omega) = 2 \operatorname{Im} G(-i(\omega + i0^+))$

Reconstructing spectral functions [AKC, Pawlowski, Rothkopf, Wink; 1804.00945]

Källén–Lehmann representation

$$G(p_0) = \int_0^\infty \frac{\mathrm{d}\lambda}{\pi} \frac{\lambda}{\lambda^2 + p_0^2} \rho(\lambda)$$

Take derivative and identify δ function:

$$\partial_{p_0} G(p_0) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\lambda}{\pi} \frac{-\lambda p_0}{(\lambda^2 + p_0^2)^2} \rho(\lambda$$
$$\delta'_{\epsilon}(x) = \lim_{\varepsilon \to 0} \frac{2}{\pi} \frac{-x \varepsilon}{(x^2 + \varepsilon^2)^2}$$

Analytic Continuation

$$\rho(\omega) = 2 \operatorname{Im} G(-i(\omega + i0^+))$$

Reconstructing spectral functions [AKC, Pawlowski, Rothkopf, Wink; 1804.00945]

Källén–Lehmann representation

$$G(p_0) = \int_0^\infty \frac{\mathrm{d}\lambda}{\pi} \frac{\lambda}{\lambda^2 + p_0^2} \rho(\lambda)$$

Take derivative and identify δ function:

$$\partial_{p_0} G(p_0) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\lambda}{\pi} \frac{-\lambda p_0}{(\lambda^2 + p_0^2)^2} \rho(\lambda)$$

 $\delta'_{\epsilon}(x) = \lim_{\varepsilon \to 0} \frac{2}{\pi} \frac{-x \varepsilon}{(x^2 + \varepsilon^2)^2}$

Obtain a simple, very general relation:

$$\lim_{p_0\to 0^+}\partial_{p_0}G(p_0)=-\frac{1}{2}\lim_{\omega\to 0^+}\partial_{\omega}\rho(\omega)$$

Analytic Continuation

$$\rho(\omega) = 2 \operatorname{Im} G(-i(\omega + i0^+))$$

Reconstructing spectral functions

Källén–Lehmann representation

$$G(p_0) = \int_0^\infty \frac{\mathrm{d}\lambda}{\pi} \frac{\lambda}{\lambda^2 + p_0^2} \rho(\lambda)$$

Take derivative and identify δ function:

$$\partial_{p_0} G(p_0) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\lambda}{\pi} \frac{-\lambda p_0}{(\lambda^2 + p_0^2)^2} \rho(\lambda)$$

 $\delta'_{\epsilon}(x) = \lim_{\varepsilon \to 0} \frac{2}{\pi} \frac{-x \varepsilon}{(x^2 + \varepsilon^2)^2}$

Obtain a simple, very general relation:

$$\lim_{p_0\to 0^+}\partial_{p_0}G(p_0)=-\frac{1}{2}\lim_{\omega\to 0^+}\partial_{\omega}\rho(\omega)$$

[AKC, Pawlowski, Rothkopf, Wink; 1804.00945]

Analytic Continuation

$$\rho(\omega) = 2 \operatorname{Im} G(-i(\omega + i0^+))$$

Analytic Structure

The gluon spectral function

[AKC, Pawlowski, Rothkopf, Wink; 1804.00945]

- Exploit analytic structure in fit ansatz for the propagator
- Use analytically known IR & UV asymptotics

The gluon spectral function

[AKC, Pawlowski, Rothkopf, Wink; 1804.00945]

- Exploit analytic structure in fit ansatz for the propagator
- Use analytically known IR & UV asymptotics

Our result for the gluon spectral function

The gluon spectral function

[AKC, Pawlowski, Rothkopf, Wink; 1804.00945]

- Exploit analytic structure in fit ansatz for the propagator
- Use analytically known IR & UV asymptotics

Our result for the gluon spectral function

cf. talk by Nicolas Wink next week

Unquenched two-flavor QCD [AKC, Mitter, Pawlowski, Strodthoff, Phys. Rev. D 97, 2018]

Running couplings in QCD

[AKC, Mitter, Pawlowski, Strodthoff, Phys. Rev. D 97, 2018]

AKC (U Heidelberg)

running couplings

Unquenched quark propagator [AKC, Mitter, Pawlowski, Strodthoff, Phys. Rev. D 97, 2018]

lattice data: Orlando Oliveira, Kızılersu, Silva, Skullerud, Sternbeck, Williams, arXiv:1605.09632 [hep-lat]

Unquenched gluon propagator [AKC, Mitter, Pawlowski, Strodthoff, Phys. Rev. D 97, 2018]

lattice data: Sternbeck, Maltman, Muller-Preussker, von Smekal, arXiv:1212.2039 [hep-lat]

AKC (U Heidelberg)

Introduction

Introducing finite temperature: $\int \frac{d^4p}{(2\pi)^4} \to T \sum_{\omega_n} \int \frac{d^3p}{(2\pi)^3}$

Splitting of magnetic and electric componentes necessary!

Introducing finite temperature:

$$\int \frac{\mathrm{d}^4 p}{(2\pi)^4}
ightarrow T \sum_{\omega_n} \int \frac{\mathrm{d}^3 p}{(2\pi)^3}$$

FormTracer can do that! $P_{\mu\nu}^{\mathsf{L}}(p) = \frac{p_{\mu}p_{\nu}}{p^{2}} \qquad P_{\mu\nu}^{\mathsf{T}}(p) = \delta_{\mu\nu} - P_{\mu\nu}^{\mathsf{L}}(p)$ $P_{\mu\nu}^{M}(\rho) = (1 - \delta_{0\mu})(1 - \delta_{0\nu}) \left(\delta_{\mu\nu} - \frac{\rho_{\mu}\rho_{\nu}}{\pi^{2}}\right) \qquad P_{\mu\nu}^{E}(\rho) = \left(\delta_{\mu\nu} - \frac{\rho_{\mu}\rho_{\nu}}{\pi^{2}}\right) - P_{\mu\nu}^{M}(\rho)$ $\lambda^{\mathrm{M}}_{\bar{c}cA}(\bar{p})$ $\lambda_{A^3}^{\mathrm{M}}(\bar{p})$ $\lambda_{A^4}^{\mathrm{M}}(\bar{p})$ $1/Z_c(\bar{p})$ 00000000 00000000 $\lambda^{\rm E}_{{}^{A4}}(\bar{p})$ $\lambda_{A^3}^{\rm E}(\bar{p})$ $1/Z_A^{\mathrm{M}}(\bar{p})$ $1/Z_{A}^{E}(\bar{p})$

Other zeroth mode classical tensor structures are degenerate.

QCD from the FRG

Gluon propagator at finite temperature

AKC, Mitter, Pawlowski, Strodthoff, Phys. Rev. D 97 (2018) 054015

AKC (U Heidelberg)

Propagators

Screening/Debye mass at low temperatures

$$G_T^{\mathsf{E}}(x) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\,p}{2\pi} \; G_T^{\mathsf{E}}(p) \; e^{\mathrm{i}\,p\,x}$$

$$\lim_{x\to\infty} G_T^{\mathsf{E}}(x) = c_e \exp\left(-\mathbf{m}_{\mathsf{s}} x\right)$$

Screening/Debye mass compared to perturbation theory

$$m_D^0 = \sqrt{\frac{N}{3}}gT; \qquad m_D = m_D^0 + \left(c_D + \frac{N}{4\pi}\ln\left(\frac{m_D^0}{g^2T}\right)\right)g^2T + \mathcal{O}(g^3T)$$

Ghost dressings

Ghost Propagator

Ghost-gluon Vertex

AKC, Mitter, Pawlowski, Strodthoff, Phys. Rev. D 97 (2018) 054015

AKC (U Heidelberg)

Vertices

Three-gluon vertex dressings

AKC, Mitter, Pawlowski, Strodthoff, Phys. Rev. D 97 (2018) 054015

AKC (U Heidelberg)

Three-gluon Vertex Zero Crossing

Ghost dominance is weakened at finite temperature, but the ghost still dominate the deep infrared, as expected from analytical arguments!

AKC, Mitter, Pawlowski, Strodthoff, Phys. Rev. D 97 (2018) 054015

AKC (U Heidelberg)

Vertices

Four-gluon vertex dressings

AKC, Mitter, Pawlowski, Strodthoff, Phys. Rev. D 97 (2018) 054015

AKC (U Heidelberg)

Background field $\langle A_0 \rangle$ and glue potential $V(\phi_3, \phi_8)$

Images stolen from Herbst, Luecker, Pawlowski, arXiv:1510.03830 [hep-ph]

Order Parameters

Background Propagators:

Order Parameters

Background Propagators:

- distinguished color direction
- work in Cartan-Weyl basis
- . . .
- ... many more components
- . . .
- ... non-zero Matsubaras wanted

• ...

- ... longer equations
- . . .
- work in progress ... stay tuned!

Magnetic gluon propagator dressing

Lattice: Maas, Pawlowski, Smekal, Spielmann, 2011

AKC (U Heidelberg)

Electric gluon propagator dressing

Lattice: Maas, Pawlowski, Smekal, Spielmann, 2011

AKC (U Heidelberg)

Conclusion

- Gluon spectral function obtained from Euclidean propagator!
- FRG first principal approach to QCD
- Much progress, but still not enough!
- Promising results for T > 0 and the unquenched system.

Outlook

- Background fields \Rightarrow this year
- Transport coefficients \Rightarrow this year
- YM trace anomaly, pressure & EoS \Rightarrow this year?
- Critical endpoint from the FRG \Rightarrow as soon as possible

Thank you for your attention!

AKC (U Heidelberg)

Conclusion

- Gluon spectral function obtained from Euclidean propagator!
- FRG first principal approach to QCD
- Much progress, but still not enough!
- Promising results for T > 0 and the unquenched system.

Outlook

- Background fields \Rightarrow this year
- Transport coefficients \Rightarrow this year
- YM trace anomaly, pressure & EoS \Rightarrow this year?
- Critical endpoint from the FRG \Rightarrow as soon as possible

Thank you for your attention!

Conclusion

- Gluon spectral function obtained from Euclidean propagator!
- FRG first principal approach to QCD
- Much progress, but still not enough!
- Promising results for T > 0 and the unquenched system.

Outlook

- Background fields \Rightarrow this year
- Transport coefficients \Rightarrow this year
- YM trace anomaly, pressure & EoS \Rightarrow this year?
- Critical endpoint from the FRG \Rightarrow as soon as possible

Thank you for your attention!

FormTracer – Mathematica tracing package using FORM

- Mathematica: very powerful, flexible and convenient
- FORM: very fast and efficient

FormTracer uses FORM while it keeps the usability of Mathematica:

- Lorentz/Dirac traces in arbitrary dimensions
- Arbitrary number of group product spaces
- Intuitive, easy-to-use and highly customizable Mathematica frontend
- Support for finite temperature/density applications
- Support for FORM's optimization algorithm
- Convenient installation and update procedure within Mathematica:

Preprint: AKC, Mitter, Strodthoff; arXiv:1610.09331 [hep-ph] Open source: https://github.com/FormTracer/FormTracer

FormTracer – installation and usage

FormTracer.nb - Wolfram Mathematica 11.0		×
ile Edit Insert Format Cell Graphics Evaluation Palettes Window Help		
Installing]
<pre>Import["https://raw.githubusercontent.com/FormTracer/FormTracer/master/src/FormTracerInstaller</pre>	.m"]	
Tracing		
Space-Time		
Define syntax for space-time		
<pre>DefineLorentzTensors[&[µ, v] (*Kronecker delta*), vec[p, µ] (*vector*), p.q(*inner product*)];</pre>		
Take traces:		
FormTrace[vec[p + 2 r, μ] δ[μ, ν] vec[s, ν]] FormTrace[δ[α, ν] (δ[ν, ρ] + δ[ν, ρ] δ[σ, σ]) δ[ρ, α]] FormTrace[δ[1, ν] vec[s, ν]]		
s. (p + 2 r)		
20		
vec[s, 1]		111 .

AKC, Mitter, Strodthoff; arXiv:1610.09331 [hep-ph]

Unquenched quark-gluon vertex [AKC, Mitter, Pawlowski, Strodthoff, in preparation]

Gluon propagator dressing

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016; Lattice: Sternbeck et al. 2006

Gluon propagator

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016; Lattice: Sternbeck et al. 2006

Ghost propagator dressing

AKC (U Heidelberg)

 $\beta = \frac{\mu^2}{4\pi} \frac{\mathrm{d}\,\alpha}{\mathrm{d}\,\mu^2}$ Functions – Scaling

 $\beta = \frac{\mu^2}{4\pi} \frac{\mathrm{d}\,\alpha}{\mathrm{d}\,\mu^2}$ Functions – Decoupling

α

$\beta = \frac{\mu^2}{4\pi} \frac{\mathrm{d}\,\alpha}{\mathrm{d}\,\mu^2}$ Functions at Small Couplings

α

Regulator breaks BRST symmetry

- \bullet Breaking BRST symmetry \rightarrow modified STIs
- mSTIs reduce to STIs at k = 0
- \implies solve mSTIs to get initial action at $k = \Lambda$
- More practical solution: choose $\Gamma_{\Lambda} \approx S$ such that STIs are fulfilled k = 0

STIS mSTIS
$$k \rightarrow 0$$

$$\alpha_{A\bar{c}c}(p) = \frac{\alpha(\mu)}{4\pi} \frac{Z_{A\bar{c}c}^2(p)}{Z_A(p) Z_c^2(p)}$$
$$\alpha_{A^3}(p) = \frac{\alpha(\mu)}{4\pi} \frac{Z_{A^3}^2(p)}{Z_A^3(p)}$$
$$\alpha_{A^4}(p) = \frac{\alpha(\mu)}{4\pi} \frac{Z_{A^4}(p)}{Z_A^2(p)}$$

Select

$$Z_{A\bar{c}c}^{k=\Lambda}(p) = \text{const.}$$
$$Z_{A^3}^{k=\Lambda}(p) = \text{const.}$$
$$Z_{A^4}^{k=\Lambda}(p) = \text{const.}$$

such that

$$\alpha_{A\bar{c}c}(\mu) = \alpha_{A^3}(\mu) = \alpha_{A^4}(\mu)$$

Regulator breaks BRST symmetry

- \bullet Breaking BRST symmetry \rightarrow modified STIs
- mSTIs reduce to STIs at k = 0
- \implies solve mSTIs to get initial action at $k = \Lambda$
- More practical solution: choose $\Gamma_{\Lambda} \approx S$ such that STIs are fulfilled k = 0

STIS mSTIS
$$k \rightarrow 0$$

$$lpha_{Aar{c}c}(p) = rac{lpha(\mu)}{4\pi} rac{Z^2_{Aar{c}c}(p)}{Z_A(p) Z^2_c(p)}
onumber \ lpha_{A^3}(p) = rac{lpha(\mu)}{4\pi} rac{Z^2_{A^3}(p)}{Z^3_A(p)}
onumber \ lpha_{A^4}(p) = rac{lpha(\mu)}{4\pi} rac{Z_{A^3}(p)}{Z^2_A(p)}$$

Select

$$Z_{A\bar{c}c}^{k=\Lambda}(p) = \text{const.}$$
$$Z_{A^3}^{k=\Lambda}(p) = \text{const.}$$
$$Z_{A^4}^{k=\Lambda}(p) = \text{const.}$$

such that

$$\alpha_{A\bar{c}c}(\mu) = \alpha_{A^3}(\mu) = \alpha_{A^4}(\mu)$$

Regulator breaks BRST symmetry

- $\bullet~\textsc{Breaking BRST}$ symmetry $\rightarrow~\textsc{modified STIs}$
- mSTIs reduce to STIs at k = 0
- \implies solve mSTIs to get initial action at $k = \Lambda$
- More practical solution: choose $\Gamma_{\Lambda} \approx S$ such that STIs are fulfilled k = 0

STIS mSTIS
$$k \rightarrow 0$$

$$\alpha_{A\bar{c}c}(p) = \frac{\alpha(\mu)}{4\pi} \frac{Z_{A\bar{c}c}^2(p)}{Z_A(p) Z_c^2(p)}$$
$$\alpha_{A^3}(p) = \frac{\alpha(\mu)}{4\pi} \frac{Z_{A^3}^2(p)}{Z_A^3(p)}$$
$$\alpha_{A^4}(p) = \frac{\alpha(\mu)}{4\pi} \frac{Z_{A^4}(p)}{Z_A^2(p)}$$

Select

$$\begin{split} & Z_{A\bar{c}c}^{k=\Lambda}(p) = \text{const.} \\ & Z_{A\bar{a}}^{k=\Lambda}(p) = \text{const.} \\ & Z_{A^4}^{k=\Lambda}(p) = \text{const.} \end{split}$$

such that

$$\alpha_{A\bar{c}c}(\mu) = \alpha_{A^3}(\mu) = \alpha_{A^4}(\mu)$$

Gluon mass gap

Scaling solution

$$\lim_{p \to 0} Z_c(p^2) \propto (p^2)^{\kappa}$$
$$\lim_{p \to 0} Z_A(p^2) \propto (p^2)^{-2\kappa}$$

Decoupling solution

$$\lim_{p o 0} Z_c(p^2) \propto 1$$

 $\lim_{p o 0} Z_A(p^2) \propto (p^2)^{-1}$

• Landau Gauge gluon STI requires longitudinally mass term to vanish: $p_{\mu} \left([\Gamma_{AA,L}^{(2)}]_{\mu\nu}^{ab}(p) - [S_{AA,L}^{(2)}]_{\mu\nu}^{ab}(p) \right) = 0$

• Splitting between longitudinal and transverse mass term necessary

- Splitting occures "naturally" for scaling solution
- Decoupling solution requires irregular vertices, e.g. a pole in the longitudinal sector
- Unphysical gluon mass parameter present at k = Λ,
 ⇒ can be uniquely determined

Gluon mass gap

Scaling solution

Decoupling solution

- $\lim_{p \to 0} Z_c(p^2) \propto (p^2)^{\kappa} \qquad \qquad \lim_{p \to 0} Z_c(p^2) \propto 1 \\ \lim_{p \to 0} Z_A(p^2) \propto (p^2)^{-2\kappa} \qquad \qquad \lim_{p \to 0} Z_A(p^2) \propto (p^2)^{-1}$
- Landau Gauge gluon STI requires longitudinally mass term to vanish:

$$p_{\mu}\left([{f \Gamma}^{(2)}_{AA,{
m L}}]^{ab}_{\mu
u}(p)-[S^{(2)}_{AA,{
m L}}]^{ab}_{\mu
u}(p)
ight)=0$$

- Splitting between longitudinal and transverse mass term necessary
- Splitting occures "naturally" for scaling solution
- Decoupling solution requires irregular vertices, e.g. a pole in the longitudinal sector
- Unphysical gluon mass parameter present at k = Λ,
 ⇒ can be uniquely determined

Gluon mass gap

Scaling solution

Decoupling solution

- $$\begin{split} \lim_{p \to 0} Z_c(p^2) &\propto (p^2)^{\kappa} & \lim_{p \to 0} Z_c(p^2) \propto 1 \\ \lim_{p \to 0} Z_A(p^2) &\propto (p^2)^{-2\kappa} & \lim_{p \to 0} Z_A(p^2) \propto (p^2)^{-1} \end{split}$$
- Landau Gauge gluon STI requires longitudinally mass term to vanish:

$$p_{\mu}\left([\Gamma^{(2)}_{AA,{
m L}}]^{ab}_{\mu
u}(p)-[S^{(2)}_{AA,{
m L}}]^{ab}_{\mu
u}(p)
ight)=0$$

- Splitting between longitudinal and transverse mass term necessary
- Splitting occures "naturally" for scaling solution
- Decoupling solution requires irregular vertices, e.g. a pole in the longitudinal sector
- Unphysical gluon mass parameter present at $k = \Lambda$, \implies can be uniquely determined

Running of the gluon mass parameter

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

Dynamical mass generation

AKC (U Heidelberg)

Gluon propagator maximum over UV mass parameter

AKC (U Heidelberg)

Gluon propagator

AKC (U Heidelberg)

Gluon Mass Gap

Ghost propagator dressing

Running couplings in comparison with DSE results

AKC (U Heidelberg)

QCD from the FRG

Momentum dependence of the ghost-gluon vertex

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

Ghost-gluon vertex at the symmetric point

Ghost-gluon vertex with vanishing gluon momentum

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

Ghost-gluon vertex with orthogonal momenta

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

Momentum dependence of the three-gluon vertex

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

AKC (U Heidelberg)

Three-gluon vertex dressing (symmetric point)

Three-gluon vertex with vanishing gluon momentum

AKC (U Heidelberg)

Three-gluon vertex with orthogonal momenta

AKC (U Heidelberg)

Momentum dependence of the four-gluon vertex

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

AKC (U Heidelberg)

Four-gluon vertex at the symmetric point

AKC, Fister, Mitter, Pawlowski, Strodthoff, 2016

Regulator dressing

