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What do we want?

Modern quantum field theories describe three of the four fundamental
forces.

1 The electromagnetic force → Quantum Electro Dynamics (QED)
2 The weak nuclear force (together with the above)→ Electroweak theory
3 The strong nuclear force → Quantum Chromo Dynamics (QCD)

Our interest is the thermodynamics of the strong force (QCD)
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From quantum to lattice field theory

All thermodynamic observables can be calculated from the grand
canonical partition sum

Z (T , µ,V ) =

∫
dAνdΨ̄dΨe−S

E [Aν ,Ψ̄,Ψ,T ,µ,V ],

The action of QCD is

SE =

∫ 1/T

0
dτ

∫
V

d
3x

1

4
FαβFαβ +

Nf∑
f =1

ψ̄
f (γEν (∂ν + ig0Aν ) + iγE4 µf + mf )ψf

,

Fαβ = ∂αAβ − ∂βAα + ig0[Aα, Aβ ], Aν ∈ isu(3).

Analytic evaluation of the functional integral is practically impossible.

space-time → lattice, derivatives → finite differences:

⇒ quantum field theory −→ lattice field theory

This can be simulated on computers via Markov Chain Monte Carlo!

Prerequisite: e−S
E

is a probability density.
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Motivation: The sign problem in Lattice QCDs

But this is not always the case:

For µ > 0: S = SR + iSI ∈ C.
→ e−S∫

Γ dUe−S is no probability density anymore → No MCMC.

Possible solution: Use the phase quenched partition sum Zpq =
∫

Γ dUe
−SR

and reweight with the phase:

< O >=

∫
dUO(U)e−iSI [U]e−SR [U]∫

dUe−SR [U]

∫
dUe−SR [U]∫

dUe−iSI [U]e−SR [U]
=
< Oe−iSI >pq

< e−iSI >pq

How does < e−iSI >pq behave? Observe

< e−iSI >pq= Z
Zpq

Zpq > Z ⇒ f − fpq = ∆f = −T
V log Z

Zpq
> 0.

⇒< e−iSI >pq= e−
V
T

∆f
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The idea

We complexify the d.o.f. and analytically continue e−S and O.

Observe: e−S and O are holomorphic functions in some area.
→ Choosing a homotopic integration contour in that area gives the
same result for < O >.

But that’s not true for e−iSI and e−SR !
→ < e−iSI > depends on the integration contour.

We will use Picard-Lefschetz theory (a complex version of Morse theory)
to find a good contour!
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A short introduction to Morse theory

Let M be a smooth compact m-dimensional manifold,

f : M → R a at least two times differentiable function, so that

f has only non-degenerate critical points (this is p ∈ M with
∇f (p) = 0 and det∇2f (p) 6= 0).

⇒ M has the homotopy type of a cell-complex, where each cell is related
to a non-degenerate critical points. Its dimension is the number of positive
eigenvalues of ∇2f .
A k-cell is an open disc

Dk = {~x ∈ Rk | |~x | < 1},

which are glued together at the boundaries to form a compact manifold.
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An example

f (z) = Re (z2 − 1), z ∈ U(1)

f has four critical points z = 1,−1, i ,−i .
∂2
z f (z) < 0 for z = 1,−1 and ∂2

z f (z) > 0 for z = i ,−i .

⇒ We have two 1-cells glued together at two 0-cells.

U(1)

In complexified space, these cells can be chosen to conserve the imaginary
part of our action and are then called Lefschetz thimbles.
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Steepest ascent/descent equation

dz

dt
= ±

(
∂S

∂z

)∗
= ±∂SR

∂zR
± i

∂SR
∂zI

SI [P(t)] = const., while SR is increased/decreased.

Solution of steepest ascent eq. for fixed t will be called Flow mapping

Ft : R −→ Mt ⊂ C
z(0) 7−→ z(t).

−→ No sign problem along solutions.
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Lefschetz thimbles

F. Pham, Proc. Symp. in Pure Math. Vol. 40 319-333, 1983

Z =

∫
R
dze−S(z)

S is locally holomorphic and has only non-degenerate crit. points:
∂S
∂z (zσ) = 0 and det

[
∂2S
∂z2

]
(zσ) 6= 0

Definition of Lefschetz thimbles

Jσ = {z ∈ C | Ft(z)
t→−∞−−−−→ zσ}

We have e−SI
∣∣
Jσ = const. and R '

∑
σ nσJσ, where nσ =< Jσ,R >

is the so called Kronecker index.

−→
∫
R
dze−S =

∑
σ

nσe
−iSI [zσ]

∫
Jσ

dze−SR

How can we do that practically?
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The triangulation approach

1 Get the relevant saddle-point/thimble structure.

2 Solve the flow equations for specific directions around the saddle
points and record the points with a minimum curvature.

3 With these points, we construct a mesh of d-simplices, which
approximates the thimbles.

4 Do an ergodic(!) MCMC on this mesh.

Advantages:

The Monodromy Theorem is fulfilled ⇒ No a priori wrong results.

Sampling on a mesh is fast!
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The model: One flavor 0+1d-QCD

One space-time dimension: Fµν = 0 ⇒ SG = 0.
−→ S = SF and the discretized staggered fermion action reads:

ŜF (µ) =
1

2

Nτ−1∑
n=0

χ̄(n)
(
eµU(n)χ(n + 1)− e−µU†(n − 1)χ(n − 1) + 2mχ(n)

)
Integrating out the fermion fields in the partition sum, we have

Z (Nτ , µ) =

∫
dUdχ̄dχe−χ̄M[U]χ =

∫
dU detM[U]

This determinant can be reduced to

det(M[U]) =
1

23Nτ
det
(
2 cosh(Nτ sinh−1(m))I + eNτµP + e−NτµP†

)
P =

Nτ−1∏
n=0

U(n).

For µ > 0, this is complex.
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Complexification

We use the representation of the SU(3)-matrices P as exponentials of
Gell-Mann-Matrices

P = exp

[
8∑

k=1

ωkT
k

]
T k = − i

2
λk k = 1 . . . 8

For ωk ∈ R, P is in SU(3) and P† = P−1.

For Applying Picard-Lefschetz Theory, we need an analytical
continuation into complex space:

ωk ∈ R ↪→ ωk ∈ C, this is SU(3) ↪→ SL(3,C) and P† → P−1 in S .

⇒ det(M[P]) = det
(

2 cosh(Nτ sinh−1(m))I + eNτµP + e−NτµP−1
)

.
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The geometric structure of 0+1d-QCD

C. Schmidt and F. Ziesché, Proc. LATTICE2016, arXiv 1701.08959

The main critical points obtained are

Pσ = I, e±i
2π
3 I.

These are the center elements of SU(3).

The thimbles end in infinite action barriers in complexified space.
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Getting the points for the triangles.

1 Start at a saddle point.

2 Go an ε-step in direction of the Takagi-Vectors defined by

H(ωσ)∗ω̂∗σ = λω̂σ, λ ∈ R+

3 The steepest ascent equation can be reformulated to

ω̇ =

(
∂S

∂ω

)∗
⇒ ω̇R =

∂SI
∂ωI

and ω̇I = − ∂SI
∂ωR

.

This can be solved effectively by symplectic methods. We use
Verlet-integration.

4 Flow until you hit |∇S | < ε or S ≥ SCutOff and record the points.

5 Reduce the number of points depending on a maximal discrete
curvature.
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Getting the points for the triangles.
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Building the triangulation

We take two neighboring flowlines consisting of the points {p0
1 , p

1
1 , p

2
1 , . . .}

and {p0
2 , p

1
2 , p

2
2 , . . .}, where p0

1 = p0
2 is the common critical point. We

connect both flowlines for themselves and define l̃ki := lki /Li to be the
normalised distance to the critical point.

1 Start with m1 = m2 = 1.

2 Connect pm1
1 with pm2

2 .

3 If
∑m2

k=1 l̃
2
k is smaller than

∑m1
j=1 l̃

1
j , increment m2 or vice versa and go

back to step 2.

4 When one of the mi ’s reaches ni , leave it there and just increment the
other one and connect them until this reaches the end, too.

This procedure is generalisable for higher dimensions!

Triangles → n-simplices.
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An ergodic sampling method: Slice Sampling

1 Select starting point P0 on the triangulation.

2 Pick a random number u ∈ [exp(−SCutOff), exp(−SR(Pn))] uniformly.

3 Sample uniformly a point Pn+1 from the set
{P ∈ SU(3)|e−SR(P) > u}.

4 Repeat from step 2 using the new Pn+1.

The problem is step 3. But for Thimbles, we know the approximate
probability distribution!
→ We can approximate it with a sharp gaussian distribution and use
rejection sampling!

But for low-dimensional models, one can use a very easy way.
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Sampling the triangulation (RW-Slice Sampling)

1 Select starting point P0 on the triangulation.

2 Pick a random number u ∈ [exp(−SCutOff), exp(−SR(Pn))] uniformly.

3 Pick Pn+1 from an isotropic, ergodic distrib. around Pn on the
triangulation.

4 Accept Pn+1, if exp(−SR(P̃n+1)) > u. Otherwise Pn = Pn+1 and
repeat from 3.
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Results (at least for ω8)
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Lattice Gauge Theories

In full Lattice Gauge Theories new problems arise:

We have only degenerate critical points, because of gauge symmetries.

→ Normal Picard-Lefschetz theory does not apply anymore.

The dimensionality is quite high in general!

But we have some good news:

We can apply the concept of Generalized Lefschetz Thimbles
(E. Witten, arXiv 1001.2933)

One flavor U(Nc) theories at finite µ have trivial GLTs, where this
can be tested.

More freedom gives us more tools than just the flow equations!
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A simple U(1)-integral

f (U) = 2 cosh(Kc) + eKU + e−KU−1, U ∈ U(1)

Z =

∫
U(1)

dUf (U) =

∫ 2π

0

dφ

2π
f (e iφ) =

∫
B1(0)

dz

2πi

f (z)

z

Residual theorem: Z = 2 cosh(Kc) and < e iφ >= e−K

2 cosh(Kc )

S = − log f (z) −→ zc = ±e−K and poles at z = −e−K±Kc .
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Gauge orbits

f (U1,U2) = 2 cosh(Kc) + eKU1U2 + e−KU−1
2 U−1

1 , U ∈ U(1)

The critical equation goes to

e i(φ1+φ2) = ±e−K ⇒ φR1 + φR2 = 0/π mod 2π, φI1 + φI2 = K

So we have two 2-dimensional critical manifolds.
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Gauge orbits

According to Witten, we have to take a cycle on this critical manifold and
then solve the flow equations at each point of the cycle in the positive
Takagi directions to get the generalized Lefschetz thimble.
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Outlook

We currently apply this procedure to pure gauge U(1)-theory at
β ∈ C.
→ Results will hopefully follow soon!

We still have to complete the sampling on triangulations and
implement for higher dimensions.

More effective Storage of the manifold by fitting the triangulation
with spherical harmonics.

Thank you for your attention!
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Some Important theorems

The Lefschetz theorem

A complex analytic manifold M of complex dimension k , bianalytically
embedded as a closed subset of Cn has the homotopy type of a
k-dimensional CW-complex.

This means, that every Lefschetz thimble has the same dimension.

The Monodromy theorem

Let f : Γ̃→ C be a holomorphic function on Γ̃ and

Γ, Γ′ ⊂ Γ̃ be homotopic submanifolds of Γ̃ (Γ ' Γ′).

Then ∫
Γ
dzf (z) =

∫
Γ′
dzf (z).
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The Hessian ∂2S

To calculate the Takagi vectors, which span the tangent space TPσJσ, we
need to calculate the Hessian

∂2S

∂ωk∂ωl
= Tr

[
M−1 ∂M

∂ωk
M−1∂M

∂ωl
−M−1 ∂2M

∂ωk∂ωl

]
.

... which is easy for P = e iγI
∂2S

∂ωk∂ωl
=

1

2

(
cosh(Nτµ+ iγ)

Bγ
− sinh2(Nτµ+ iγ)

B2
γ

)
δkl =: hγδ

kl

with
Bγ = cosh(Nτµc) + cosh(Nτµ+ iγ).

The Takagi equation reads

H∗ρ∗λ = λρλ, λ ∈ R

... with Hkl = hγδ
kl , we have as solutions

λ = |hγ |, ρkλ = cek with c =

√
h∗γ
|hγ |

.
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Steepest ascent equation

dωk

dt
=

(
∂S

∂ωk

)∗
, P(t) = exp

[
8∑

k=1

ωk(t)T k

]

SI [P(t)] = const., while SR is increased.
Induces Flow mapping for fixed t

Ft : SU(3) −→ Mt ⊂ SL(3,C)

P 7−→ P(t) = e
∑

k ωk (t)T k
.
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The Contraction algorithm

A. Alexandru et al., Phys. Rev. D93, arXiv 1510.03258

1 Select starting point P0 ∈ SU(3).

2 Pick Pn+1 ∈ SU(3) from an isotropic, ergodic distrib. around Pn

3 Calculate P̃n+1 = Ft(Pn+1) by integrating numerically (e.g. Runge
Kutta)

4 Parallel transport e1, . . . , e8 along Ft by integrating
dvk
dt =

(∑8
l=1

∂2S
∂ωk∂ωl

vl

)∗
, ⇒ det[dFt ] = det[v1(t), . . . , v8(t)].

5 Calculate Seff = SR − log | det[dFt ]|
6 Accept P̃n+1 with probability min{1, e−(Seff(P̃n+1)−Seff(P̃n))}, otherwise

Pn+1 = Pn and repeat from 2.

⇒< O >=
< O det[dFt ]

| det[dFt ]|e
−iSI >Seff

< det[dFt ]
| det[dFt ]|e

−iSI >Seff
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Effect of Ft on the simulation
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Figure: Scatterplot of sampled configurations for m = 0.1, µ = 0.35 and the
variations of SI for t = 1.5 and m = 1 compared with normal Reweighting.
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Results for the Contraction Algorithm
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Figure: Results for Nτ = 4,m = 1.0 using the effective action.

This is obviously wrong.
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Contraction vs. Slice Sampling
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−→ Better results for µ > µc , BUT same for µ < µc .
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Projection of C2 onto R3

x = (r1e
−Im (φ1) + r2e

−Im (φ1) cos(Re (φ2))) cos(Re (φ1))

y = (r1e
−Im (φ1) + r2e

−Im (φ1) cos(Re (φ2))) sin(Re (φ1))

z = r2e
−Im (φ2) sin(Re (φ2))
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