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Introduction and motivation

I Sign problems or complex action problems are a common
challenge in Lattice Field Theory.

I Possible sources:
I Finite density
I Finite chemical potential
I Topological term

I One approach to solve these problems: dualisation method
I Exactly rewrite the partition sum in terms of new dual variables.
I New degrees of freedom are:

I World lines of conserved flux for matter fields
I World sheets for gauge fields

I Dual representations well studied for Abelian theories, more
difficult for non-abelian theories.
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Introduction and motivation

I This thesis considers dual representations for pure SU(2) lattice
gauge theory. Considering this is useful because:
I Simplest non-Abelian theory
I Model building theory

I Initially does not have a sign problem.
I The sign problem is introduced in the dualisation procedure.
I Goals of the thesis:

I Develop a method to solve the "artificial" sign problem.
I Check validity of the method by numerical simulation.
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Lattice regularization of SU(N) gauge theory

Consider the action of a SU(N) gauge theory, given by

S[ψ̄, ψ,A] =
1

2g2

∫
d4x Tr[Fµν(x)Fµν(x)]︸ ︷︷ ︸

SG[A]

+ (1)

Nf∑
f =1

∫
d4x ψ̄(f )(x)[m(f ) + /D(x)]ψ(f )(x)︸ ︷︷ ︸

SF [ψ̄,ψ,A]

, (2)

with
I Fµν = ∂µAν(x)− ∂νAµ(x) + i [Aµ(x),Aν(x)],
I Dµ(x) = ∂µ + igAµ(x).
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Lattice regularization of SU(N) gauge theory

Let Ω(x) denote a SU(N) gauge transformation. The transformation
properties of the fields are:
I ψ′(x) = Ω(x)ψ(x), ψ̄′(x) = ψ̄(x)Ω(x)†,
I D′µ(x) = Ω(x)Dµ(x)Ω(x)†

I A′µ(x) = Ω(x)Aµ(x)Ω(x)† − i
g Ω(x)(∂µΩ(x)†).

Lattice discretization:
Make the following replacements and identifications:
I x → n ∈ Λ4,
I ∂µψ(x)→ ψ(n+µ̂)−ψ(n−µ̂)

2a ,
I ψ′(n) = Ω(n)ψ(n),
I Ω(x)→ Ω(n) ∈ SU(N)

I Ω(n)†Ω(n) = I
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Lattice regularization of SU(N) gauge theory

SF [ψ̄, ψ,A] =

Nf∑
f =1

∫
d4x ψ̄(f )(n)[m(f ) + /D(n)]ψ(f )(n) , (3)

Under these transformations the massterm of the fermionic action is
invariant.
However, the term with the covariant derivative is not, which can be
seen in the following:

ψ̄′(n)γµψ
′(n + µ̂) = ψ̄(n) Ω(n)†Ω(n + µ̂)︸ ︷︷ ︸

6=I

γµψ(n + µ̂) , (4)

To fix this, we introduce quantities called gauge links Uµ(n) with
which Eq. (4) becomes:

ψ̄(n)U ′µ(n)ψ(n + µ̂)→ ψ̄(n)Ω(n)†U ′µ(n)Ω(n + µ̂)ψ(n + µ̂) . (5)

These gauge links obey the transformation properties:

U ′µ(n) = Ω(n)Uµ(n)Ω(n + µ̂)† . (6)
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Lattice regularization of SU(N) gauge theory

Uµ(n)

n n + µ̂ n n + µ̂

Uµ(n)†

Figure: Graphical representation of the gauge link variables.

The gauge links live on the links of the lattice and have the graphical
representation shown in figure above.
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Lattice regularization of SU(N) gauge theory

For the gauge action

SG[A] =
1

2g2

∫
d4x Tr[Fµν(x)Fµν(x)] , (7)

we have to build a gauge invariant quantity using the gauge links
Uµ(n). The simplest gauge invariant quantity is the trace over the
product of gauge links arranged along squares of the lattice. This
product of gauge links is called a plaquette and is given as:

pµν(n) = Uµ(n)Uν(n + µ̂)Uµ(n + ν̂)†Uν(n)† . (8)

Using the plaquettes and using β = 2N
g2 one identifies the gauge

action for a SU(N) theory to be:

SG[U] =
β

N

∑
n∈Λ4

∑
µ<ν

Re(Tr[I− pµν(n)]) . (9)
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Lattice regularization of SU(N) gauge theory

Uµ(n)

Uν(n + µ̂)

Uµ(n + ν̂)†

Uν(n)†

n n + µ̂

n + µ̂+ ν̂n + ν̂

Figure: Graphical illustration of a plaquette on the lattice.

The plaquettes have a very nice geometric representation which is
shown in the figure above. Figure taken from [3].
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Dualisation of SU(2) lattice gauge theory

Starting point is the partition sum

Z =

∫
D[U] e−SG[U] , (10)

with Wilson action

SG[U] = −β
2

∑
x,µ<ν

Tr[Ux,µUx+µ̂,νU†x+ν̂,µU†x,ν ] , (11)

where
Ux,µ ∈ SU(2). (12)

The integral measure is given by:∫
D[U] =

∏
x,µ

∫
dUx,µ, (13)

with dUx,µ denoting the Haar measure.
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Dualisation of SU(2) lattice gauge theory

Starting point is the partition sum

Z =

∫
D[U] e−SG[U] , (10)

with Wilson action

SG[U] = −β
2

∑
x,µ<ν

Tr[Ux,µUx+µ̂,νU†x+ν̂,µU†x,ν ] , (11)

Choose following parametrisation of SU(2) matrix:

Ux,µ =

[
cos(θx,µ)eiαx,µ sin(θx,µ)eiβx,µ

− sin(θx,µ)e−iβx,µ cos(θx,µ)e−iαx,µ

]
, (12)

with θx,µ ∈ [0, π2 ] and αx,µ, βx,µ ∈ [0,2π]. The Haar measure reads:

dUx,µ = 2 dθx,µ cos(θx,µ) sin(θx,µ)
dαx,µ

2π
dβx,µ

2π
. (13)
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Dualisation of SU(2) lattice gauge theory

First step towards the dualisation, as given in [1], is to rewrite the
trace and matrix multiplication explicitly as:

SG[U] = −β
2

∑
x,µ<ν

1∑
a,b,c,d=0

Uab
x,µUbc

x+µ̂,νUdc ∗
x+ν̂,µUad ∗

x,ν , (14)

where the Uab
x,µ are now complex numbers.

When expanding the Boltzmann factors in a power series, the
partition sum becomes

Z =

∫
D[U]

∏
x,µ<ν

∏
a,b,c,d

∞∑
pabcd

x,µν=0

(
β
2

)pabcd
x,µν

pabcd
x,µν !

(
Uab

x,µUbc
x+µ̂,νUdc ∗

x+ν̂,µUad ∗
x,ν︸ ︷︷ ︸

ACC

)pabcd
x,µν ,

(15)

where the expansion indices pabcd
x,µν ∈ N0 will be identified as our dual

variables. The shorthand ACC stands for Abelian Colour Cycles.
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Dualisation of SU(2) lattice gauge theory

Abelian Color Cycles have a nice geometrical representation:

x0
x + µ̂

x + ν̂ x + µ̂+ ν̂
1

U10
x,µ

U01
x+µ,ν

U11 ∗
x+ν,µ

U11 ∗
x,ν

Figure: Graphical illustration of an example ACC here defined by the color
index combination 1011. Figure adapted from [1].
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Dualisation of SU(2) lattice gauge theory

Inserting now the parametrisation we chose and rearranging the
terms we arrive at:

Z =
∑
{p}

Wβ[p]
∏
x,µ

(−1)J
01
x,µ

× 2
∫ π

2

0
dθx,µ(cos(θx,µ))1+S00

x,µ+S11
x,µ(sin(θx,µ))1+S01

x,µ+S10
x,µ

×
∫ 2π

0

dαx,µ

2π
eiαx,µ[J 00

x,µ−J
11
x,µ]

∫ 2π

0

dβx,µ

2π
eiβx,µ[J 01

x,µ−J
10
x,µ] , (16)

where the J and S here are flux variables and are given as follows:

J ab
x,µ =

∑
ν:µ<ν

[pabss
x,µν − pssba

x−ν̂,µν ]−
∑
ρ:ρ<µ

[passb
x,ρµ − psabs

x−ρ̂,ρµ] (17)

Sab
x,µ =

∑
ν:µ<ν

[pabss
x,µν + pssba

x−ν̂,µν ] +
∑
ρ:ρ<µ

[passb
x,ρµ + psabs

x−ρ̂,ρµ] (18)
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Dualisation of SU(2) lattice gauge theory

By performing the integrals in Equation (16) we arrive at the final
dualised version of the partition sum, which reads:

Z =
∑
{p}

Wβ[p] WH [p] (−1)
∑

x,µ J
01
x,µ
∏
x,µ

δ(J 00
x,µ − J 11

x,µ) δ(J 01
x,µ − J 10

x,µ) .

Here Wβ[p] and WH [p] are weight factors given as:

Wβ[p] =

 ∏
x,µ<ν

∏
a,b,c,d

(
β
2

)pabcd
x,µν

pabcd
x,µν !

 , (19)

and

WH [p] =
∏
x,µ

(S00
x,µ+S11

x,µ
2

)
!
(S01

x,µ+S10
x,µ

2

)
!(S00

x,µ+S11
x,µ+S01

x,µ+S10
x,µ

2 + 1
)
!
. (20)
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Figure: Graphical illustration of the constraints of the J ab
x,µ-fluxes. Figure

adapted from [1].
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Dualisation of SU(2) lattice gauge theory
Observables

Some interesting simple observables are:
I The plaquette expectation value:

〈Up〉 ≡
1

6V
∂ ln(Z )

∂
(
β
2

) =
1

6V

〈 ∑
x,µ<ν

Tr
[
Ux,µ Ux+µ̂,ν U†x+ν̂,µ U†x,ν

]〉
(21)

I The plaquette susceptibility:

χp =
∂〈Up〉
∂
(
β
2

) =
1

6V
∂2 ln(Z )

∂
(
β
2

)2 (22)

Joshua Hoffer |



17

Approaches for simulation

Here we will shortly introduce the approaches we used:
a) Factoring out the center group of SU(2) in search for new

constraints,
b) Introduce a new index to try and resum the different contributions

to obtain, positive weights
c) Truncate the dual theory and relate it to a Qubit representation.
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Approaches for simulation
a) Factoring out the center group of SU(2)

The main idea was to change the representation of the gauge links in
the following way

Uab
x,µ → σx,µUab

x,µ , (23)

where the σx,µ are from the center group of SU(2), i.e, Z2. The
dualisation is analogous, but we can solve the Z2 part in closed form
to obtain a new constraint of the form:

∏
x,µ

E

∑
ν

∑
a,b,c,d

[
pabcd

x,µν − pabcd
x−ν̂,µν

] . (24)

However, it can be shown that this constraint corresponds to the
J -flux constraint and is thus not new.
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Approaches for simulation
b) Index parametrisation

Idea here is to start from the following partition function

Z =
∑
{p}

Wβ[p]

∫
D[U]

∏
x,µ<ν

(
Tr
[
Ux,µUx+µ̂,νU†x+ν̂,µU†x,ν

])px,µν

︸ ︷︷ ︸
(∗)

, (25)

Write (∗) as

(∗) =
∑

{a,b,c,d}

∏
x,µ<ν

px,µν∏
j=1

Uaj
x,µνbj

x,µν
x,µ Ubj

x,µνc j
x,µν

x+µ̂,ν U∗ d j
x,µνc j

x,µν
x+ν̂,µ U∗ aj

x,µνd j
x,µν

x,ν ,

(26)

with ∑
{a,b,c,d}

=
∏

x,µ<ν

px,µν∏
j=1

∑
aj

x,µν

∑
bj

x,µν

∑
c j

x,µν

∑
d j

x,µν

, (27)

and introducing an index j to account for the exponentiation.
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Approaches for simulation
b) Index parametrisation

Using this new index j and using a clever representation of the matrix
elements we carry out the dualisation procedure. Analysing the terms
in the exponent, we can identify a certain combination of them as
conserved color fluxes. We then rewrite the whole partition sum in
terms of these color flux variables.

Although this approach seemed very interesting and promising, we
decided to abandon it. The reason for this was, that this approach did
not solve the problem comprehensively. For a simulation a more
conventional way was more appealing.
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Approaches for simulation
c) Truncation of the dual theory

The idea for this approach is to truncate the dualised theory such that
it matches the terms expected for a Qubit regularisation [2].

For this we introduce new dual variables:

V abcd
x,µν ≡ pabcd

x,µν − pāb̄c̄d̄
x,µν (28)

Dabcd
x,µν ≡ pabcd

x,µν · pāb̄c̄d̄
x,µν , (29)

where the letters with a bar denote the anti-color index.

We restrict these new variables to the following values:

V abcd
x,µν ∈ {0,±1} (30)

Dabcd
x,µν ∈ {0,1} , (31)

thus truncating the theory. I.e., the dual variables pabcd
x,µν can only take

the values 0 or 1.
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Approaches for simulation
c) Truncation of the dual theory

The variables of the previous slide can be related to the ACC as
follows

pāb̄c̄d̄
x,µν

pabcd
x,µν 0 1

0 V abcd
x,µν = 0 V abcd

x,µν = +1
Dabcd

x,µν = 0 Dabcd
x,µν = 0

1 V abcd
x,µν = −1 V abcd

x,µν = 0
Dabcd

x,µν = 0 Dabcd
x,µν = 1
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Approaches for simulation
c) Truncation of the dual theory

With the introduction of a plaquette state: |Dabcd
x,µν ,V abcd

x,µν 〉 we are able
to complete the analogy to the qubit representation as we obtain a
singlet-triplet representation:

plaquette singlet: |1,0〉

plaquette triplet:


|0,+1〉
|0,0〉
|0,−1〉

(32)

Furthermore this representation simplifies the weight factors of the
original theory quite a lot. This truncated version of the theory is the
one we used for the simulation.
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Simulation and results

To check the validity of our approach we simulate the theory in the
conventional representation and the truncated dual theory and
compared the results. All the simulations are carried out via Monte
Carlo methods, in particular the Metropolis algorithm.

First I will summarise shortly why we need Monte Carlo methods and
how they work. After this I will show the structure of our program and
which which updates we can perform.
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Simulation and results

Vacuum expectation values for observables are obtained via:

〈O〉 =
1
Z

∫
D[φ] e−S[φ] O[φ] . (33)

This integral cannot be solved exactly→ use Monte Carlo to
approximate it by the average of the observable evaluated on N
sample field configurations φ̃. These are generated randomly
according to a probability distribution P[φ].
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Simulation and results

Short overview of a Metropolis algorithm:
I Generate proposal field configuration φ̃ near the current one

I Calculate the Metropolis ratio: ρ = P[φ̃]
P[φ] .

I Generate random number r , uniformly distributed in the interval
[0,1].

I Accept new configuration if r < ρ.
Updating the configurations using the above steps is called a sweep.
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Simulation and results

The structure of our programs is as follows:
I Choose initial parameters, such as

I Number of equilibrating steps
I Number of skip steps (for autocorrelation)
I Number of measurements
I Values of the inverse gauge coupling for the simulation

I Update the configurations
I Update the single links in the conventional representation
I Update the configurations via sheet, double and cube updates

I Compute the observable
I Perform error analysis
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Simulations and results
Graphical illustration of the possible updates.

Ux,µ

µ

ν

Ux,µ

ρ

µ

Figure: Illustration of the different cases of two neighbouring plaquettes which
contain the gauge link Ux,µ we want to update.
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Simulations and results
Graphical illustration of the possible updates.

Figure: Graphical illustration of the update schemes for the dual simulation.
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Simulation and results
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Figure: Comparison of the plaquette expectation value for the conventional
and the dual truncated simulation.

Joshua Hoffer |



30

Simulation and results
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Figure: Comparison of the susceptibility for conventional and dual truncated
simulation.
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Summary

Summary:
I In our work we tried to overcome a sign problem introduced by

the dualisation of SU(2) lattice gauge theory.
I We explored three simulation approaches, of which the

truncation approach was the most promising.
I We simulated the theory to check the validity of the approach.
I Using the Dual truncated approach:

I Reproduced the results in the strong coupling region
I No relative signs appear in the simulation. Thus the sign problem

has been overcome in the truncation approach.
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Outlook

Outlook:
I Include higher orders in the truncation. This should be possible

since negative terms appear only at O(β4).
I It would be very interesting to see, whether we can apply this

truncation approach to SU(3), as this is the next higher Lie group
and the gauge group of QCD.

I Find new resummation techniques.
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