

Lefschetz thimbles and Lattice gauge theories

Felix Ziesché

Lunch Club Seminar Gießen, November 28, 2018

28.11.2018

Felix Ziesché

Lefschetz thimbles and Lattice gauge theories

8.11.2018 1 / 33

What do we want?

- Modern quantum field theories describe three of the four fundamental forces.
 -) The electromagnetic force ightarrow Quantum Electro Dynamics (QED)
 - ② The weak nuclear force (together with the above)ightarrow Electroweak theory
 - ② The strong nuclear force ightarrow Quantum Chromo Dynamics (QCD)
- Our interest is the thermodynamics of the strong force (QCD)

CRC-TR 2

From quantum to lattice field theory

• All thermodynamic observables can be calculated from the grand canonical partition sum

$$Z(T, \mu, V) = \int \mathrm{d}A_{\nu} \mathrm{d}ar{\Psi} \mathrm{d}\Psi e^{-S^{E}[A_{\nu},ar{\Psi},\Psi,T,\mu,V]},$$

The action of QCD is

$$\begin{split} S^{E} &= \int_{0}^{1/T} \mathrm{d}\tau \int_{V} \mathrm{d}^{3} x \frac{1}{4} F_{\alpha\beta} F_{\alpha\beta} + \sum_{f=1}^{N_{f}} \bar{\psi}^{f} (\gamma_{\nu}^{E} (\partial_{\nu} + ig_{0}A_{\nu}) + i\gamma_{4}^{E} \mu_{f} + m_{f}) \psi^{f}, \\ F_{\alpha\beta} &= \partial_{\alpha} A_{\beta} - \partial_{\beta} A_{\alpha} + ig_{0} [A_{\alpha}, A_{\beta}], \quad A_{\nu} \in i\mathfrak{su}(3). \end{split}$$

Analytic evaluation of the functional integral is practically impossible.
 space-time → lattice, derivatives → finite differences:

 $\Rightarrow \text{ quantum field theory} \longrightarrow \text{ lattice field theory}$ This can be simulated on computers via Markov Chain Monte Carlo! Prerequisite: $e^{-S^{\mathcal{E}}}$ is a probability density.

But this is not always the case:

For $\mu > 0$: $S = S_R + iS_I \in \mathbb{C}$. $\rightarrow \frac{e^{-S}}{\int_{\Gamma} dU e^{-S}}$ is no probability density anymore \rightarrow No MCMC. Possible solution: Use the phase quenched partition sum $Z_{pq} = \int_{\Gamma} dU e^{-S_R}$ and reweight with the phase:

$$<\mathcal{O}>=\frac{\int \mathrm{d}U\mathcal{O}(U)e^{-iS_{I}[U]}e^{-S_{R}[U]}}{\int \mathrm{d}Ue^{-S_{R}[U]}}\frac{\int \mathrm{d}Ue^{-S_{R}[U]}}{\int \mathrm{d}Ue^{-iS_{I}[U]}e^{-S_{R}[U]}}=\frac{<\mathcal{O}e^{-iS_{I}}>_{pq}}{< e^{-iS_{I}}>_{pq}}$$

How does $< e^{-iS_l} >_{pq}$ behave? Observe

•
$$< e^{-iS_l} >_{pq} = \frac{Z}{Z_{pq}}$$

• $Z_{pq} > Z \implies f - f_{pq} = \Delta f = -\frac{T}{V} \log \frac{Z}{Z_{pq}} > 0.$
 $\Rightarrow < e^{-iS_l} >_{pq} = e^{-\frac{V}{T}\Delta f}$

- We complexify the d.o.f. and analytically continue e^{-S} and O.
- Observe: e^{-S} and O are holomorphic functions in some area.
 → Choosing a homotopic integration contour in that area gives the same result for < O >.
- But that's not true for e^{-iS_I} and e^{-S_R} !

 \rightarrow < e^{-iS_l} > depends on the integration contour.

We will use Picard-Lefschetz theory (a complex version of Morse theory) to find a good contour!

- Let *M* be a smooth compact *m*-dimensional manifold,
- $f: M \to \mathbb{R}$ a at least two times differentiable function, so that
- f has only non-degenerate critical points (this is $p \in M$ with $\nabla f(p) = 0$ and det $\nabla^2 f(p) \neq 0$).
- \Rightarrow *M* has the homotopy type of a cell-complex, where each cell is related to a non-degenerate critical points. Its dimension is the number of positive eigenvalues of $\nabla^2 f$.
- A k-cell is an open disc

$$D^{k} = \{ \vec{x} \in \mathbb{R}^{k} | \ |\vec{x}| < 1 \},\$$

which are glued together at the boundaries to form a compact manifold.

An example

$$f(z) = \operatorname{Re}(z^2 - 1), \quad z \in \operatorname{U}(1)$$

- f has four critical points z = 1, -1, i, -i.
- $\partial_z^2 f(z) < 0$ for z = 1, -1 and $\partial_z^2 f(z) > 0$ for z = i, -i.

In complexified space, these cells can be chosen to conserve the imaginary part of our action and are then called *Lefschetz thimbles*.

Felix Ziesché

Lefschetz thimbles and Lattice gauge theories

28.11.2018 7 / 33

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \pm \left(\frac{\partial S}{\partial z}\right)^* = \pm \frac{\partial S_R}{\partial z_R} \pm i \frac{\partial S_R}{\partial z_I}$$

- $S_I[P(t)] = \text{const.}$, while S_R is increased/decreased.
- Solution of steepest ascent eq. for fixed t will be called Flow mapping

$$egin{array}{rcl} {\mathcal F}_t\colon {\mathbb R}&\longrightarrow&{\mathcal M}_t\subset {\mathbb C}\ z(0)&\longmapsto&z(t). \end{array}$$

 \longrightarrow No sign problem along solutions.

Lefschetz thimbles

F. Pham, Proc. Symp. in Pure Math. Vol. 40 319-333, 1983

$$Z = \int_{\mathbb{R}} \mathrm{d}z e^{-S(z)}$$

- *S* is locally holomorphic and has only non-degenerate crit. points: $\frac{\partial S}{\partial z}(z_{\sigma}) = 0$ and det $\left[\frac{\partial^2 S}{\partial z^2}\right](z_{\sigma}) \neq 0$
- Definition of Lefschetz thimbles

$$\mathcal{J}_{\sigma} = \{ z \in \mathbb{C} \mid F_t(z) \xrightarrow{t \to -\infty} z_{\sigma} \}$$

• We have $e^{-S_l}|_{\mathcal{J}_{\sigma}} = \text{const.}$ and $\mathbb{R} \simeq \sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}$, where $n_{\sigma} = \langle \mathcal{J}_{\sigma}, \mathbb{R} \rangle$ is the so called Kronecker index.

$$\longrightarrow \int_{\mathbb{R}} \mathrm{d}z e^{-S} = \sum_{\sigma} n_{\sigma} e^{-iS_{I}[z_{\sigma}]} \int_{\mathcal{J}_{\sigma}} \mathrm{d}z e^{-S_{R}}$$

How can we do that practically?

- Get the relevant saddle-point/thimble structure.
- Solve the flow equations for specific directions around the saddle points and record the points with a minimum curvature.
- With these points, we construct a mesh of *d*-simplices, which approximates the thimbles.
- Do an ergodic(!) MCMC on this mesh.

Advantages:

- The Monodromy Theorem is fulfilled \Rightarrow No a priori wrong results.
- Sampling on a mesh is fast!

The model: One flavor 0+1d-QCD

One space-time dimension: $F_{\mu\nu} = 0 \Rightarrow S_G = 0$. $\longrightarrow S = S_F$ and the discretized staggered fermion action reads:

$$\hat{S}_{F}(\mu) = \frac{1}{2} \sum_{n=0}^{N_{\tau}-1} \bar{\chi}(n) \left(e^{\mu} U(n) \chi(n+1) - e^{-\mu} U^{\dagger}(n-1) \chi(n-1) + 2m \chi(n) \right)$$

Integrating out the fermion fields in the partition sum, we have

$$Z(N_{\tau},\mu) = \int \mathrm{d}U \mathrm{d}\bar{\chi} \mathrm{d}\chi e^{-\bar{\chi}M[U]\chi} = \int \mathrm{d}U \det M[U]$$

This determinant can be reduced to

$$det(M[U]) = \frac{1}{2^{3N_{\tau}}} det(2 \cosh(N_{\tau} \sinh^{-1}(m))\mathbb{I} + e^{N_{\tau}\mu}P + e^{-N_{\tau}\mu}P^{\dagger})$$
$$P = \prod_{n=0}^{N_{\tau}-1} U(n).$$

For $\mu > 0$, this is complex.

Felix Ziesché

Complexification

 We use the representation of the SU(3)-matrices P as exponentials of Gell-Mann-Matrices

$$P = \exp\left[\sum_{k=1}^{8} \omega_k T^k\right] \quad T^k = -\frac{i}{2}\lambda^k \ k = 1\dots 8$$

- For $\omega_k \in \mathbb{R}$, P is in SU(3) and $P^{\dagger} = P^{-1}$.
- For Applying Picard-Lefschetz Theory, we need an analytical continuation into complex space:
- $\omega_k \in \mathbb{R} \hookrightarrow \omega_k \in \mathbb{C}$, this is SU(3) \hookrightarrow SL(3, \mathbb{C}) and $P^{\dagger} \to P^{-1}$ in S.

$$\Rightarrow \ \det(M[P]) = \det\left(2\cosh(N_{\tau}\sinh^{-1}(m))\mathbb{I} + e^{N_{\tau}\mu}P + e^{-N_{\tau}\mu}P^{-1}\right)$$

The geometric structure of 0+1d-QCD

- C. Schmidt and F. Ziesché, Proc. LATTICE2016, arXiv 1701.08959
 - The main critical points obtained are

$$P_{\sigma} = \mathbb{I}, e^{\pm i \frac{2\pi}{3}} \mathbb{I}.$$

These are the center elements of SU(3).

• The thimbles end in infinite action barriers in complexified space.

Start at a saddle point.

O Go an ϵ -step in direction of the Takagi-Vectors defined by

$$H(\omega_{\sigma})^*\hat{\omega}_{\sigma}^* = \lambda\hat{\omega}_{\sigma}, \ \lambda \in \mathbb{R}^+$$

• The steepest ascent equation can be reformulated to

$$\dot{\omega} = \left(\frac{\partial S}{\partial \omega}\right)^* \Rightarrow \dot{\omega}_R = \frac{\partial S_I}{\partial \omega_I} \text{ and } \dot{\omega}_I = -\frac{\partial S_I}{\partial \omega_R}.$$

This can be solved effectively by symplectic methods. We use Verlet-integration.

- Flow until you hit $|\nabla S| < \epsilon$ or $S \ge S_{CutOff}$ and record the points.
- Reduce the number of points depending on a maximal discrete curvature.

Getting the points for the triangles.

The recorded points in ω_8 -direction and the corresponding imaginary part of the action.

CRC-TR 211

We take two neighboring flowlines consisting of the points $\{p_1^0, p_1^1, p_1^2, \ldots\}$ and $\{p_2^0, p_2^1, p_2^2, \ldots\}$, where $p_1^0 = p_2^0$ is the common critical point. We connect both flowlines for themselves and define $\tilde{l}_i^k := l_i^k/L_i$ to be the normalised distance to the critical point.

• Start with
$$m_1 = m_2 = 1$$
.

- O Connect $p_1^{m_1}$ with $p_2^{m_2}$.
- If $\sum_{k=1}^{m_2} \tilde{l}_k^2$ is smaller than $\sum_{j=1}^{m_1} \tilde{l}_j^1$, increment m_2 or vice versa and go back to step 2.
- When one of the m_i's reaches n_i, leave it there and just increment the other one and connect them until this reaches the end, too.

This procedure is generalisable for higher dimensions!

Triangles \rightarrow *n*-simplices.

Triangulation in ω_8 and ω_3 direction at $N_{\tau} = 4$ and m = 1.0 at $\mu = 0.5$.

- Select starting point P_0 on the triangulation.
- Pick a random number $u \in [\exp(-S_{CutOff}), \exp(-S_R(P_n))]$ uniformly.
- Sample uniformly a point P_{n+1} from the set $\{P \in SU(3) | e^{-S_R(P)} > u\}.$
- Solution Repeat from step 2 using the new P_{n+1} .

The problem is step 3. But for Thimbles, we know the approximate probability distribution!

 \rightarrow We can approximate it with a sharp gaussian distribution and use rejection sampling!

But for low-dimensional models, one can use a very easy way.

- **(**) Select starting point P_0 on the triangulation.
- ② Pick a random number $u \in [\exp(-S_{\mathrm{CutOff}}), \exp(-S_{\mathcal{R}}(P_n))]$ uniformly.
- Pick P_{n+1} from an isotropic, ergodic distrib. around P_n on the triangulation.
- Accept P_{n+1} , if $\exp(-S_R(\tilde{P}_{n+1})) > u$. Otherwise $P_n = P_{n+1}$ and repeat from 3.

Results (at least for ω_8)

In full Lattice Gauge Theories new problems arise:

- We have only degenerate critical points, because of gauge symmetries.
- ullet ightarrow Normal Picard-Lefschetz theory does not apply anymore.
- The dimensionality is quite high in general!
- But we have some good news:
 - We can apply the concept of Generalized Lefschetz Thimbles (*E. Witten, arXiv 1001.2933*)
 - One flavor $U(N_c)$ theories at finite μ have trivial GLTs, where this can be tested.
 - More freedom gives us more tools than just the flow equations!

A simple U(1)-integral

$$f(U) = 2\cosh(K_c) + e^{K}U + e^{-K}U^{-1}, \quad U \in U(1)$$
$$Z = \int_{U(1)} dUf(U) = \int_{0}^{2\pi} \frac{d\phi}{2\pi} f(e^{i\phi}) = \int_{B_1(0)} \frac{dz}{2\pi i} \frac{f(z)}{z}$$

Residual theorem: Z = 2 cosh(K_c) and < e^{iφ} >= e^{-K}/(2 cosh(K_c))
 S = -log f(z) → z_c = ±e^{-K} and poles at z = -e^{-K±K_c}.

Now, what if we have more links?

Felix Ziesché

Gauge orbits

$$f(U_1, U_2) = 2\cosh(K_c) + e^{K}U_1U_2 + e^{-K}U_2^{-1}U_1^{-1}, \ U \in \mathrm{U}(1)$$

The critical equation goes to

 $e^{i(\phi_1+\phi_2)} = \pm e^{-K} \Rightarrow \ \phi_1^R + \phi_2^R = 0/\pi \mod 2\pi, \ \phi_1' + \phi_2' = K$

• So we have two 2-dimensional critical manifolds.

Critical Manifold

According to Witten, we have to take a cycle on this critical manifold and then solve the flow equations at each point of the cycle in the positive Takagi directions to get the generalized Lefschetz thimble.

- We currently apply this procedure to pure gauge U(1)-theory at $\beta \in \mathbb{C}$.
 - \rightarrow Results will hopefully follow soon!
- We still have to complete the sampling on triangulations and implement for higher dimensions.
- More effective Storage of the manifold by fitting the triangulation with spherical harmonics.

Thank you for your attention!

The Lefschetz theorem

A complex analytic manifold M of complex dimension k, bianalytically embedded as a closed subset of \mathbb{C}^n has the homotopy type of a k-dimensional CW-complex.

This means, that every Lefschetz thimble has the same dimension.

The Monodromy theorem

- Let $f:\widetilde{\Gamma}\to\mathbb{C}$ be a holomorphic function on $\widetilde{\Gamma}$ and
- $\Gamma, \Gamma' \subset \tilde{\Gamma}$ be homotopic submanifolds of $\tilde{\Gamma}$ ($\Gamma \simeq \Gamma'$).

Then

$$\int_{\Gamma} \mathrm{d} z f(z) = \int_{\Gamma'} \mathrm{d} z f(z).$$

The Hessian $\partial^2 S$

To calculate the Takagi vectors, which span the tangent space $T_{P_{\sigma}}\mathcal{J}_{\sigma}$, we need to calculate the Hessian

$$\frac{\partial^2 S}{\partial \omega_k \partial \omega_l} = \operatorname{Tr} \left[M^{-1} \frac{\partial M}{\partial \omega_k} M^{-1} \frac{\partial M}{\partial \omega_l} - M^{-1} \frac{\partial^2 M}{\partial \omega_k \partial \omega_l} \right]$$

... which is easy for $P = e^{i\gamma}\mathbb{I}$

$$\frac{\partial^2 S}{\partial \omega_k \partial \omega_l} = \frac{1}{2} \left(\frac{\cosh(N_\tau \mu + i\gamma)}{B_\gamma} - \frac{\sinh^2(N_\tau \mu + i\gamma)}{B_\gamma^2} \right) \delta^{kl} =: h_\gamma \delta^{kl}$$

with

$$B_{\gamma} = \cosh(N_{\tau}\mu_c) + \cosh(N_{\tau}\mu + i\gamma).$$

The Takagi equation reads

$$H^*\rho_{\lambda}^* = \lambda \rho_{\lambda}, \ \lambda \in \mathbb{R}$$

... with $H^{kl} = h_\gamma \delta^{kl}$, we have as solutions

$$\lambda = |h_{\gamma}|, \ \rho_{\lambda}^{k} = ce^{k} \ ext{with} \ c = \sqrt{k}$$

Lefschetz thimbles and Lattice gauge theories

 h^*_{α}

$$\frac{\mathrm{d}\omega_k}{\mathrm{d}t} = \left(\frac{\partial S}{\partial \omega_k}\right)^*, \ P(t) = \exp\left[\sum_{k=1}^8 \omega_k(t)T^k\right]$$

• $S_I[P(t)] = \text{const.}$, while S_R is increased.

• Induces Flow mapping for fixed t

$$egin{array}{rll} \mathcal{F}_t\colon \mathrm{SU}(3)&\longrightarrow&\mathcal{M}_t\subset\mathrm{SL}(3,\mathbb{C})\ P&\longmapsto&P(t)=e^{\sum_k\omega_k(t)\,T^k} \end{array}$$

The Contraction algorithm

A. Alexandru et al., Phys. Rev. D93, arXiv 1510.03258

- Select starting point $P_0 \in SU(3)$.
- Pick $P_{n+1} \in SU(3)$ from an isotropic, ergodic distrib. around P_n
- Calculate \$\tilde{P}_{n+1} = F_t(P_{n+1})\$ by integrating numerically (e.g. Runge Kutta)
- Parallel transport e^1, \ldots, e^8 along F_t by integrating $\frac{\mathrm{d}v_k}{\mathrm{d}t} = \left(\sum_{l=1}^8 \frac{\partial^2 S}{\partial \omega_k \partial \omega_l} v_l\right)^*, \Rightarrow \det[\mathrm{d}F_t] = \det[v^1(t), \ldots, v^8(t)].$
- $\bigcirc \ \mathsf{Calculate} \ S_{\mathrm{eff}} = S_R \log |\det[\mathrm{d} \mathsf{F}_t]|$
- Solution Accept \tilde{P}_{n+1} with probability min $\{1, e^{-(S_{\text{eff}}(\tilde{P}_{n+1})-S_{\text{eff}}(\tilde{P}_n))}\}$, otherwise $P_{n+1} = P_n$ and repeat from 2.

$$\Rightarrow <\mathcal{O}>=\frac{<\mathcal{O}\frac{\det[\mathrm{d}F_t]}{|\det[\mathrm{d}F_t]|}e^{-iS_l}>_{S_{\mathrm{eff}}}}{<\frac{\det[\mathrm{d}F_t]}{|\det[\mathrm{d}F_t]|}e^{-iS_l}>_{S_{\mathrm{eff}}}}$$

Effect of F_t on the simulation

Figure: Scatterplot of sampled configurations for $m = 0.1, \mu = 0.35$ and the variations of S_l for t = 1.5 and m = 1 compared with normal Reweighting.

Figure: Results for $N_{\tau} = 4, m = 1.0$ using the effective action.

This is obviously wrong.

Contraction vs. Slice Sampling

 \longrightarrow Better results for $\mu > \mu_c$, BUT same for $\mu < \mu_c$.

$$\begin{aligned} x &= (r_1 e^{-\operatorname{Im}(\phi_1)} + r_2 e^{-\operatorname{Im}(\phi_1)} \cos(\operatorname{Re}(\phi_2))) \cos(\operatorname{Re}(\phi_1)) \\ y &= (r_1 e^{-\operatorname{Im}(\phi_1)} + r_2 e^{-\operatorname{Im}(\phi_1)} \cos(\operatorname{Re}(\phi_2))) \sin(\operatorname{Re}(\phi_1)) \\ z &= r_2 e^{-\operatorname{Im}(\phi_2)} \sin(\operatorname{Re}(\phi_2)) \end{aligned}$$