Chiral Symmetry Breaking with Dynamical Hadronization

Christopher Busch – JLU Giessen

Supervisor: Bernd-Jochen Schaefer

Lunch Club, JLU Giessen, 23.06.2021

Outline

- 1) Introduction
- 2) Quark-Meson Model
- 3) Dynamical Hadronization
- 4) Summary & Outlook

Baryon Chemical Potential μ_B

Baryon Chemical Potential μ_B

Baryon Chemical Potential μ_B

Functional Renormalization Group

 \succ Introduce an UV- and IR-regulation to our theory

 \rightarrow scale dependent effective action Γ_{k}

Objectives

- Phenomena of low energy QCD:
 - Confinement/Deconfinement
 - Chiral symmetry breaking
- \succ Validate our model/truncation:
 - Appropriate to describe the correct physics? Necessary extensions?
- \succ Research into chiral symmetry breaking and thermodynamics:
 - Chiral phase structure: Condensate, Critical End Point
 - Dynamical mass generation
 - Equation of State at high chem. potentials

3) Quark-Meson Model

Two Flavor Model

Label	Scale Dep.
LPA	$oldsymbol{\Omega}_{oldsymbol{k}}$
LPA+Y	Ω_k, g_k
LPA'	$egin{aligned} \Omega_{m k}, Z_{m \psi,m k}, Z_{m \phi,m k} \end{aligned}$
LPA'+Y	$(egin{array}{c} \Omega_k, g_k, Z_{\psi,k}, Z_{\phi,k} \end{array})$

- Local Potential Approximation (LPA):
 - Only effective Potential Ω(φ²) scale dependent
 - $g_k \equiv g$ constant and $Z_{\phi,k} \equiv Z_{\psi,k} \equiv 1$

$$\implies$$
 classical propagators, e.g.
 $G_{\pi,k} = \frac{1}{p^2 + m_{\pi,k}^2} \text{ for } R_k \to 0$

Initial Action

 \succ UV and IR scale: $\Lambda = 900 \, {
m MeV}, \; k_{IR} = 80 \, {
m MeV}$

 \succ UV-Ansatz for the effective potential: $\Omega_{\Lambda} = a_1 \phi^2 + \frac{a_2}{2} \phi^4$

> Parameter fixing $(a_1, a_2, c \text{ and } g_{k=\Lambda})$ to get vacuum values

$ar{m}_{oldsymbol{\sigma}}$	$= 550 \mathrm{MeV}$	$m_{\pi,k}^2 = 2\Omega'_k$
$ar{m}_{m{\pi}}$	$= 138 \mathrm{MeV}$	$m_{-L}^2 = 2\Omega'_L + 4\sigma^2 \Omega''_L$
$ar{m}_{m{\psi}}$	$= 300 \mathrm{MeV}$	$\cdots \sigma, \kappa$ $\cdots \kappa$ $\cdots \kappa$
f_{π}	= 93 MeV	$m_{\psi,k}^2 = g_k^2 \sigma^2$

Going "Beyond LPA"

 \succ In general flow eq's depend on fields and momenta

$$\Rightarrow Z_{\phi,k}\left(p^2,\phi^2\right), Z_{\psi,k}\left(p^2,\phi^2\right), g_k\left(p^2,q^2,\phi^2\right)$$

$$\overbrace{p}^{q} \xrightarrow{p-q}$$

p

Consequences:

 $Z_k(p^2) \implies$ Non-trivial (higher order) momentum dependencies in propagators: $C_k(n^2) = 1$

$$G_k(p^2) = \frac{1}{Z_k(p^2) \cdot p^2 + m_k^2}$$

 $g_k(\phi^2) \implies$ Higher order vertices:

Simplified Flow Equations

> Approximate Z_k and g_k as field and momentum independent:

Static bare/renormalized or "co-moving" evaluation point ϕ_0 (sketched with colored dots)

 \rightarrow Flow equations at fixed external momentum p=p_{min}

Contributions:

Scale Dependent Masses

Phase Diagram

> In LPA+Y: g_k diverges for $\sigma=0$, leading term:

$$\partial_t g_k \left(\sigma^2 = 0\right) \sim -\frac{g_k^3(0)}{\left(1 + \underbrace{m_\pi^2(0)/k^2}_{\to -1 \text{ for } k \to 0}\right)^{3/2}}$$

23.06.2021

Christopher Busch

23.06.2021

Christopher Busch

3) Dynamical Hadronization

Introducing Bosons

- \succ Goal: Replace fermion interactions with effective d.o.f.
- ✦For four-fermion interactions: use <u>Hubbard-Stratonovich (HS)</u> <u>transformation:</u>

• At fixed scale $k=\Lambda$

→Introduces UV-cutoff of partially bosonized theory

• Exact mathematical identity

Dynamical Hadronization: Why?

- \succ Allows "smooth" transition between different d.o.f.
- ➢ Fermionic interactions regenerated at scales k<∧ via box diagrams:</p>

$$\partial_t \lambda_k \sim g_k^4$$

- Possible back-coupling into other flows
- Effects usually neglected in low-energy models
- > Goal: $\lambda_k = 0$ for <u>all</u> scales $k < \Lambda$

→Idea: "Re-bosonize" effective action at every step of the flow

$$\overline{\psi} \xrightarrow{\phi} \psi$$

Fierz Transformations

Consider interaction term

$$\mathscr{L}_{\text{int}} = g_I \left(\bar{\psi} \, \hat{\Gamma}^{(I)} \psi \right)^2 = g_I \Gamma^{(I)}_{ij} \Gamma^{(I)}_{kl} \bar{\psi}_i \psi_j \bar{\psi}_k \psi_l$$

For a complete basis $\{\hat{\Gamma}^{(M)}\}$ one finds identities

$$\Gamma_{ij}^{(I)}\Gamma_{kl}^{(I)} = \sum_{M} c_{M}^{I}\Gamma_{il}^{(M)}\Gamma_{kj}^{(M)}$$

allowing to rewrite the interaction as

$$\mathscr{L}_{\mathrm{ex}} = -g_I \sum_M c_M^I \left(\bar{\psi} \, \hat{\Gamma}^{(M)} \psi \right)^2$$

Example: Flavor/Color space

$$\begin{bmatrix} \mathbb{I}_{ij}\mathbb{I}_{kl} \\ (\tau_a)_{ij}(\tau^a)_{kl} \end{bmatrix} = \begin{bmatrix} \frac{1}{N} & \frac{1}{2} \\ 2\frac{N^2 - 1}{N^2} & -\frac{1}{N} \end{bmatrix} \begin{bmatrix} \mathbb{I}_{ij}\mathbb{I}_{kl} \\ (\tau_a)_{ij}(\tau^a)_{kl} \end{bmatrix}$$

23.06.2021

Dyn. Hadronization: How?

 \succ Take into account that relevance of d.o.f. changes with scale

→ FRG with scale dependent fields:

$$\partial_t \varphi_k = \mathcal{F}_k \left[arphi, \psi, ar{\psi}, ...
ight]$$
 [Gies et al. (2002)]

- \mathcal{F}_k a priori arbitrary functional
- ➔ For suitable F_k: 4-fermion interactions completely translated into Yukawa interactions <u>at all scales</u>

Effective Action

 \succ Implementation of DH into the flow equation:

• Start with generating functional (only one field for sake of simplicity)

$$Z_{k}\left[j
ight]=e^{W_{k}\left[j
ight]}=\int\mathcal{D}arphi\exp\left\{-S\left[arphi
ight]-\Delta S_{k}\left[arphi_{k}
ight]+\int jarphi_{k}
ight\}$$

• For the effective action this results in the flow equation (analogously to the "standard" Wetterich eq.)

$$\partial_t \Gamma_k |_{\phi_k} = \frac{1}{2} \operatorname{STr} \left[(\partial_t R_k) \, G_k \right] + \int \left(G_k \frac{\delta}{\delta \phi_k} \right) R_k \left(\partial_t \phi_k \right) - \int \frac{\delta \Gamma_k}{\delta \phi_k} \left(\partial_t \phi_k \right)$$

standard flow field dep. of $\partial_t \phi_k$ k-dep. of ϕ_k

Flow Equations

$$\partial_t \Gamma_k|_{\phi_k} = \frac{1}{2} \operatorname{STr} \left[\left(\partial_t R_k \right) G_k \right] + \int \left(G_k \frac{\delta}{\delta \phi_k} \right) R_k \left(\partial_t \phi_k \right) - \int \frac{\delta \Gamma_k}{\delta \phi_k} \left(\partial_t \phi_k \right)$$

- Flow equations can be splitted into an original part (without dynamical hadronization) and additional contributions due to the scale dependent fields!
- ➔ Generic flow equation:

$$\partial_t c_k = \partial_t^0 c_k + \Delta \partial_t c_k$$

without dyn. had. new contributions

Both parts are derived as usual by projecting onto the corresponding terms of the flowing action

Relevance for low energy models

Necessary for QM model? How large is the effect from box diagrams really?

• In vacuum:

$f_{\pi}/ ilde{f}_{\pi}$	M_q/\tilde{M}_q	M_{π}/\tilde{M}_{π}	$M_{\sigma}/\tilde{M}_{\sigma}$
0.995	0.997	1.003	0.990

Table I: Effect of dynamical hadronisation on a quark-meson model: The quantities with/without a tilde are the results obtain from a solution of the flow equations of the quark-meson model with/without dynamical hadronisation techniques.

[Braun et al. (2016)]

 \succ comparison away from vacuum?

DH in the QM2 model

 \succ Choose the following scaling for bosonic fields:

$$\partial_t \sigma_k = (\partial_t A_k) \int\limits_q ar{\psi}(q-p) \psi(q)$$

• Hadronization function $\partial_t A_k$ fixed by condition

$$\partial_t \lambda_k \left[\partial_t A_k
ight] \equiv 0$$

∂_tσ_k independent of bosonic fields
 → one of the contributions to ∂_tΓ_k vanishes

Four Fermion Interaction

> Term corresponding to $(\sigma - \pi)$ -channel:

$$\mathcal{L}_{SP} = \frac{\lambda_k}{2} [(\underbrace{\bar{\psi}\psi}_{\hat{\varphi}})^2 + (\underbrace{\bar{\psi}i\gamma_5\tau_a\psi}_{\hat{\varphi}})^2]$$

But: Also different types of four fermion interactions are generated in $\partial_t \Gamma_k$, e.g. terms $(\bar{\psi} \not q \psi)^2$

 \rightarrow Flow strongly depends on Fierz transformations

Dynamical Hadronization: Results

4) Summary

 \succ Studied chiral symmetry breaking using a quark meson model

 \succ Introduced different steps "beyond" leading truncation (LPA):

- ➔ Additional scale dependencies
- → Allowed higher order quark-meson vertices

Introduced dynamical hadronization and discussed it's relevance for low energy models

4) Outlook

 \succ Field dependent wave function renormalizations

Equation of State at high densities/ temperature close to zero (neutron stars)

 \succ Include higher order momentum dependencies to propagators

Some References

- R. Alkofer, A. Maas, W. A. Mian, M. Mitter, J. Paris-Lopez, J. M. Pawlowski, and N. Wink. Bound state properties from the functional renormalization group. *Phys. Rev.*, D99(5):054029, 2019.
- [2] J. Braun, L. Fister, J.M. Pawlowski, and F. Rennecke. From Quarks and Gluons to Hadrons: Chiral Symmetry Breaking in Dynamical QCD. Phys. Rev., D94(3):034016, 2016.
- [3] S. Floerchinger and C. Wetterich. Exact flow equation for composite operators.
- [4] W. Fu, J. M. Pawlowski, and F. Rennecke. The QCD phase structure at finite temperature and density. 2019.
- [5] W. Fu, J. M. Pawlowski, F. Rennecke, and B.-J. Schaefer. Baryon number fluctuations at finite temperature and density. *Phys. Rev.*, D94(11):116020, 2016.
- [6] H. Gies and C. Wetterich. Renormalization flow of bound states. Phys. Rev., D65:065001, 2002.
- [7] J. M. Pawlowski. Aspects of the functional renormalisation group. Annals Phys., 322:2831–2915, 2007.
- [8] F. Rennecke. The chiral phase transition of QCD. PhD thesis, Ruperto-Carola University, Heidelberg, Germany, 2015.
- [9] R.-A. Tripolt, B.-J. Schaefer, L. von Smekal, and J. Wambach. Low-temperature behavior of the quark-meson model. *Phys. Rev.*, D97(3):034022, 2018.