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Quantization of continuum Yang-Mills theory

◮ SU(N) Yang-Mills theory in the continuum, Landau gauge

◮ Faddeev-Popov determinant ⇒ ghosts (and BRST symmetry)

◮ Faddeev-Popov action in D-dimensional Euclidean space-time

S =

∫

dDx

(

1

4
F a
µνF a

µν + ∂µc̄a(Dµc)a + iBa∂µAa
µ

)

◮ gauge copies ⇒ restriction of the gauge field configurations to the (first) Gribov region
Ω (properly to the fundamental modular region) [Gribov 1978]

◮ Zwanziger’s horizon function, breaks the BRST symmetry; local formulation ⇒
additional auxiliary fields [Zwanziger 1989]

◮ condensates of the additional auxiliary fields: “refined Gribov-Zwanziger scenario” ⇒
effective mass term for the gluons [Dudal et al. 2008]
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◮ Dyson-Schwinger equations are not affected by the restriction of the A-integral to Ω
(without introducing the horizon function): the contributions from the boundary of Ω
vanish because det(−∂µDab

µ ) = 0 at the boundary [Zwanziger 2002]

◮ the perturbative expansion of the correlation functions, obtained from the iterative
solution of the Dyson-Schwinger equations, is also unchanged

◮ what can change are the (re)normalization conditions; and the BRST symmetry is
broken
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How nonperturbative is IR Yang-Mills theory?

◮ effective description by a local renormalizable quantum field theory: include a gluonic
mass term in the Faddeev-Popov action (in 4-dimensional Euclidean space-time)

S =

∫

d4x

(

1

4
F a
µνF a

µν +
1

2
Aa
µm2Aa

µ + ∂µc̄aDab
µ cb + iBa∂µAa

µ

)

(Curci-Ferrari model, perturbatively renormalizable)

◮ apply straightforward one-loop perturbation theory to this action;
adjust two constants, g,m2, at some renormalization scale
(in principle, m2 is nonperturbatively fixed in terms of ΛQCD , or g)

◮ result: excellent fit to the lattice data for the propagators in the IR [Tissier, Wschebor
2010]

7 / 57



◮ notations: propagators

〈Aa
µ(p)A

b
ν(−q)〉 = GA(p

2)

(

δµν −
pµpν

p2

)

δab(2π)4δ(p − q)

〈ca(p)c̄b(−q)〉 = Gc(p
2) δab(2π)4δ(p − q)

and dressing functions

GA(p
2) =

FA(p
2)

p2
, Gc(p

2) =
Fc(p2)

p2

◮ one-loop contributions to the gluon self energy

and the ghost self energy

calculated with a massive gluon propagator

GA(p
2) =

1

m2 + p2
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gluon propagator GA(p
2) in 4 dimensions

Tissier, Wschebor 2010

SU(2) lattice data: Cucchieri, Mendes 2008a
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ghost dressing function Fc(p2) = p2Gc(p2) in 4 dimensions

Tissier, Wschebor 2010

SU(2) lattice data: Cucchieri, Mendes 2008b
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gluon dressing function FA(p
2) = p2GA(p

2) in 4 dimensions

Tissier, Wschebor 2010

SU(3) lattice data: Bogolubsky et al. 2009

and Dudal, Oliveira, Vandersickel 2010
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Extreme IR regime

◮ successful description of the IR fixed point for all dimensions (D ≥ 2) with
Callan-Symanzik equations in an epsilon expansion
[Weber 2012 and Weber, Dall’Olio, Astorga 2016]

◮ normalization condition for the gluon propagator

GA(p
2 = µ2) =

1

m2

corresponding to a “high-temperature” fixed point

◮ for D > 2 dimensions (“decoupling solutions”), use an epsilon expansion in D = 2 + ǫ
dimensions with the normalization condition for the ghost propagator

Gc(p
2 = µ2) =

1

p2

◮ for D = 2 dimensions (“scaling solution”), use an epsilon expansion in D = 6 − ǫ
dimensions with the normalization condition for the ghost propagator

Gc(p
2 = µ2) =

b2

p4

corresponding to a “Lifshitz point” and Zwanziger’s original horizon condition

◮ in the following, describe the crossover from the UV to the IR fixed point, and hence the
complete momentum dependence of the propagators, in dimension D = 4
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◮ “IR safe” renormalization scheme proposed by Tissier and Wschebor [Tissier,
Wschebor 2011]: normalization conditions for the proper two-point functions

Γ⊥A (p2)
∣

∣

p2=µ2 = m2 + p2

Γ
‖
A
(p2)

∣

∣

p2=µ2 = m2

Γc(p
2)
∣

∣

p2=µ2 = p2

◮ Γ⊥
A

and Γ
‖
A

are the transverse and longitudinal parts of the proper gluonic 2-point
function

Γ
(2)
A,µν

(p) = Γ⊥A (p2)

(

δµν −
pµpν

p2

)

+ Γ
‖
A
(p2)

pµpν

p2

◮ the first two normalization conditions can be rewritten as

Γ⊥A (p2)− Γ
‖
A
(p2)

∣

∣

p2=µ2 = p2

Γ
‖
A
(p2)

∣

∣

p2=µ2 = m2

◮ these combinations correspond to the decomposition of the 2-point function

Γ
(2)
A,µν

(p) =
(

Γ⊥A (p2)− Γ
‖
A
(p2)

)

(

δµν −
pµpν

p2

)

+ Γ
‖
A
(p2)δµν

which is analogous to the grouping of terms in the classical action

p2

(

δµν −
pµpν

p2

)

+ m2δµν
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◮ renormalized coupling constant defined from the renormalized proper ghost-gluon
vertex in the Taylor limit (ghost momentum p → 0) where there are no loop corrections

to the vertex ⇒ g(µ2) = Z
1/2

A
(µ2)Zc(µ2)gB

(alternatively, use the symmetry point p2 = q2 = k2 = µ2)

◮ calculate the flow functions at one-loop order; then, solve the Callan-Symanzik
renormalization group equations for the propagators

◮ example: the µ2-independence of the bare longitudinal proper gluonic 2-point function
implies

µ2 d

dµ2
Γ
‖
A
(p2, µ2) = µ2 d

dµ2

(

ZA(µ
2) Γ

‖ B

A
(p2, µ2)

)

=

(

µ2 d

dµ2
ZA(µ

2)

)

Γ
‖ B

A
(p2, µ2)

= γA(µ
2) Γ

‖
A
(p2, µ2)

◮ integrating between two renormalization scales µ̄2 and µ2,

Γ
‖
A
(p2, µ2) = Γ

‖
A
(p2, µ̄2) exp

(

∫ µ2

µ̄2

dµ′ 2

µ′ 2
γA(µ

′ 2)

)

◮ setting µ̄2 = p2 and using the normalization condition,

Γ
‖
A
(p2, µ2) = m2(p2) exp

(

−

∫ p2

µ2

dµ′ 2

µ′ 2
γA(µ

′ 2)

)
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◮ γA(µ
2) and γc(µ2) depend on g(µ2) and m2(µ2) which are obtained from the

integration of the system of differential equations

µ2 d

dµ2
m2(µ2) = µ2 d

dµ2
Γ
‖
A
(µ2, µ2)

∣

∣

∣

gB ,m
2
B

= βm2

(

g(µ2),m2(µ2), µ2
)

µ2 d

dµ2
g(µ2) = µ2 d

dµ2
g(µ2)

∣

∣

∣

gB ,m
2
B

= βg

(

g(µ2),m2(µ2), µ2
)

◮ all these equations are exact if the flow functions are exact; here, calculate the flow
functions to one-loop order and integrate the Callan-Symanzik equations with these
approximate flow functions: “renormalization group improvement” of perturbation theory

◮ adjust g(µ0),m
2(µ0) at some renormalization scale to fit the lattice data;

note that the lattice propagators are not normalized and thus can be arbitrarily rescaled
(field rescalings)

◮ fitting strategy: fix g(µ0),m
2(µ0) by adjusting to the data for the ghost propagator and

the ghost dressing function;
comparison to the data for the gluon propagator and the gluon dressing function then
shows how successful the renormalization scheme is in reproducing the lattice data

◮ in all of the following, the SU(2) lattice data are from Cucchieri and Mendes [Cucchieri,
Mendes 2008a, 2008b]
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running coupling constant g(µ) in D = 4 dimensions
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running mass parameter m2(µ) in D = 4 dimensions
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ghost dressing function Fc(p2) = p2Gc(p2), Taylor scheme
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gluon propagator function GA(p
2), Taylor scheme
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gluon dressing function FA(p
2) = p2GA(p

2), Taylor scheme
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Derivative schemes
◮ in the decomposition of the gluonic 2-point function

Γ
(2)
A,µν

(p) =
(

Γ⊥A (p2)− Γ
‖
A
(p2)

)

(

δµν −
pµpν

p2

)

+ Γ
‖
A
(p2)δµν

replace the normalization condition

Γ⊥A (p2)− Γ
‖
A
(p2)

∣

∣

p2=µ2 = p2

with
d

dp2

(

Γ⊥A (p2)− Γ
‖
A
(p2)

) ∣

∣

∣

p2=µ2
= 1

◮ complement with the normalization conditions

Γ
‖
A
(p2)

∣

∣

p2=µ2 = m2

d

dp2
Γc(p

2)
∣

∣

∣

p2=µ2
= 1

⇒ quantitatively, almost no change

◮ generalize to the decomposition

Γ
(2)
A,µν

(p) =
(

Γ⊥A (p2)− ζΓ
‖
A
(p2)

)

(

δµν −
pµpν

p2

)

+ Γ
‖
A
(p2)

(

ζδµν + (1 − ζ)
pµpν

p2

)

and impose the normalization condition

d

dp2

(

Γ⊥A (p2)− ζΓ
‖
A
(p2)

) ∣

∣

∣

p2=µ2
= 1

22 / 57



◮ integrating the Callan-Symanzik equation for the proper gluonic 2-point function yields

∂

∂p2

(

Γ⊥A (p2, µ2)− ζΓ
‖
A
(p2, µ2)

)

= exp

(

−

∫ p2

µ2

dµ′ 2

µ′ 2
γA(µ

′ 2)

)

then integrate over p2 with the initial condition inferred by locality

Γ⊥A (p2 = 0, µ2) = Γ
‖
A
(p2 = 0, µ2)

◮ in the IR limit µ2 ≪ m2,

βg = µ2 d

dµ2
g =

g

2

(

γA + 2γc

)

≈
g

2
γA =

g

2
µ2 d

dµ2
ln ZA

and to 1-loop order

µ2 d

dµ2
ln ZA =

Ng2

(4π)2

(

−
1

12
+

ζ

4

)

◮ IR safety (βg > 0) for ζ > 1/3, the simple derivative scheme corresponds to ζ = 1;
the positivity of the beta function arises from the momentum dependence of the

longitudinal part Γ
‖
A
(p2)!

◮ in the following, consider only the critical case ζ = 1/3
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running coupling constant g(µ)
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running mass parameter m2(µ)
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gluon propagator function GA(p
2), critical derivative scheme
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gluon dressing function FA(p
2) = p2GA(p

2), critical derivative scheme
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Independent running couplings

◮ breaking of BRST symmetry destroys the relation between the different renormalized
coupling constants

◮ define the renormalized ghost-gluon coupling constant defined from the renormalized
proper ghost-gluon vertex as before, define the renormalized three-gluon coupling
constant from the renormalized proper three-point vertex at the symmetry point
p2

1 = p2
2 = p2

3 = µ2

◮ renormalized four-gluon coupling constant set equal to the renormalized three-gluon
coupling constant for the time being

◮ integration of the Callan-Symanzik equations with two independently running coupling
constants and a running mass parameter: BRST symmetry and usual non-massive
behavior recovered in the UV, only two adjustable parameters (fine tuning condition)
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gluon propagator GA(p
2) in 4 dimensions,

two coupling constants
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gluon dressing function FA(p
2) = p2GA(p

2) in 4 dimensions,
two coupling constants
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ghost-gluon vertex function at the symmetry point p2 = q2 = k2

in 4 dimensions, two coupling constants,
compared to an approximate solution of the Dyson-Schwinger equations

SU(2) lattice data: Cucchieri, Maas, Mendes 2008
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three-gluon vertex function at the symmetry point p2
1 = p2

2 = p2
3

in 4 dimensions, two coupling constants,
compared to an approximate solution of the Dyson-Schwinger equations

SU(2) lattice data: Cucchieri, Maas, Mendes 2008
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Dynamical quarks

◮ success in Yang-Mills theory motivates the use of one-loop Callan-Symanzik
renormalization group equations in full QCD;
hope to describe dynamical mass generation by introducing running quark mass
parameters, without a representation of its dynamical origin (chiral condensate)

◮ first study by Peláez, Tissier and Wschebor [Peláez, Tissier, Wschebor 2014]:
reasonable representation of the mass function M(p2), but not of the dressing function
(field renormalization) Z (p2) of the full quark propagator

Z (p2)

ip/+ M(p2)

(two-loop contributions important?)

◮ no dynamical mass generation in the chiral limit [Peláez, Tissier, Wschebor 2015]
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quark mass function Mu,d (p
2) in 4 dimensions for Nf = 2 + 1 flavors,

one-loop renormalization group improved:
optimized fit, leading to a less satisfactory fit of the unquenched gluon propagator

Peláez, Tissier, Wschebor 2014

lattice data: Bowman et al. 2004, 2005
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quark mass function Mu,d (p
2) in 4 dimensions for Nf = 2 + 1 flavors,

one-loop renormalization group improved:
parameters adjusted for an optimized fit to the unquenched gluon propagator

Peláez, Tissier, Wschebor 2014

lattice data: Bowman et al. 2004, 2005
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quark dressing function Zu,d (p
2) in 4 dimensions for Nf = 2 + 1 flavors,

one-loop renormalization group improved:
parameters adjusted for an optimized fit to the quark mass function

Peláez, Tissier, Wschebor 2014

lattice data: Bowman et al. 2005
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General strategy

◮ analyze the description of dynamical mass generation through the Callan-Symanzik
equations in a simpler gauge theory:
QED in D = 3 Euclidean space-time dimensions in the Landau gauge (with Juan Pablo
Gutiérrez)

◮ for a direct comparison with Dyson-Schwinger equations, use the quenched and the
rainbow ladder approximations (tree-level photon propagator and electron-photon
vertex; lead to a closed gap equation for the electron mass function)

◮ note: these approximations are not entirely consistent for the renormalization of the
theory
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Self-energy

◮ begin with the one-loop renormalization of QED3 in the quenched and rainbow ladder
aproximations

◮ one-loop electron self-energy in 3 dimensions

convergent for p2 > 0

◮ for a massless photon (quenched approximation),

Σ(p) =
e2

0

2π

M0

p
arctan

(

p

M0

)

with p =
√

p2, M0 the bare electron mass and e0 the bare coupling constant
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Renormalization
◮ the bare one-loop electron propagator is

[

ip/+ M0 +
e2

0

2π

M0

p
arctan

(

p

M0

)

]−1

◮ implement as a normalization condition that the renormalized electron propagator for
momenta p with p2 = µ2 (µ the renormalization scale) is

Z (µ)

ip/+ M(µ)

◮ this condition defines Z (µ) = 1 and the renormalized mass

M(µ) = M0 +
e2

0

2π

M0

µ
arctan

(

µ

M0

)

+O(e4
0)

◮ as a consequence of the rainbow ladder approximation and Z (µ) = 1, the
renormalized coupling constant

e(µ) = e0 ≡ e

◮ as part of the renormalization procedure, all quantities are expressed in terms of the
renormalized mass and coupling constant (as the — in principle — experimentally
accessible quantities), in particular

M0 = M(µ)−
e2

2π

M(µ)

µ
arctan

(

µ

M(µ)

)

+O(e4)
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The NJL argument

◮ usually, one is not interested in the value of the bare mass M0 as a function of the
renormalized mass M(µ),

M0 = M(µ)−
e2

2π

M(µ)

µ
arctan

(

µ

M(µ)

)

(1)

(at one-loop level in the renormalized theory, using the quenched and rainbow ladder
approximations), but particularly in the chiral limit M0 → 0, equation (1) is relevant

◮ the same equation (1) follows from the original argument of Nambu and Jona-Lasinio
(NJL) [Nambu, Jona-Lasinio 1961] applied to QED3:
add a contribution δM to the bare mass M0 such that the electron self-energy
calculated with the new mass M = M0 + δM and including the counterterm (−δM)
vanishes,

Σ(p) = −δM +
e2

0

2π

M

p
arctan

( p

M

)

= 0

◮ unlike in the theory originally considered by NJL, this is only possible at one (arbitrarily
chosen) momentum scale µ (on the other hand, no momentum cutoff needs to be
introduced here), thus

M0 +
e2

0

2π

M

µ
arctan

( µ

M

)

= M ,

which is equation (1) with e0 = e and M = M(µ)
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Solving for M(µ)

◮ in the chiral limit, equation (1) becomes

0 = M0 = M(µ)

[

1 −
e2

2πµ
arctan

(

µ

M(µ)

)]

◮ there is a trivial solution, M(µ) = 0, and a nontrivial one,

M(µ) =
µ

tan(2πµ/e2)

as long as

e2

2πµ

π

2
≥ 1 ⇔ µ ≤

e2

4
;

in particular,

M(µ = 0) =
e2

2π

◮ at µ = e2/4, the nontrivial solution coincides with the trivial solution;
for µ > e2/4 only the trivial solution exists
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Varying M0

◮ for M0 > 0, equation (1) can only be solved numerically; however, two limits can be
established analytically:

M(µ = 0) = M0 +
e2

2π
, M(µ → ∞) = M0

◮ a plot of M(µ) for several values of M0, in units of e2/2π (both µ and M):
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Linear approximation

◮ Dyson-Schwinger equation for the mass function M(p2) in QED3 in the Landau gauge,
using the quenched and the rainbow ladder approximations:

M(p2) = M0 + 2e2

∫

d3k

(2π)3

1

(p − k)2

M(k2)

k2 + M2(k2)

◮ in the chiral limit M0 → 0 with the (additional) linear approximation

M(k2)

k2 + M2(k2)
≈

M(k2)

k2 + M2(0)
,

one finds the exact solution

M(p2) =
e2

4π

1

1 + (4πp/e2)2
,

◮ in the extreme limits,

M(p2 = 0) =
e2

4π
, M(p2 → ∞) ∝

1

p2
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Angular approximation

◮ alternatively, one may use (for M0 ≥ 0) the angular approximation to evaluate the
k -integral

∫

d3k

(2π)3

M(k2)

k2 + M2(k2)

1

(p − k)2

=
1

(2π)2

∫ ∞

0

dk
k2M(k2)

k2 + M2(k2)

∫ 1

−1

d cos θ

k2 + p2 − 2p k cos θ

=
1

(2π)2p

∫ ∞

0

dk
k M(k2)

k2 + M2(k2)
ln

k + p

|k − p|

◮ now

for k ≫ p , ln
k + p

|k − p|
≈

2p

k
;

for k ≪ p , ln
k + p

|k − p|
≈

2k

p
,

and the angular approximation is

ln
k + p

|k − p|
≈

2p

k
Θ(k − p) +

2k

p
Θ(p − k)

under the k -integral

47 / 57



Comparison in the chiral limit

◮ in the angular approximation, the gap equation can be converted (exactly) into a
differential equation which is subsequently numerically solved; for large momenta, one
finds analytically

M(p2 → ∞) = M0 ,

and particularly in the chiral limit M0 → 0,

M(p2 → ∞) ∝
1

p2

◮ Comparison of the three mass functions, M(µ) from the one-loop renormalization or
the NJL argument, and M(p2) from the Dyson-Schwinger equation in the linear and the
angular approximations, in the chiral limit (in units of e2/2π):
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Callan-Symanzik equations

◮ the bare parameters and the bare n-point functions cannot depend on the
renormalization scale µ, in particular, at the one-loop level,

µ
dM(µ)

dµ
= µ

∂

∂µ

[

e2
0

2π

M0

µ
arctan

(

µ

M0

)

]∣

∣

∣

∣

∣

M0,e0 fixed

=
e2

2π

[

M2(µ)

µ2 + M2(µ)
−

M(µ)

µ
arctan

(

µ

M(µ)

)]

, (2)

expressing the bare quantities in terms of the renormalized ones in the last step
(renormalization group improvement)

◮ using the normalization condition for the renormalized electron propagator

Z (µ)

ip/+ M(µ)

at µ = p, the renormalization group improved propagator is

1

ip/+ M(p)

where M(p) is the function obtained by integrating the differential equation (2)
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Results

◮ no mass is generated dynamically in the chiral limit through the integration of the
Callan-Symanzik equation (2)

◮ Comparison of the analytical solution of the Dyson-Schwinger gap equation in the
chiral limit with the solution of the Callan-Symanzik equation with the same initial value
M(p2 = 0):
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M(p2 = 0) as a function of M(p2 → ∞) = M0

in the one-loop renormalization of the theory or the NJL argument,

the angular and the linear approximations of the Dyson-Schwinger gap equation

and the Callan-Symanzik renormalization group equation
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Summary

◮ quasi-analytic and systematic description of the correlation functions of Landau gauge
Yang-Mills theory: introduce a gluonic mass term, solve the Callan-Symanzik equations

◮ this success motivates to try the same approach for the description of dynamical quark
mass generation in QCD; a first exploration by Peláez, Tissier and Wschebor is
encouraging, but not entirely successful

◮ look at a simpler theory first: QED in 3 space-time dimensions in the quenched and
rainbow ladder approximations (for comparison to the solution of the Dyson-Schwinger
gap equation)

◮ the standard one-loop renormalization of the theory leads to the same equation for the
effective mass as Nambu-Jona-Lasinio’s original argument

◮ an effective (or renormalized) mass is generated even in the chiral limit, but its
dependence on the momentum scale is not satisfactory

◮ applying Callan-Symanzik renormalization group equations leads to a much better
momentum scale dependence, judging from a comparison with the solution of the
Dyson-Schwinger gap equation (here: in the linear and angular approximations)

◮ the value of the mass M(p2 = 0) generated by the renormalization group is quite
similar to the one generated by the Dyson-Schwinger equation (in the angular
approximation) for not too small bare masses (M0 & 0.1e2/(2π)), but there is no
dynamical mass generation in the chiral limit by the Callan-Symanzik equations
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Outlook

◮ Yang-Mills theory: current calculations in 3 space-time dimensions

◮ continue work on the vertex functions, compare to new lattice and Dyson-Schwinger
results

◮ proceed to two-loop level (with renormalization group improvement)

◮ extend the formalism to 2 space-time dimensions (scaling solutions)

◮ dynamical fermion mass generation: to complete the comparison to the
Dyson-Schwinger gap equation, look at the numerical solutions of the full equation

◮ before moving on to QCD, one may consider QED3 without the quenched and rainbow
ladder approximations in the renormalization group approach (those are not consistent
approximations in the renormalization of the theory)

◮ consider alternative renormalization schemes, different space-time dimensions and
epsilon expansions
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